101
|
Vasti C, Hertig CM. Neuregulin-1/erbB activities with focus on the susceptibility of the heart to anthracyclines. World J Cardiol 2014; 6:653-662. [PMID: 25068025 PMCID: PMC4110613 DOI: 10.4330/wjc.v6.i7.653] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neuregulin-1 (NRG1) signaling through the tyrosine kinase receptors erbB2 and erbB4 is required for cardiac morphogenesis, and it plays an essential role in maintaining the myocardial architecture during adulthood. The tyrosine kinase receptor erbB2 was first linked to the amplification and overexpression of erbb2 gene in a subtype of breast tumor cells, which is indicative of highly proliferative cells and likely a poor prognosis following conventional chemotherapy. The development of targeted therapies to block the survival of erbB2-positive cancer cells revealed that impaired NRG1 signaling through erbB2/erbB4 heterodimers combined with anthracycline chemotherapy may lead to dilated cardiomyopathy in a subpopulation of treated patients. The ventricular-specific deletion of either erbb2 or erbb4 manifested dilated cardiomyopathy, which is aggravated by the administration of doxorubicin. Based on the exacerbated toxicity displayed by the combined treatment, it is expected that the relevant pathways would be affected in a synergistic manner. This review examines the NRG1 activities that were monitored in different model systems, focusing on the emerging pathways and molecular targets, which may aid in understanding the acquired dilated cardiomyopathy that occurs under the conditions of NRG1-deficient signaling.
Collapse
|
102
|
Barad L, Schick R, Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair. Can J Cardiol 2014; 30:1279-87. [PMID: 25442431 DOI: 10.1016/j.cjca.2014.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 02/04/2023] Open
Abstract
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure. Unfortunately, for patients with end-stage heart failure, heart transplantation remains the main alternative, and it is insufficient, mainly because of the limited availability of donor organs. Although left ventricular assist devices are progressively entering clinical practice as a bridge to transplantation and even as an optional therapy, cell replacement therapy presents a plausible alternative to donor organ transplantation. During the past decade, multiple candidate cells were proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. The purpose of this article is to critically review the comprehensive research involving the use of hESCs and hiPSCs in MI models and to discuss current controversies, unresolved issues, challenges, and future directions.
Collapse
Affiliation(s)
- Lili Barad
- Department of Physiology, Technion, Haifa, Israel; The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Revital Schick
- Department of Physiology, Technion, Haifa, Israel; The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Naama Zeevi-Levin
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; The Sohnis and Forman Families Stem Cell Center, Technion, Haifa, Israel
| | - Joseph Itskovitz-Eldor
- The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; The Sohnis and Forman Families Stem Cell Center, Technion, Haifa, Israel
| | - Ofer Binah
- Department of Physiology, Technion, Haifa, Israel; The Rappaport Family Institute, Technion, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
103
|
Abstract
Human heart failure (HF) is one of the leading causes of morbidity and mortality worldwide. Currently, heart transplantation and implantation of mechanical devices represent the only available treatments for advanced HF. Two alternative strategies have emerged to treat patients with HF. One approach relies on transplantation of exogenous stem cells (SCs) of non-cardiac or cardiac origin to induce cardiac regeneration and improve ventricular function. Another complementary strategy relies on stimulation of the endogenous regenerative capacity of uninjured cardiac progenitor cells to rebuild cardiac muscle and restore ventricular function. Various SC types and delivery strategies have been examined in the experimental and clinical settings; however, neither the ideal cell type nor the cell delivery method for cardiac cell therapy has yet emerged. Although the use of bone marrow (BM)-derived cells, most frequently exploited in clinical trials, appears to be safe, the results are controversial. Two recent randomized trials have failed to document any beneficial effects of intracardiac delivery of autologous BM mononuclear cells on cardiac function of patients with HF. The remarkable discovery that various populations of cardiac progenitor cells (CPCs) are present in the adult human heart and that it possesses limited regeneration capacity has opened a new era in cardiac repair. Importantly, unlike BM-derived SCs, autologous CPCs from myocardial biopsies cultured and subsequently delivered by coronary injection to patients have given positive results. Although these data are promising, a better understanding of how to control proliferation and differentiation of CPCs, to enhance their recruitment and survival, is required before CPCs become clinically applicable therapeutics.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA
| | | |
Collapse
|
104
|
Abstract
OPINION STATEMENT Reconstitution of cardiac muscle as well as blood vessels to provide sufficient oxygenation and nutrients to the myocardium is an important component of any therapeutic approach for cardiac repair after injury. Recent reports of reprogramming somatic cells directly to cells of another lineage raised the possibility of using cell reprogramming for cardiac regenerative therapy. Here, we provide an overview of the current reprogramming strategies to generate cardiomyocytes (CMs), endothelial cells (ECs) and smooth muscle cells (SMCs), and the implications of these methods for cardiac regeneration. We also discuss the challenges and limitations that need to be addressed for the development of future therapies.
Collapse
|
105
|
Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Börnchen C, Müller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther PK, Hansen A, Eschenhagen T. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 2014; 74:151-61. [PMID: 24852842 DOI: 10.1016/j.yjmcc.2014.05.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 11/18/2022]
Abstract
Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT.
Collapse
Affiliation(s)
- Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Jasper Boeddinghaus
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alice Mitchell
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Sebastian Schaaf
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Börnchen
- Dermatology and Venereology Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; Department of General and Interventional Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Schulz
- Max-Delbruck-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Norbert Hubner
- Max-Delbruck-Center for Molecular Medicine (MDC), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Andrea Stoehr
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Pradeep K Luther
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
106
|
Neuregulin-1β induces embryonic stem cell cardiomyogenesis via ErbB3/ErbB2 receptors. Biochem J 2014; 458:335-41. [PMID: 24364879 DOI: 10.1042/bj20130818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NRG-1β (neuregulin-1β) serves multiple functions during embryonic heart development by signalling through ErbB family receptor tyrosine kinases (ErbB2, ErbB3 and ErbB4). Previous studies reported that NRG-1β induces cardiomyogenesis of mESCs (mouse embryonic stem cells) at the later stages of differen-tiation through ErbB4 receptor activation. In the present study we systematically examined NRG-1β induction of cardiac myocytes in mESCs and identified a novel time window, the first 48 h, for NRG-1β-based cardiomyogenesis. At this time point ErbB3, but not ErbB4, is expressed. In contrast with the later differentiation of mESCs in which NRG-1β induces cardiomyogenesis via the ErbB4 receptor, we found that knocking down ErbB3 or ErbB2 with siRNA during the early differentiation inhibited NRG-1β-induced cardiomyogenesis in mESCs. Microarray analysis of RNA expression at this early time point indicated that NRG-1β treatment in mESCs resulted in gene expression changes important to differentiation including up-regulation of components of PI3K (phosphoinositide 3-kinase), a known mediator of the NRG-1β/ErbB signalling pathway, as well as activation of CREB (cAMP-response-element-binding protein). Further study demonstrated that the NRG-1β-induced phosphorylation of CREB was required for cardiomyogenesis of mESCs. In summary, we report a previously unrecognized role for NRG-1β/ErbB3/CREB signalling at the pre-mesoderm stage for stem cell cardiac differentiation.
Collapse
|
107
|
Hartman ME, Liu Y, Zhu WZ, Chien WM, Weldy CS, Fishman GI, Laflamme MA, Chin MT. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias. FASEB J 2014; 28:3007-15. [PMID: 24687990 DOI: 10.1096/fj.14-251728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CHF1/Hey2 is a Notch-responsive basic helix-loop-helix transcription factor involved in cardiac development. Common variants in Hey2 are associated with Brugada syndrome. We hypothesized that absence of CHF1/Hey2 would result in abnormal cellular electrical activity, altered cardiac conduction system (CCS) development, and increased arrhythmogenesis. We isolated neonatal CHF/Hey2-knockout (KO) cardiac myocytes and measured action potentials and ion channel subunit gene expression. We also crossed myocardial-specific CHF1/Hey2-KO mice with cardiac conduction system LacZ reporter mice and stained for conduction system tissue. We also performed ambulatory ECG monitoring for arrhythmias and heart rate variability. Neonatal cardiomyocytes from CHF1/Hey2-KO mice demonstrate a 50% reduction in action potential dV/dT, a 50-75% reduction in SCN5A, KCNJ2, and CACNA1C ion channel subunit gene expression, and an increase in delayed afterdepolarizations from 0/min to 12/min. CHF1/Hey2 cKO CCS-lacZ mice have a ∼3-fold increase in amount of CCS tissue. Ambulatory ECG monitoring showed no difference in cardiac conduction, arrhythmias, or heart rate variability. Wild-type cells or animals were used in all experiments. CHF1/Hey2 may contribute to Brugada syndrome by influencing the expression of SCN5A and formation of the cardiac conduction system, but its absence does not cause baseline conduction defects or arrhythmias in the adult mouse.-Hartman, M. E., Liu, Y., Zhu, W.-Z., Chien, W.-M., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias.
Collapse
Affiliation(s)
| | - Yonggang Liu
- Division of Cardiology, Department of Medicine, and
| | - Wei-Zhong Zhu
- Department of Pathology, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, USA; and
| | | | - Chad S Weldy
- Division of Cardiology, Department of Medicine, and
| | - Glenn I Fishman
- The Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Michael A Laflamme
- Department of Pathology, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, USA; and
| | - Michael T Chin
- Division of Cardiology, Department of Medicine, and Department of Pathology, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, USA; and
| |
Collapse
|
108
|
Abstract
The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.
Collapse
|
109
|
Sinnecker D, Laugwitz KL, Moretti A. Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol Ther 2014; 143:246-52. [PMID: 24657289 DOI: 10.1016/j.pharmthera.2014.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 01/22/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is creating exciting new opportunities for cardiovascular research by providing platforms to study the mechanisms of disease pathogenesis that could lead to new therapies or reveal drug sensitivities. In this review, the potential usefulness of iPSC-derived cardiomyocytes in drug development as well as in drug toxicity testing is discussed, with a focus on the achievements that have been already made in this regard. Moreover, the crucial steps that have to be taken before this technology can be broadly used in drug discovery and toxicology assessments are highlighted.
Collapse
Affiliation(s)
- Daniel Sinnecker
- Klinikum rechts der Isar - Technische Universität München, I. Medical Department - Cardiology, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Karl-Ludwig Laugwitz
- Klinikum rechts der Isar - Technische Universität München, I. Medical Department - Cardiology, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site, Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinikum rechts der Isar - Technische Universität München, I. Medical Department - Cardiology, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site, Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
110
|
Sarvazyan N. Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency. J Cardiovasc Pharmacol Ther 2014; 19:394-401. [PMID: 24500906 DOI: 10.1177/1074248413520343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article considers the use of autologous stem cell-derived cardiomyocytes as a novel means to aid venous return. The approach consists of creating external cuffs of engineered heart tissue around vein segments with incompetent or poorly competent valves. The engineered heart tissue cuff prevents distention of the impaired vein segments and aids unidirectional flow by its rhythmic contractions. There appear to be no fundamental limitations to this approach as feasibility of all of the individual components has already been shown. Here, we underline the clinical need for novel ways to treat chronic deep venous insufficiency, review previous research that enabled this approach, consider potential designs of engineered heart tissue cuffs, and outline its advantages and future challenges.
Collapse
Affiliation(s)
- Narine Sarvazyan
- Pharmacology and Physiology Department, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
111
|
Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014; 5:12. [PMID: 24444355 PMCID: PMC4055057 DOI: 10.1186/scrt401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived cardiomyocytes have attracted attention as an unlimited source of cells for cardiac therapies. One of the factors to surmount to achieve this is the production of hPSC-derived cardiomyocytes at a commercial or clinical scale with economically and technically feasible platforms. Given the limited proliferation capacity of differentiated cardiomyocytes and the difficulties in isolating and culturing committed cardiac progenitors, the strategy for cardiomyocyte production would be biphasic, involving hPSC expansion to generate adequate cell numbers followed by differentiation to cardiomyocytes for specific applications. This review summarizes and discusses up-to-date two-dimensional cell culture, cell-aggregate and microcarrier-based platforms for hPSC expansion. Microcarrier-based platforms are shown to be the most suitable for up-scaled production of hPSCs. Subsequently, different platforms for directing hPSC differentiation to cardiomyocytes are discussed. Monolayer differentiation can be straightforward and highly efficient and embryoid body-based approaches are also yielding reasonable cardiomyocyte efficiencies, whereas microcarrier-based approaches are in their infancy but can also generate high cardiomyocyte yields. The optimal target is to establish an integrated scalable process that combines hPSC expansion and cardiomyocyte differentiation into a one unit operation. This review discuss key issues such as platform selection, bioprocess parameters, medium development, downstream processing and parameters that meet current good manufacturing practice standards.
Collapse
|
112
|
Xie M, Cao N, Ding S. Small molecules for cell reprogramming and heart repair: progress and perspective. ACS Chem Biol 2014; 9:34-44. [PMID: 24372513 DOI: 10.1021/cb400865w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regenerative medicine for heart failure seeks to replace lost cardiomyocytes. Chemical approaches for producing ample supplies of cells, such as pluripotent stem cells and cardiomyocytes, hold promise as practical means to achieve safe, facile cell-based therapy for cardiac repair and regenerative medicine. In this review, we describe recent advances in the application of small molecules to improve the generation and maintenance of pluripotent stem cells. We also describe new directions in heart repair and regeneration in which chemical approaches may find their application.
Collapse
Affiliation(s)
- Min Xie
- The Gladstone Institutes, 1650 Owens Street, San Francisco, California 94158, United States
| | - Nan Cao
- The Gladstone Institutes, 1650 Owens Street, San Francisco, California 94158, United States
| | - Sheng Ding
- The Gladstone Institutes, 1650 Owens Street, San Francisco, California 94158, United States
| |
Collapse
|
113
|
Li S, Cheng H, Tomaselli GF, Li RA. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: Direct evidence of functional Ca2+-induced Ca2+ release. Heart Rhythm 2014; 11:133-40. [DOI: 10.1016/j.hrthm.2013.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Indexed: 10/26/2022]
|
114
|
Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 2013; 3:3/11/a014027. [PMID: 24186488 DOI: 10.1101/cshperspect.a014027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the molecular basis of many cardiac diseases has been hampered by the lack of appropriate in vitro cell culture models that accurately reflect the human disease phenotypes. In the past few years, remarkable advances in stem cell biology have made possible this long-standing ambition-the generation of human and even patient-specific cellular models of diseases. Combined with other novel technologies in the fields of human genetics, tissue engineering, and gene-targeted manipulation, disease modeling with pluripotent stem cells has the promise to influence modern cardiovascular medicine on several fronts: molecular understanding of pathological mechanisms, early diagnosis, drug development, and effective treatment.
Collapse
Affiliation(s)
- Alessandra Moretti
- Klinikum rechts der Isar-Technische Universität München, I. Medical Department-Cardiology, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
115
|
Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, Moyes KW, Narazaki G, Kuwahara K, Laflamme M, Matsuoka S, Nakatsuji N, Nakao K, Kwon C, Kass DA, Engel FB, Yamashita JK. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. ACTA ACUST UNITED AC 2013; 6:624-33. [PMID: 24141057 DOI: 10.1161/circgenetics.113.000330] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. METHODS AND RESULTS To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes. CONCLUSIONS Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies.
Collapse
Affiliation(s)
- Hideki Uosaki
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Di Pasquale E, Lodola F, Miragoli M, Denegri M, Avelino-Cruz JE, Buonocore M, Nakahama H, Portararo P, Bloise R, Napolitano C, Condorelli G, Priori SG. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis 2013; 4:e843. [PMID: 24113177 PMCID: PMC3824678 DOI: 10.1038/cddis.2013.369] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro 'patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca(2+)/calmodulin-dependent serine-threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies.
Collapse
Affiliation(s)
- E Di Pasquale
- Istituto di Ricerca Genetica e Biomedica, National Research Council of Italy, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ghahramani Seno MM, Gwadry FG, Hu P, Scherer SW. Neuregulin 1-alpha regulates phosphorylation, acetylation, and alternative splicing in lymphoblastoid cells. Genome 2013; 56:619-25. [DOI: 10.1139/gen-2013-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuregulins (NRGs) are signaling molecules involved in various cellular and developmental processes. Abnormal expression and (or) genomic variations of some of these molecules, such as NRG1, have been associated with disease conditions such as cancer and schizophrenia. To gain a comprehensive molecular insight into possible pathways/networks regulated by NRG1-alpha, we performed a global expression profiling analysis on lymphoblastoid cell lines exposed to NRG1-alpha. Our data show that this signaling molecule mainly regulates coordinated expression of genes involved in three processes: phosphorylation, acetylation, and alternative splicing. These processes have fundamental roles in proper development and function of various tissues including the central nervous system (CNS)—a fact that may explain conditions associated with NRG1 dysregulations such as schizophrenia. The data also suggest NRG1-alpha regulates genes (FBXO41) and miRNAs (miR-33) involved in cholesterol metabolism. Moreover, RPN2, a gene already shown to be dysregulated in breast cancer cells, is also differentially regulated by NRG1-alpha treatment.
Collapse
Affiliation(s)
- Mohammad M. Ghahramani Seno
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fuad G. Gwadry
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Pingzhao Hu
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
118
|
Abstract
The ability to reprogram virtually any cell of human origin to behave like embryonic or pluripotent stem cells is a major breakthrough in stem cell biology. Human induced pluripotent stem cells (iPSC) provide a unique opportunity to study "disease in a dish" within a defined genetic and environmental background. Patient-derived iPSCs have been successfully used to model cardiomyopathies, rhythm disorders and vascular disorders. They also provide an exciting opportunity for drug discovery and drug repurposing for disorders with a known molecular basis including childhood onset heart disease, particularly cardiac genetic disorders. The review will discuss their use in drug discovery, efficacy and toxicity studies with emphasis on challenges in pediatric-focused drug discovery. Issues that will need to be addressed in the coming years include development of maturation protocols for iPSC-derived cardiac lineages, use of iPSCs to study not just cardiac but extra-cardiac phenotypes in the same patient, scaling up of stem cell platforms for high-throughput drug screens, translating drug testing results to clinical applications in the paradigm of personalized medicine, and improving both the efficiency and the safety of iPSC-derived lineages for future stem cell therapies.
Collapse
|
119
|
Li S, Chen G, Li RA. Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J Physiol 2013; 591:5279-90. [PMID: 24018947 DOI: 10.1113/jphysiol.2013.256495] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Loss of cardiomyocytes (CMs), which lack the innate ability to regenerate, due to ageing or pathophysiological conditions (e.g. myocardial infarction or MI) is generally considered irreversible, and can lead to conditions from cardiac arrhythmias to heart failure. Human (h) pluripotent stem cells (PSCs), including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs), can self-renew while maintaining their pluripotency to differentiate into all cell types, including CMs. Therefore, hPSCs provide a potential unlimited ex vivo source of human CMs for disease modelling, drug discovery, cardiotoxicity screening and cell-based heart therapies. As a fundamental property of working CMs, Ca(2+) signalling and its role in excitation-contraction coupling are well described. However, the biology of these processes in hPSC-CMs is just becoming understood. Here we review what is known about the immature Ca(2+)-handling properties of hPSC-CMs, at the levels of global transients and sparks, and the underlying molecular basis in relation to the development of various in vitro approaches to drive their maturation.
Collapse
Affiliation(s)
- Sen Li
- R. A. Li: 5/F Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong.
| | | | | |
Collapse
|
120
|
Mendes-Ferreira P, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discov Today 2013; 18:836-42. [DOI: 10.1016/j.drudis.2013.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
|
121
|
Al Madhoun AS, Voronova A, Ryan T, Zakariyah A, McIntire C, Gibson L, Shelton M, Ruel M, Skerjanc IS. Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. J Mol Cell Cardiol 2013; 60:164-171. [PMID: 23598283 DOI: 10.1016/j.yjmcc.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Since a previous study (Goldman-Johnson et al., 2008 [4]) has shown that androgens can stimulate increased differentiation of mouse embryonic stem (mES) cells into cardiomyocytes using a genomic pathway, the aim of our study is to elucidate the molecular mechanisms regulating testosterone-enhanced cardiomyogenesis. Testosterone upregulated cardiomyogenic transcription factors, including GATA4, MEF2C, and Nkx2.5, muscle structural proteins, and the pacemaker ion channel HCN4 in a dose-dependent manner, in mES cells and P19 embryonal carcinoma cells. Knock-down of the androgen receptor (AR) or treatment with anti-androgenic compounds inhibited cardiomyogenesis, supporting the requirement of the genomic pathway. Chromatin immunoprecipitation (ChIP) studies showed that testosterone enhanced recruitment of AR to the regulatory regions of MEF2C and HCN4 genes, which was associated with increased histone acetylation. In summary, testosterone upregulated cardiomyogenic transcription factor and HCN4 expression in stem cells. Further, testosterone induced cardiomyogenesis, at least in part, by recruiting the AR receptor to the regulatory regions of the MEF2C and HCN4 genes. These results provide a detailed molecular analysis of the function of testosterone in stem cells and may offer molecular insight into the role of steroids in the heart.
Collapse
Affiliation(s)
- Ashraf Said Al Madhoun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Maher KO, Xu C. Marching towards regenerative cardiac therapy with human pluripotent stem cells. DISCOVERY MEDICINE 2013; 15:349-356. [PMID: 23819949 PMCID: PMC4144195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Damage in cardiac tissues from ischemia or other pathological conditions leads to heart failure; and cell loss or dysfunction in pacemaker tissues due to congenital heart defects, aging, and acquired diseases can cause severe arrhythmias. The promise of successful therapies with stem cells to treat these conditions has remained elusive to the scientific community. However, recent advances in this field have opened new opportunities for regenerative cardiac therapy. Transplantation of cardiomyocytes derived from human pluripotent stem cells has the potential to alleviate heart disease. Since the initial derivation of human embryonic stem cells, significant progress has been made in the generation and characterization of enriched cardiomyocytes and the demonstration of the ability of these cardiomyocytes to survive, integrate, and function in animal models. The scope of therapeutic potential from pluripotent stem cell-derived cardiomyocytes has been further expanded with the invention of induced pluripotent stem cells, which can be induced to generate functional cardiomyocytes for regenerative cardiac therapy in a patient specific manner. The reprogramming technology has also inspired the recent discovery of direct conversion of fibroblasts into cardiomyocyte-like cells, which may allow endogenous cardiac repair. Regenerative cardiac therapy with human pluripotent stem cells is now moving closer to clinic testing.
Collapse
Affiliation(s)
- Kevin O Maher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
123
|
Moyes KW, Sip CG, Obenza W, Yang E, Horst C, Welikson RE, Hauschka SD, Folch A, Laflamme MA. Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem Cells Dev 2013; 22:2315-25. [PMID: 23517131 DOI: 10.1089/scd.2012.0586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An improved understanding of the factors that regulate the migration of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) would provide new insights into human heart development and suggest novel strategies to improve their electromechanical integration after intracardiac transplantation. Since nothing has been reported as to the factors controlling hESC-CM migration, we hypothesized that hESC-CMs would migrate in response to the extracellular matrix and soluble signaling molecules previously implicated in heart morphogenesis. To test this, we screened candidate factors by transwell assay for effects on hESC-CM motility, followed by validation via live-cell imaging and/or gap-closure assays. Fibronectin (FN) elicited a haptotactic response from hESC-CMs, with cells seeded on a steep FN gradient showing nearly a fivefold greater migratory activity than cells on uniform FN. Studies with neutralizing antibodies indicated that adhesion and migration on FN are mediated by integrins α-5 and α-V. Next, we screened 10 soluble candidate factors by transwell assay and found that the noncanonical Wnt, Wnt5a, elicited an approximately twofold increase in migration over controls. This effect was confirmed using the gap-closure assay, in which Wnt5a-treated hESC-CMs showed approximately twofold greater closure than untreated cells. Studies with microfluidic-generated Wnt5a gradients showed that this factor was chemoattractive as well as chemokinetic, and Wnt5a-mediated responses were inhibited by the Frizzled-1/2 receptor antagonist, UM206. In summary, hESC-CMs show robust promigratory responses to FN and Wnt5a, findings that have implications on both cardiac development and cell-based therapies.
Collapse
Affiliation(s)
- Kara White Moyes
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 2013; 31:829-37. [PMID: 23355363 PMCID: PMC3749929 DOI: 10.1002/stem.1331] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPS-CM) may offer a number of advantages over previous cardiac models, however, questions of their immaturity complicate their adoption as a new in vitro model. hPS-CM differ from adult cardiomyocytes with respect to structure, proliferation, metabolism and electrophysiology, better approximating fetal cardiomyocytes. Time in culture appears to significantly impact phenotype, leading to what can be referred to as early and late hPS-CM. This work surveys the phenotype of hPS-CM, including structure, bioenergetics, sensitivity to damage, gene expression, and electrophysiology, including action potential, ion channels, and intracellular calcium stores, while contrasting fetal and adult CM with hPS-CM at early and late time points after onset of differentiation.
Collapse
Affiliation(s)
- Claire Robertson
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - David D. Tran
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
- Department of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
125
|
Sinnecker D, Goedel A, Laugwitz KL, Moretti A. Induced pluripotent stem cell-derived cardiomyocytes: a versatile tool for arrhythmia research. Circ Res 2013; 112:961-8. [PMID: 23569105 DOI: 10.1161/circresaha.112.268623] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induced pluripotent stem cells offer the possibility to generate patient-specific stem cell lines from individuals affected by inherited disorders. Cardiomyocytes differentiated from such patient-specific induced pluripotent stem cells lines have been used to study the pathophysiology of arrhythmogenic heart diseases, such as the long-QT syndrome or catecholaminergic polymorphic ventricular tachycardia. Testing for unwanted drug side effects or tailoring medical treatment to the specific needs of individual patients with arrhythmogenic disorders may become future applications of this emerging technology.
Collapse
Affiliation(s)
- Daniel Sinnecker
- Klinikum rechts der Isar, Technische Universität München, I. Medizinische Klinik, Kardiologie, Munich, Germany
| | | | | | | |
Collapse
|
126
|
Affiliation(s)
- Marcus-André Deutsch
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
127
|
Time-dependent regulation of neuregulin-1β/ErbB/ERK pathways in cardiac differentiation of mouse embryonic stem cells. Mol Cell Biochem 2013; 380:67-72. [PMID: 23606057 DOI: 10.1007/s11010-013-1658-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
Neuregulin-1β (NRG-1β)/ErbB signaling plays crucial roles in the cardiac differentiation of mouse embryonic stem cells (ESCs), but its roles and the underlying mechanisms in cardiac differentiation are incompletely understood. This study showed that NRG-1β significantly increased the percentage of beating embryoid bodies (EBs) and up-regulated the gene expressions of Nkx2.5, GATA4, α-actin, MLC-2v, and ANF in a time-dependent manner, with no effect on the gene expressions of HCN4 and Tbx3. Inhibition of ErbB receptors with AG1478 significantly decreased the percentage of beating EBs; down-regulated the gene expressions of Nkx2.5, GATA4, MLC-2v, ANF, and α-actin; and concomitantly up-regulated the gene expressions of HCN4 and Tbx3 in a time-dependent manner. Moreover, the up-regulation of transcripts for Nkx2.5 and GATA4 by NRG-1β was blocked by the extracellular signal-related kinases (ERK) 1/2 inhibitor, U0126. However, U0126 could not inhibit the transcript up-regulations of MLC-2v and ANF by NRG-1β. The protein quantitation results were consistent with those of gene quantitation. Our results suggest that NRG-1β/ErbB signaling plays critical roles in the cardiac differentiation of mouse ESCs and in the subtype specification of cardiomyocytes in a time-dependent manner. The ERK1/2 pathway may be involved in the early cardiogenesis, but not in the subtype specification of cardiomyocytes.
Collapse
|
128
|
Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 2013; 22:1991-2002. [PMID: 23461462 DOI: 10.1089/scd.2012.0490] [Citation(s) in RCA: 554] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including β-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue.
Collapse
Affiliation(s)
- Scott D Lundy
- Departments of Bioengineering, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
129
|
Bosman A, Sartiani L, Spinelli V, Del Lungo M, Stillitano F, Nosi D, Mugelli A, Cerbai E, Jaconi M. Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells. Stem Cells Dev 2013; 22:1717-27. [PMID: 23311301 DOI: 10.1089/scd.2012.0247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) is accompanied by changes in ion channel expression, with relevant electrophysiological consequences. In rodent CM, the properties of hyperpolarization-activated cyclic nucleotide-gated channel (HCN)4, a major f-channel isoform, depends on the association with caveolin-3 (Cav3). To date, no information exists on changes in Cav3 expression and its associative relationship with HCN4 upon hESC-CM maturation. We hypothesize that Cav3 expression and its compartmentalization with HCN4 channels during hESC-CM maturation accounts for the progression of f-current properties toward adult phenotypes. To address this, hESC were differentiated into spontaneously beating CM and examined at ∼30, ∼60, and ∼110 days of differentiation. Human adult and fetal CM served as references. HCN4 and Cav3 expression and localization were analyzed by real time PCR and immunocyto/histochemistry. F-current was measured in patch-clamped single cells. HCN4 and Cav3 colocalize in adult human atrial and ventricular CM, but not in fetal CM. Proteins and mRNA for Cav3 were not detected in undifferentiated hESC, but expression increased during hESC-CM maturation. At 110 days, HCN4 appeared to be colocalized with Cav3. Voltage-dependent activation of the f-current was significantly more positive in fetal CM and 60-day hESC-CM (midpoint activation, V1/2, ∼ -82 mV) than in 110-day hESC-CM or adult CM (V1/2∼-100 mV). In the latter cells, caveolae disruption reversed voltage dependence toward a more positive or an immature phenotype, with V1/2 at -75 mV, while in fetal CM voltage dependence was not affected. Our data show, for the first time, a developmental change in HCN4-Cav3 association in hESC-CM. Cav3 expression and its association with ionic channels likely represent a crucial step of cardiac maturation.
Collapse
Affiliation(s)
- Alexis Bosman
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Huang YS, Li IH, Chueh SH, Hueng DY, Tai MC, Liang CM, Lien SB, Sytwu HK, Ma KH. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics. J Tissue Eng Regen Med 2013; 9:E191-201. [PMID: 23378029 DOI: 10.1002/term.1684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are widely distributed in different tissues such as bone marrow, adipose tissues, peripheral blood, umbilical cord and amnionic fluid. Recently, MSC-like cells were also found to exist in rat olfactory bulb and are capable of inducing differentiation into mesenchymal lineages - osteocytes, chondrocytes and adipocytes. However, whether these cells can differentiate into myocardial cells is not known. In this study, we examined whether olfactory bulb-derived MSCs could differentiate into myocardial cells in vitro. Fibroblast-like cells isolated from the olfactory bulb of neonatal rats were grown under four conditions: no treatment; in the presence of growth factors (neuregulin-1, bFGF and forskolin); co-cultured with cardiomyocytes; and co-cultured with cardiomyocytes plus neuregulin-1, bFGF and forskolin. Cell differentiation into myocardial cells was monitored by RT-PCR, light microscopy immunofluorescence, western blot analysis and contractile response to pharmacological treatments. The isolated olfactory bulb-derived fibroblast-like cells expressed CD29, CD44, CD90, CD105, CD166 but not CD34 and CD45, consistent with the characteristics of MSCs. Long cylindical cells that spontaneously contracted were only observed following 7 days of co-culture of MSCs with rat cardiomyocytes plus neuregulin-1, bFGF and forskolin. RT-PCR and western blot analysis indicated that the cylindrical cells expressed myocardial markers, such as Nkx2.5, GATA4, sarcomeric α-actinin, cardiac troponin I, cardiac myosin heavy chain, atrial natriuretic peptide and connexin 43. They also contained sarcomeres and gap junction and were sensitive to pharmacological treatments (adrenal and cholinergic agonists and antagonists). These findings indicate that rat olfactory bulb-derived fibroblast-like cells with MSC characteristics can differentiate into myocardial-like cells.
Collapse
Affiliation(s)
- Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Cheng Tai
- Department of Ophthalmology, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Min Liang
- Department of Ophthalmology, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shiu-Bii Lien
- Department of Orthopaedics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
131
|
Abstract
The ability to reprogram virtually any cell of human origin to behave like embryonic or pluripotent stem cells is a major breakthrough in stem cell biology. Human induced pluripotent stem cells (iPSC) provide a unique opportunity to study "disease in a dish" within a defined genetic and environmental background. Patient-derived iPSCs have been successfully used to model cardiomyopathies, rhythm disorders and vascular disorders. They also provide an exciting opportunity for drug discovery and drug repurposing for disorders with a known molecular basis including childhood onset heart disease, particularly cardiac genetic disorders. The review will discuss their use in drug discovery, efficacy and toxicity studies with emphasis on challenges in pediatric-focused drug discovery. Issues that will need to be addressed in the coming years include development of maturation protocols for iPSC-derived cardiac lineages, use of iPSCs to study not just cardiac but extra-cardiac phenotypes in the same patient, scaling up of stem cell platforms for high-throughput drug screens, translating drug testing results to clinical applications in the paradigm of personalized medicine, and improving both the efficiency and the safety of iPSC-derived lineages for future stem cell therapies.
Collapse
Affiliation(s)
- Pranali Patel
- Division of Pediatric Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
132
|
Priori SG, Napolitano C, Di Pasquale E, Condorelli G. Induced pluripotent stem cell-derived cardiomyocytes in studies of inherited arrhythmias. J Clin Invest 2013; 123:84-91. [PMID: 23281414 DOI: 10.1172/jci62838] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The discovery of the genetic basis of inherited arrhythmias has paved the way for an improved understanding of arrhythmogenesis in a wide spectrum of life-threatening conditions. In vitro expression of mutations and transgenic animal models have been instrumental in enhancing this understanding, but the applicability of results to the human heart remains unknown. The ability to differentiate induced pluripotent stem cells (iPSs) into cardiomyocytes enables the potential to generate patient-specific myocytes, which could be used to recapitulate the features of inherited arrhythmias in the context of the patient's genetic background. Few studies have been reported on iPS-derived myocytes obtained from patients with heritable arrhythmias, but they have demonstrated the applicability of this innovative approach to the study of inherited arrhythmias. Here we review the results achieved by iPS investigations in arrhythmogenic syndromes and discuss the existing challenges to be addressed before the use of iPS-derived myocytes can become a part of personalized management of inherited arrhythmias.
Collapse
Affiliation(s)
- Silvia G Priori
- Division of Cardiology and Molecular Cardiology, Maugeri Foundation-University of Pavia, Via Maugeri 10/10°, 27100 Pavia, Italy.
| | | | | | | |
Collapse
|
133
|
Yang HT, Zhang M, Huang J, Liang H, Zhang P, Boheler KR. Cardiomyocytes derived from pluripotent stem cells: Progress and prospects from China. Exp Cell Res 2013; 319:120-5. [DOI: 10.1016/j.yexcr.2012.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
|
134
|
Abstract
Due to the extremely limited proliferative capacity of adult cardiomyocytes, human embryonic (pluripotent) stem cell derived cardiomyocytes (hESC-CMs) are currently almost the only reliable source of human heart cells which are suited to large-scale production. These cells have the potential for wide-scale application in drug discovery, heart disease research and cell-based heart repair. Embryonic atrial-, ventricular- and nodal-like cardiomyocytes can be obtained from differentiated human embryonic stem cells (hESCs). In recent years, several highly efficient cardiac differentiation protocols have been developed. Significant progress has also been made on understanding cardiac subtype specification, which is the key to reducing the heterogeneity of hESC-CMs, a major obstacle to the utilization of these cells in medical research and future cell-based replacement therapies. Herein we review recent progress in cardiac differentiation of hESCs and cardiac subtype specification, and discuss potential applications in drug screening and cell-based heart regeneration.
Collapse
Affiliation(s)
- Junjie Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
135
|
Lieu DK, Turnbull IC, Costa KD, Li RA. Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. ACTA ACUST UNITED AC 2012; 9:e209-e217. [PMID: 29422934 DOI: 10.1016/j.ddmod.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human cardiomyocytes (CMs) do not proliferate in culture and are difficult to obtain for practical reasons. As such, our understanding of the mechanisms that underlie the physiological and pathophysiological development of the human heart is mostly extrapolated from studies of the mouse and other animal models or heterologus expression of defective gene product(s) in non-human cells. Although these studies provided numerous important insights, much of the exact behavior in human cells remains unexplored given that significant species differences exist. With the derivation of human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSCs) from patients with underlying heart disease, a source of human CMs for disease modeling, cardiotoxicity screening and drug discovery is now available. In this review, we focus our discussion on the use of hESC/ iPSC-derived cardiac cells and tissues for studying various heart rhythm disorders and the associated pro-arrhythmogenic properties in relation to advancements in electrophysiology and tissue engineering.
Collapse
Affiliation(s)
- Deborah K Lieu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, United States
| | - Irene C Turnbull
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin D Costa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States
| | - Ronald A Li
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States.,Stem Cell & Regenerative Medicine Consortium, University of Hong Kong, Pokfulam, Hong Kong.,Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
136
|
Van Vliet P, Wu SM, Zaffran S, Pucéat M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 2012; 96:352-62. [PMID: 22893679 PMCID: PMC3500045 DOI: 10.1093/cvr/cvs270] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022] Open
Abstract
From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology.
Collapse
Affiliation(s)
- Patrick Van Vliet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, CA, USA
| | - Sean M. Wu
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stéphane Zaffran
- Aix-Marseille University, Marseille, France
- INSERM UMRS910, Faculté de Médecine de la Timone, France
| | - Michel Pucéat
- INSERM UMR633, Paris Descartes University, Campus Genopole 1, 4, rue Pierre Fontaine, Evry 91058, Paris, France
| |
Collapse
|
137
|
Kadota S, Minami I, Morone N, Heuser JE, Agladze K, Nakatsuji N. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur Heart J 2012. [PMID: 23201623 DOI: 10.1093/eurheartj/ehs418] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS Development of a human cell-derived reentrant arrhythmia model is needed for studying the mechanisms of disease and accurate drug response. METHODS AND RESULTS We differentiated human pluripotent stem cells (hPSCs) into cardiomyocytes, and then re-plated them into cell sheets that proved capable of forming electrically coupled assemblies. We monitored the function of these re-plated sheets optically with the Ca(2+) sensitive dye Fluo-4, and found that they generated characteristic waves of activity whose velocity and patterns of propagation depended upon the concentration of sodium channel blockers; lidocaine and tetrodotoxin, and also the time after re-plating, as well as the applied stimulation frequency. Importantly, reentrant spiral-wave propagation could be generated in these sheets by applying high-frequency stimulation, particularly when cell-density in the sheets was relatively low. This was because cardiac troponin T-positive cells were more non-homogeneously distributed at low cell densities. Especially in such sheets, we could terminate spiral waves by administering the anti-arrhythmic drugs; nifekalant, E-4031, sotalol, and quinidine. We also found that in these sheets, nifekalant showed a clear dose-dependent increase in the size of the unexcitable 'cores' of these induced spiral waves, an important parallel with the treatment for ventricular tachycardia in the clinical situation, which was not shown properly in cardiac-cell sheets derived from dissociated rodent hearts. CONCLUSIONS We have succeeded in creating from hPSCs a valuable type of cardiomyocyte sheet that is capable of generating reentrant arrhythmias, and thus is demonstrably useful for screening and testing all sorts of drugs with anti-arrhythmic potential.
Collapse
Affiliation(s)
- Shin Kadota
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Building, Yoshida Honmachi, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489:322-5. [PMID: 22864415 PMCID: PMC3443324 DOI: 10.1038/nature11317] [Citation(s) in RCA: 546] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/12/2012] [Indexed: 12/12/2022]
Abstract
Transplantation studies in mice and rats have shown that human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts1–3, but two critical issues related to their electrophysiological behavior in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear if these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea pig model to show hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia (VT). To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically-encoded calcium sensor, GCaMP34, 5. By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host-graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.
Collapse
|
139
|
Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLoS One 2012; 7:e46971. [PMID: 23071682 PMCID: PMC3468579 DOI: 10.1371/journal.pone.0046971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
The differentiation of pluripotent stem cells involves transition through a series of specific cell states. To understand these cell fate decisions, the field needs improved genetic tools for the labeling, lineage tracing and selection of specific cell types from heterogeneous differentiating populations, particularly in the human embryonic stem cell (hESC) system. We used zinc finger nuclease technology to stably insert a unique, selectable, floxed dual-fluorescence reporter transgene into the AAVS1 locus of RUES2 hESCs. This "stoplight" transgene, mTmG-2a-Puro, strongly expresses membrane-localized tdTomato red fluorescent protein until Cre-dependent recombination causes a switch to expression of membrane-localized enhanced green fluorescent protein (eGFP) and puromycin resistance. First, to validate this system in undifferentiated cells, we transduced transgenic hESCs with a lentiviral vector driving constitutive expression of Cre and observed the expected phenotypic switch. Next, to demonstrate its utility in lineage-specific selection, we transduced differentiated cultures with a lentiviral vector in which the striated muscle-specific CK7 promoter drives Cre expression. This yielded near-homogenous populations of eGFP(+) hESC-derived cardiomyocytes. The mTmg-2a-Puro hESC line described here represents a useful new tool for both in vitro fate mapping studies and the selection of useful differentiated cell types.
Collapse
|
140
|
Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 2012; 13:713-26. [PMID: 23034453 DOI: 10.1038/nrm3448] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to the difficulty in modelling human diseases in laboratory assays or experimental animals. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable.
Collapse
Affiliation(s)
- Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
141
|
Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 2012; 111:344-58. [PMID: 22821908 DOI: 10.1161/circresaha.110.227512] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since human embryonic stem cells were first differentiated to beating cardiomyocytes a decade ago, interest in their potential applications has increased exponentially. This has been further enhanced over recent years by the discovery of methods to induce pluripotency in somatic cells, including those derived from patients with hereditary cardiac diseases. Human pluripotent stem cells have been among the most challenging cell types to grow stably in culture, but advances in reagent development now mean that most laboratories can expand both embryonic and induced pluripotent stem cells robustly using commercially available products. However, differentiation protocols have lagged behind and in many cases only produce the cell types required with low efficiency. Cardiomyocyte differentiation techniques were also initially inefficient and not readily transferable across cell lines, but there are now a number of more robust protocols available. Here, we review the basic biology underlying the differentiation of pluripotent cells to cardiac lineages and describe current state-of-the-art protocols, as well as ongoing refinements. This should provide a useful entry for laboratories new to this area to start their research. Ultimately, efficient and reliable differentiation methodologies are essential to generate desired cardiac lineages to realize the full promise of human pluripotent stem cells for biomedical research, drug development, and clinical applications.
Collapse
Affiliation(s)
- Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
142
|
Zwi-Dantsis L, Gepstein L. Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 2012; 69:3285-99. [PMID: 22960788 PMCID: PMC11114685 DOI: 10.1007/s00018-012-1078-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/12/2012] [Accepted: 06/26/2012] [Indexed: 12/29/2022]
Abstract
Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- The Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion’s Faculty of Medicine, Technion–Israel Institute of Technology, POB 9649, 31096 Haifa, Israel
- The Biotechnology Interdisciplinary Unit, Technion–Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- The Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion’s Faculty of Medicine, Technion–Israel Institute of Technology, POB 9649, 31096 Haifa, Israel
| |
Collapse
|
143
|
Abstract
Cardiac stem cell therapy to promote engraftment of de novo beating cardiac muscle cells in cardiomyopathies could potentially improve clinical outcomes for many patients with congestive heart failure. Clinical trials carried out over the last decade for cardiac regeneration have revealed inadequacy of current approaches in cell therapy. Chief among them is the choice of stem cells to achieve the desired outcomes. Initial enthusiasm of adult bone marrow stems cells for myocyte regeneration has largely been relegated to paracrine-driven, donor cell-independent, endogenous cardiac repair. However, true functional restoration in heart failure is likely to require considerable myocyte replacement. In order to match stem cell application to various clinical scenarios, we review the necessity to preprime stem cells towards cardiac fate before myocardial transplantation and if these differentiated stem cells could confer added advantage over current choice of undifferentiated stem cells. We explore differentiation ability of various stem cells to cardiac progenitors/cardiomyocytes and compare their applicability in providing targeted recovery in light of current clinical challenges of cell therapy.
Collapse
Affiliation(s)
- Ashish Mehta
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | | |
Collapse
|
144
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:178-95. [PMID: 22958937 DOI: 10.1016/j.pbiomolbio.2012.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells have emerged as the prototypical source from which cardiomyocytes can be derived for use in drug discovery and cell therapy. However, such applications require that these cardiomyocytes (hESC-CMs) faithfully recapitulate the physiology of adult cells, especially in relation to their electrophysiological and contractile function. We review what is known about the electrophysiology of hESC-CMs in terms of beating rate, action potential characteristics, ionic currents, and cellular coupling as well as their contractility in terms of calcium cycling and contraction. We also discuss the heterogeneity in cellular phenotypes that arises from variability in cardiac differentiation, maturation, and culture conditions, and summarize present strategies that have been implemented to reduce this heterogeneity. Finally, we present original electrophysiological data from optical maps of hESC-CM clusters.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Rentschler S, Yen AH, Lu J, Petrenko NB, Lu MM, Manderfield LJ, Patel VV, Fishman GI, Epstein JA. Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 2012; 126:1058-66. [PMID: 22837163 DOI: 10.1161/circulationaha.112.103390] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. METHODS AND RESULTS In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. CONCLUSIONS Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.
Collapse
Affiliation(s)
- Stacey Rentschler
- Cardiovascular Institute, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Circulation Research
Thematic Synopsis. Circ Res 2012. [DOI: 10.1161/res.0b013e3182614cf7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
147
|
Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012; 303:H133-43. [PMID: 22582087 DOI: 10.1152/ajpheart.00007.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center Hamburg, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
148
|
Barth AS, Zhang Y, Li T, Smith RR, Chimenti I, Terrovitis I, Davis DR, Kizana E, Ho AS, O'Rourke B, Wolff AC, Gerstenblith G, Marbán E. Functional impairment of human resident cardiac stem cells by the cardiotoxic antineoplastic agent trastuzumab. Stem Cells Transl Med 2012. [PMID: 23197808 DOI: 10.5966/sctm.2011-0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Trastuzumab (TZM), a monoclonal antibody against the ERBB2 protein, increases survival in ERBB2-positive breast cancer patients. Its clinical use, however, is limited by cardiotoxicity. We sought to evaluate whether TZM cardiotoxicity involves inhibition of human adult cardiac-derived stem cells, in addition to previously reported direct adverse effects on cardiomyocytes. To test this idea, we exposed human cardiosphere-derived cells (hCDCs), a natural mixture of cardiac stem cells and supporting cells that has been shown to exert potent regenerative effects, to TZM and tested the effects in vitro and in vivo. We found that ERBB2 mRNA and protein are expressed in hCDCs at levels comparable to those in human myocardium. Although clinically relevant concentrations of TZM had no effect on proliferation, apoptosis, or size of the c-kit-positive hCDC subpopulation, in vitro assays demonstrated diminished potential for cardiogenic differentiation and impaired ability to form microvascular networks in TZM-treated cells. The functional benefit of hCDCs injected into the border zone of acutely infarcted mouse hearts was abrogated by TZM: infarcted animals treated with TZM + hCDCs had a lower ejection fraction, thinner infarct scar, and reduced capillary density in the infarct border zone compared with animals that received hCDCs alone (n = 12 per group). Collectively, these results indicate that TZM inhibits the cardiomyogenic and angiogenic capacities of hCDCs in vitro and abrogates the morphological and functional benefits of hCDC transplantation in vivo. Thus, TZM impairs the function of human resident cardiac stem cells, potentially contributing to TZM cardiotoxicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Cardiotoxins/adverse effects
- Cardiotoxins/therapeutic use
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Female
- Gene Expression Regulation/drug effects
- Humans
- Male
- Mice
- Mice, SCID
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/biosynthesis
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/therapy
- Myocardium/metabolism
- Myocardium/pathology
- RNA, Messenger/biosynthesis
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/biosynthesis
- Regeneration/drug effects
- Stem Cell Transplantation
- Stem Cells/metabolism
- Stem Cells/pathology
- Transplantation, Heterologous
- Trastuzumab
Collapse
Affiliation(s)
- Andreas S Barth
- Department of Medicine, Division of Cardiology, John Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Xu C. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol 2012; 52:1203-12. [PMID: 22484618 DOI: 10.1016/j.yjmcc.2012.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
Abstract
Human cardiomyocytes derived from pluripotent stem cells hold great promise for cardiac cell therapy, disease modeling, drug discovery, and the study of developmental biology. Reaching these potentials fully requires the development of methods that enable efficient and robust generation of cardiomyocytes with expected characteristics. This review summarizes and discusses up-to-date methods that have been used to derive and enrich human cardiomyocytes from pluripotent stem cells, provides a brief overview of in vitro and in vivo characterization of these cardiomyocytes, and considers future advancement needed to further harness the power of these cells.
Collapse
Affiliation(s)
- Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
150
|
|