101
|
Gillis AM, Dobrev D. Targeting the RyR2 to Prevent Atrial Fibrillation. Circ Arrhythm Electrophysiol 2022; 15:e011514. [PMID: 36178743 PMCID: PMC9592734 DOI: 10.1161/circep.122.011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anne M. Gillis
- Department of Cardiac Sciences, University of Calgary and Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
102
|
Saxena P, Myles RC, Smith GL, Workman AJ. Adrenoceptor sub-type involvement in Ca 2+ current stimulation by noradrenaline in human and rabbit atrial myocytes. Pflugers Arch 2022; 474:1311-1321. [PMID: 36131146 DOI: 10.1007/s00424-022-02746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and β-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (β1 + β2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (β1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (β2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating β1- and α1-ARs in both human and rabbit, with a β2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.
Collapse
Affiliation(s)
- Priyanka Saxena
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rachel C Myles
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Godfrey L Smith
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Antony J Workman
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
103
|
A modern automated patch-clamp approach for high throughput electrophysiology recordings in native cardiomyocytes. Commun Biol 2022; 5:969. [PMID: 36109584 PMCID: PMC9477872 DOI: 10.1038/s42003-022-03871-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Crucial conventional patch-clamp approaches to investigate cellular electrophysiology suffer from low-throughput and require considerable experimenter expertise. Automated patch-clamp (APC) approaches are more experimenter independent and offer high-throughput, but by design are predominantly limited to assays containing small, homogenous cells. In order to enable high-throughput APC assays on larger cells such as native cardiomyocytes isolated from mammalian hearts, we employed a fixed-well APC plate format. A broad range of detailed electrophysiological parameters including action potential, L-type calcium current and basal inward rectifier current were reliably acquired from isolated swine atrial and ventricular cardiomyocytes using APC. Effective pharmacological modulation also indicated that this technique is applicable for drug screening using native cardiomyocyte material. Furthermore, sequential acquisition of multiple parameters from a single cell was successful in a high throughput format, substantially increasing data richness and quantity per experimental run. When appropriately expanded, these protocols will provide a foundation for effective mechanistic and phenotyping studies of human cardiac electrophysiology. Utilizing scarce biopsy samples, regular high throughput characterization of primary cardiomyocytes using APC will facilitate drug development initiatives and personalized treatment strategies for a multitude of cardiac diseases. An altered automated patch-clamp (APC) approach enables high-throughput recordings from native pig cardiomyocytes and human iPSC-derived cardiomyocytes.
Collapse
|
104
|
Higher Na+-Ca2+ Exchanger Function and Triggered Activity Contribute to Male Predisposition to Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms231810724. [PMID: 36142639 PMCID: PMC9501955 DOI: 10.3390/ijms231810724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Male sex is one of the most important risk factors of atrial fibrillation (AF), with the incidence in men being almost double that in women. However, the reasons for this sex difference are unknown. Accordingly, in this study, we sought to determine whether there are sex differences in intracellular Ca2+ homeostasis in mouse atrial myocytes that might help explain male predisposition to AF. AF susceptibility was assessed in male (M) and female (F) mice (4–5 months old) using programmed electrical stimulation (EPS) protocols. Males were 50% more likely to develop AF. The Ca2+ transient amplitude was 28% higher in male atrial myocytes. Spontaneous systolic and diastolic Ca2+ releases, which are known sources of triggered activity, were significantly more frequent in males than females. The time to 90% decay of Ca2+ transient was faster in males. Males had 54% higher Na+-Ca2+ exchanger (NCX1) current density, and its expression was also more abundant. L-type Ca2+ current (ICaL) was recorded with and without BAPTA, a Ca2+ chelator. ICaL density was lower in males only in the absence of BAPTA, suggesting stronger Ca2+-dependent inactivation in males. CaV1.2 expression was similar between sexes. This study reports major sex differences in Ca2+ homeostasis in mouse atria, with larger Ca2+ transients and enhanced NCX1 function and expression in males resulting in more spontaneous Ca2+ releases. These sex differences may contribute to male susceptibility to AF by promoting triggered activity.
Collapse
|
105
|
Liu X, Zeng Y, Liu Z, Li W, Wang L, Wu M. Bioinformatics analysis of the circRNA-miRNA-mRNA network for atrial fibrillation. Medicine (Baltimore) 2022; 101:e30221. [PMID: 36042613 PMCID: PMC9410607 DOI: 10.1097/md.0000000000030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is a chronic and progressive disease, with advancing age, the morbidity of which will increase exponentially. Circular ribonucleic acids (RNAs; circRNAs) have gained a growing attention in the development of AF in recent years. The purpose of this study is to explore the mechanism of circRNA regulation in AF, in particular, the intricate interactions among circRNA, microRNA (miRNA), and messenger RNA (mRNA). Three datasets (GSE129409, GSE68475, and GSE79768) were obtained from the Gene Expression Omnibus database to screen differentially expressed (DE) circRNAs, DE miRNAs, and DE mRNAs in AF, respectively. Based on circRNA-miRNA pairs and miRNA-mRNA pairs, a competing endogenous RNAs (ceRNAs) network was built. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DE mRNAs in the network were performed and protein-protein interaction (PPI) networks were established to identify hub genes. Finally, a circRNA-miRNA-hub gene subnetwork was constructed. A total of 103 DE circRNAs, 16 DE miRNAs, and 110 DE mRNAs were screened in AF. Next, ceRNAs network in AF was constructed with 3 upregulated circRNAs, 2 downregulated circRNAs, 2 upregulated miRNAs, 2 downregulated miRNAs, 17 upregulated mRNAs, and 24 downregulated mRNAs. Thirty GO terms and 6 KEGG pathways were obtained. Besides, 6 hub genes (C-X-C chemokine receptor type 4 [CXCR4], C-X-C chemokine receptor type 2 [CXCR2], C-X-C motif chemokine 11 [CXCL11], neuromedin-U, B1 bradykinin receptor, and complement C3) were screened from constructing a PPI network. Finally, a circRNA-miRNA-hub gene subnetwork with 10 regulatory axes was constructed to describe the interactions among the differential circRNAs, miRNA, and hub genes. We speculated that hsa_circRNA_0056281/hsa_circRNA_0006665 -hsa-miR-613-CXCR4/CXCR2/CXCL11 regulatory axes and hsa_circRNA_0003638-hsa-miR-1207-3p-CXCR4 regulatory axis may be associated with the pathogenesis of AF.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yiqian Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Zhao Liu
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Wenbin Li
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lei Wang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China
- *Correspondence: Mingxing Wu, Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, China (e-mail: )
| |
Collapse
|
106
|
Dong Y, Xiao S, He J, Shi K, Chen S, Liu D, Huang B, Zhai Z, Li J. Angiotensin receptor-neprilysin inhibitor therapy and recurrence of atrial fibrillation after radiofrequency catheter ablation: A propensity-matched cohort study. Front Cardiovasc Med 2022; 9:932780. [PMID: 35990986 PMCID: PMC9386595 DOI: 10.3389/fcvm.2022.932780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCompared with conventional medicines, angiotensin receptor-neprilysin inhibitor (ARNI) could further improve the prognosis for multiple cardiovascular diseases, such as heart failure, hypertension, and myocardial infarction. However, the relationship between ARNI therapy and the recurrence of atrial fibrillation (AF) after radiofrequency catheter ablation is currently unknown.MethodsThis study is a retrospective cohort study. Patients with consecutive persistent or paroxysmal AF undergoing first-time radiofrequency ablation were enrolled from February 2018 to October 2021. We compared the risk of AF recurrence in patients with catheter ablation who received ARNI with the risk of AF recurrence in those who received the angiotensin-converting enzyme inhibitor (ACEI). The propensity-score matched analysis was conducted to examine the effectiveness of ARNI. We used a Cox regression model to evaluate AF recurrence events.ResultsAmong 679 eligible patients, 155 patients with ARNI treatment and 155 patients with ACEI treatment were included in the analyses. At a median follow-up of 228 (196–322) days, ARNI as compared with ACEI was associated with a lower risk of AF recurrence [adjusted hazard ratio (HR), 0.39; 95% confidence interval (CI), 0.24–0.63; p < 0.001]. In addition, no interaction was found in the subgroup analysis.ConclusionAngiotensin receptor-neprilysin inhibitor treatment was associated with a decreased risk of AF recurrence after first-time radiofrequency catheter ablation.
Collapse
|
107
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|
108
|
Su KN, Ma Y, Cacheux M, Ilkan Z, Raad N, Muller GK, Wu X, Guerrera N, Thorn SL, Sinusas AJ, Foretz M, Viollet B, Akar JG, Akar FG, Young LH. Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight 2022; 7:141213. [PMID: 35451373 PMCID: PMC9089788 DOI: 10.1172/jci.insight.141213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.
Collapse
Affiliation(s)
- Kevin N Su
- Department of Cellular & Molecular Physiology and
| | - Yina Ma
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marine Cacheux
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zeki Ilkan
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nour Raad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Xiaohong Wu
- Department of Cellular & Molecular Physiology and
| | - Nicole Guerrera
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie L Thorn
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joseph G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fadi G Akar
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H Young
- Department of Cellular & Molecular Physiology and.,Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
109
|
Fakuade FE, Fauconnier J, Voigt N. Background calcium influx in arrhythmia: lead actor or extra? J Physiol 2022; 600:2545-2546. [PMID: 35451079 DOI: 10.1113/jp283032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Funsho E Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Jeremy Fauconnier
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| |
Collapse
|
110
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J J M Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
111
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
112
|
Regulation of cardiac ryanodine receptor function by the cyclic-GMP dependent protein kinase G. Curr Res Physiol 2022; 5:171-178. [PMID: 35356048 PMCID: PMC8958330 DOI: 10.1016/j.crphys.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background The cGMP-dependent protein kinase G (PKG) phosphorylates the cardiac ryanodine receptor (RyR2) in vitro. We aimed to determine whether modulation of endogenous PKG alters RyR2-mediated spontaneous Ca2+ release and whether this effect is linked to a change in RyR2 phosphorylation. Methods & Results: Human embryonic kidney (HEK293) cells with inducible RyR2 expression were treated with the cGMP analogue 8-Br-cGMP (100 μM) to activate endogenous PKG. In cells transfected with luminal Ca2+ sensor, D1ER, PKG activation significantly reduced the threshold for RyR2-mediated spontaneous Ca2+ release (93.9 ± 0.4% of store size with vehicle vs. 91.7 ± 0.8% with 8-Br-cGMP, P = 0.04). Mutation of the proposed PKG phosphorylation sites, S2808 and S2030, either individually or as a combination, prevented the decrease in Ca2+ release threshold induced by endogenous PKG activation. Interestingly, despite a functional dependence on expression of RyR2 phosphorylation sites, 8-Br-cGMP activation of PKG did not promote a detectable change in S2808 phosphorylation (P = 0.9). Paradoxically, pharmacological inhibition of PKG with KT 5823 (1 μM) also reduced the threshold for spontaneous Ca2+ release through RyR2 without affecting S2808 phosphorylation. Silencing RNA knockdown of endogenous PKG expression also had no quantifiable effect on RyR2 S2808 phosphorylation (P = 0.9). However, unlike PKG inhibition with KT 5823, PKG knockdown did not alter spontaneous Ca2+ release propensity or luminal Ca2+ handling. Conclusion In an intact cell model, activation of endogenous PKG reduces the threshold for RyR2-mediated spontaneous Ca2+ release in a manner dependent on the RyR2 phosphorylation sites S2808 and S2030. This study clarifies the regulation of RyR2 Ca2+ release by endogenous PKG and functionally implicates the role of RyR2 phosphorylation. PKG regulation of RyR2 has been under-researched relative to other kinases. Endogenous PKG activation reduced the threshold for spontaneous RyR2 Ca2+ release. Regulation of RyR2 by PKG required expression of serine residues 2808 and 2030. Knockdown of PKG found minimal basal regulation of RyR2 by PKG.
Collapse
|
113
|
Nolla‐Colomer C, Casabella‐Ramon S, Jimenez‐Sabado V, Vallmitjana A, Tarifa C, Herraiz‐Martínez A, Llach A, Tauron M, Montiel J, Cinca J, Chen SRW, Benitez R, Hove‐Madsen L. β2-adrenergic stimulation potentiates spontaneous calcium release by increasing signal mass and co-activation of ryanodine receptor clusters. Acta Physiol (Oxf) 2022; 234:e13736. [PMID: 34709723 DOI: 10.1111/apha.13736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
AIMS It is unknown how β-adrenergic stimulation affects calcium dynamics in individual RyR2 clusters and leads to the induction of spontaneous calcium waves. To address this, we analysed spontaneous calcium release events in green fluorescent protein (GFP)-tagged RyR2 clusters. METHODS Cardiomyocytes from mice with GFP-tagged RyR2 or human right atrial tissue were subjected to immunofluorescent labelling or confocal calcium imaging. RESULTS Spontaneous calcium release from single RyR2 clusters induced 91.4% ± 2.0% of all calcium sparks while 8.0% ± 1.6% were caused by release from two neighbouring clusters. Sparks with two RyR2 clusters had 40% bigger amplitude, were 26% wider, and lasted 35% longer at half maximum. Consequently, the spark mass was larger in two- than one-cluster sparks with a median and interquartile range for the cumulative distribution of 15.7 ± 20.1 vs 7.6 ± 5.7 a.u. (P < .01). β2-adrenergic stimulation increased RyR2 phosphorylation at s2809 and s2815, tripled the fraction of two- and three-cluster sparks, and significantly increased the spark mass. Interestingly, the amplitude and mass of the calcium released from a RyR2 cluster were proportional to the SR calcium load, but the firing rate was not. The spark mass was also higher in 33 patients with atrial fibrillation than in 36 without (22.9 ± 23.4 a.u. vs 10.7 ± 10.9; P = .015). CONCLUSIONS Most sparks are caused by activation of a single RyR2 cluster at baseline while β-adrenergic stimulation doubles the mass and the number of clusters per spark. This mimics the shift in the cumulative spark mass distribution observed in myocytes from patients with atrial fibrillation.
Collapse
Affiliation(s)
| | - Sergi Casabella‐Ramon
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| | | | | | - Carmen Tarifa
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| | - Adela Herraiz‐Martínez
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| | | | - Manel Tauron
- Department of Cardiac Surgery Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Jose Montiel
- Department of Cardiac Surgery Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Juan Cinca
- IIB Sant Pau Barcelona Spain
- Universitat Autònoma de Barcelona Barcelona Spain
| | - S. R. Wayne Chen
- Department of Physiology and Pharmacology University of Calgary Alberta Canada
| | - Raul Benitez
- Department Automatic Control Univ. Politècnica de Catalunya Barcelona Spain
| | - Leif Hove‐Madsen
- Biomedical Research Institute Barcelona, IIBB‐CSIC Barcelona Spain
- IIB Sant Pau Barcelona Spain
| |
Collapse
|
114
|
Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells 2022; 11:cells11071090. [PMID: 35406654 PMCID: PMC8997666 DOI: 10.3390/cells11071090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte calcium-handling is the key mediator of cardiac excitation-contraction coupling. In the healthy heart, calcium controls both electrical impulse propagation and myofilament cross-bridge cycling, providing synchronous and adequate contraction of cardiac muscles. However, calcium-handling abnormalities are increasingly implicated as a cause of cardiac arrhythmias. Due to the complex, dynamic and localized interactions between calcium and other molecules within a cardiomyocyte, it remains experimentally challenging to study the exact contributions of calcium-handling abnormalities to arrhythmogenesis. Therefore, multiscale computational modeling is increasingly being used together with laboratory experiments to unravel the exact mechanisms of calcium-mediated arrhythmogenesis. This article describes various examples of how integrative computational modeling makes it possible to unravel the arrhythmogenic consequences of alterations to cardiac calcium handling at subcellular, cellular and tissue levels, and discusses the future challenges on the integration and interpretation of such computational data.
Collapse
|
115
|
Wiedmann F, Kraft M, Kallenberger S, Büscher A, Paasche A, Blochberger PL, Seeger T, Jávorszky N, Warnecke G, Arif R, Kremer J, Karck M, Frey N, Schmidt C. MicroRNAs Regulate TASK-1 and Are Linked to Myocardial Dilatation in Atrial Fibrillation. J Am Heart Assoc 2022; 11:e023472. [PMID: 35301863 PMCID: PMC9075420 DOI: 10.1161/jaha.121.023472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. However, underlying molecular mechanisms are insufficiently understood. Previous studies suggested that microRNA (miRNA) dependent gene regulation plays an important role in the initiation and maintenance of AF. The 2‐pore‐domain potassium channel TASK‐1 (tandem of P domains in a weak inward rectifying K+ channel–related acid sensitive K+ channel 1) is an atrial‐specific ion channel that is upregulated in AF. Inhibition of TASK‐1 current prolongs the atrial action potential duration to similar levels as in patients with sinus rhythm. Here, we hypothesize that miRNAs might be responsible for the regulation of KCNK3 that encodes for TASK‐1. Methods and Results We selected miRNAs potentially regulating KCNK3 and studied their expression in atrial tissue samples obtained from patients with sinus rhythm, paroxysmal AF, or permanent/chronic AF. MiRNAs differentially expressed in AF were further investigated for their ability to regulate KCNK3 mRNA and TASK‐1 protein expression in human induced pluripotent stem cells, transfected with miRNA mimics or inhibitors. Thereby, we observed that miR‐34a increases TASK‐1 expression and current and further decreases the resting membrane potential of Xenopus laevis oocytes, heterologously expressing hTASK‐1. Finally, we investigated associations between miRNA expression in atrial tissues and clinical parameters of our patient cohort. A cluster containing AF stage, left ventricular end‐diastolic diameter, left ventricular end‐systolic diameter, left atrial diameter, atrial COL1A2 (collagen alpha‐2(I) chain), and TASK‐1 protein level was associated with increased expression of miR‐25, miR‐21, miR‐34a, miR‐23a, miR‐124, miR‐1, and miR‐29b as well as decreased expression of miR‐9 and miR‐485. Conclusions These results suggest an important pathophysiological involvement of miRNAs in the regulation of atrial expression of the TASK‐1 potassium channel in patients with atrial cardiomyopathy.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Manuel Kraft
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Stefan Kallenberger
- Digital Health Center Berlin Institute of Health (BIH) and Charité Berlin Germany.,Department of Medical Oncology National Center for Tumor DiseasesHeidelberg University Hospital Heidelberg Germany.,Health Data Science UnitMedical Faculty Heidelberg Heidelberg Germany
| | - Antonius Büscher
- Department for Cardiology II: Electrophysiology University Hospital Münster Münster Germany
| | - Amelie Paasche
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Pablo L Blochberger
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Timon Seeger
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany
| | - Natasa Jávorszky
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Rawa Arif
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Jamila Kremer
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Matthias Karck
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Norbert Frey
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Constanze Schmidt
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
116
|
Enhanced Cardiac CaMKII Oxidation and CaMKII-Dependent SR Ca Leak in Patients with Sleep-Disordered Breathing. Antioxidants (Basel) 2022; 11:antiox11020331. [PMID: 35204213 PMCID: PMC8868143 DOI: 10.3390/antiox11020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Sleep-disordered breathing (SDB) is associated with increased oxidant generation. Oxidized Ca/calmodulin kinase II (CaMKII) can contribute to atrial arrhythmias by the stimulation of sarcoplasmic reticulum Ca release events, i.e., Ca sparks. Methods: We prospectively enrolled 39 patients undergoing cardiac surgery to screen for SDB and collected right atrial appendage biopsies. Results: SDB was diagnosed in 14 patients (36%). SDB patients had significantly increased levels of oxidized and activated CaMKII (assessed by Western blotting/specific pulldown). Moreover, SDB patients showed a significant increase in Ca spark frequency (CaSpF measured by confocal microscopy) compared with control subjects. CaSpF was 3.58 ± 0.75 (SDB) vs. 2.49 ± 0.84 (no SDB) 1/100 µm−1s−1 (p < 0.05). In linear multivariable regression models, SDB severity was independently associated with increased CaSpF (B [95%CI]: 0.05 [0.03; 0.07], p < 0.001) after adjusting for important comorbidities. Interestingly, 30 min exposure to the CaMKII inhibitor autocamtide-2 related autoinhibitory peptide normalized the increased CaSpF and eliminated the association between SDB and CaSpF (B [95%CI]: 0.01 [−0.1; 0.03], p = 0.387). Conclusions: Patients with SDB have increased CaMKII oxidation/activation and increased CaMKII-dependent CaSpF in the atrial myocardium, independent of major clinical confounders, which may be a novel target for treatment of atrial arrhythmias in SDB.
Collapse
|
117
|
Tu T, Li B, Li X, Zhang B, Xiao Y, Li J, Qin F, Liu N, Sun C, Liu Q, Zhou S. Dietary ω-3 fatty acids reduced atrial fibrillation vulnerability via attenuating myocardial endoplasmic reticulum stress and inflammation in a canine model of atrial fibrillation. J Cardiol 2022; 79:194-201. [PMID: 34702603 DOI: 10.1016/j.jjcc.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Dietary consumption of ω-3 fatty acids is correlated with a reduced incidence of cardiovascular events. Here, we investigated the effect of dietary ω-3 fatty acids on atrial fibrillation (AF) vulnerability in a canine model of AF and explored the related mechanisms. METHODS Twenty four male beagle dogs (weight, 8-10 kg) were randomly divided into four groups: (a) sham-operated group (normal chow); (b) AF+FO [AF and normal chow supplemented with fish oil (FO): 0.6 g n-3 polyunsaturated fatty acids (ω-3 PUFA) /kg/day]; (c) AF group (normal chow); (d) sham-operated FO group (chow supplemented with FO: 0.6 g ω-3 PUFA/kg/day). AF was induced by rapid atrial pacing (RAP: 400 bpm for 4 weeks). Daily oral administration of FO was initiated 1 week before surgery and continued for 4 weeks post operation. RESULTS Atrial electric remodeling was significantly attenuated and AF vulnerability were significantly reduced in AF+FO group compared to AF group. Endoplasmic reticulum (ER) stress-related protein expression levels of glucose-regulated protein78, C/EBP homologous protein, cleaved-Caspase12, and phosphorylation of protein kinase R-like ER kinase as well as inflammatory cytokines interleukin-1β, interleukin-6, tumor necrosis factor-α in left atrium (LA) were significantly downregulated in AF+FO group than in AF group (all p<0.05). In addition, Masson staining revealed lower extent of LA interstitial fibrosis in AF+FO group than in AF group (p<0.01). Myocardial apoptosis was also significantly reduced in AF+FO group than in AF group (p<0.05). CONCLUSIONS Dietary ω-3 fatty acids could significantly reduce RAP-induced AF vulnerability, possibly via attenuating myocardial ER stress, inflammation, and apoptosis in this canine model of AF.
Collapse
Affiliation(s)
- Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Biao Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Rd, Futian District, Shenzhen, Guangdong Province, China
| | - Xuping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Baojian Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cardiology, the Affiliated Chinese Medicine Hospital of Xinjiang Medical University, Urumqi City, Xinjiang, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiayi Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fen Qin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chao Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
118
|
Sánchez FJ, Pueyo E, Diez ER. Strain Echocardiography to Predict Postoperative Atrial Fibrillation. Int J Mol Sci 2022; 23:1355. [PMID: 35163278 PMCID: PMC8836170 DOI: 10.3390/ijms23031355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative atrial fibrillation (POAF) complicates 15% to 40% of cardiovascular surgeries. Its incidence progressively increases with aging, reaching 50% in octogenarians. This arrhythmia is usually transient but it increases the risk of embolic stroke, prolonged hospital stay, and cardiovascular mortality. Though many pathophysiological mechanisms are known, POAF prediction is still a hot topic of discussion. Doppler echocardiogram and, lately, strain echocardiography have shown significant capacity to predict POAF. Alterations in oxidative stress, calcium handling, mitochondrial dysfunction, inflammation, fibrosis, and tissue aging are among the mechanisms that predispose patients to the perfect "atrial storm". Manifestations of these mechanisms have been related to enlarged atria and impaired function, which can be detected prior to surgery. Specific alterations in the atrial reservoir and pump function, as well as atrial dyssynchrony determined by echocardiographic atrial strain, can predict POAF and help to shed light on which patients could benefit from preventive therapy.
Collapse
Affiliation(s)
| | - Esther Pueyo
- BSICOS Group, I3A, IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain;
- CIBER-BBN, 28029 Madrid, Spain
| | - Emiliano Raúl Diez
- Faculty of Medical Sciences, National University of Cuyo, Mendoza 5500, Argentina;
- Institute of Medical and Experimental Biology of Cuyo, IMBECU-UNCuyo-CONICET, Mendoza 5500, Argentina
| |
Collapse
|
119
|
Ostroumova OD, Chernyaeva MS, Kochetkov AI, Vorobieva AE, Bakhteeva DI, Korchagina SP, Bondarets OV, Boyko ND, Sychev DA. Drug-Induced Atrial Fibrillation / Atrial Flutter. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2021-12-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drug-induced atrial fibrillation / flutter (DIAF) is a serious and potentially life-threatening complication of pharmacotherapy. Purpose of the work: systematization and analysis of scientific literature data on drugs, the use of which can cause the development of DIAF, as well as on epidemiology, pathophysiological mechanisms, risk factors, clinical picture, diagnosis and differential diagnosis, treatment and prevention of DIAF. Analysis of the literature has shown that many groups of drugs can cause the development of DIAF, with a greater frequency while taking anticancer drugs, drugs for the treatment of the cardiovascular, bronchopulmonary and central nervous systems. The mechanisms and main risk factors for the development of DIAF have not been finally established and are known only for certain drugs, therefore, this section requires further study. The main symptoms of DIAF are due to the severity of tachycardia and their influence on the parameters of central hemodynamics. For diagnosis, it is necessary to conduct an electrocardiogram (ECG) and Holter monitoring of an ECG and echocardiography. Differential diagnosis should be made with AF, which may be caused by other causes, as well as other rhythm and conduction disturbances. Successful treatment of DIAF is based on the principle of rapid recognition and immediate discontinuation of drugs (if possible), the use of which potentially caused the development of adverse drug reactions (ADR). The choice of management strategy: heart rate control or rhythm control, as well as the method of achievement (medication or non-medication), depends on the specific clinical situation. For the prevention of DIAF, it is necessary to instruct patients about possible symptoms and recommend self-monitoring of the pulse. It is important for practitioners to be wary of the risk of DIAF due to the variety of drugs that can potentially cause this ADR.
Collapse
Affiliation(s)
- O. D Ostroumova
- Russian Medical Academy of Continuing Professional Education
| | - M. S. Chernyaeva
- Central State Medical Academy of the Administrative Department of the President; Hospital for War Veterans No. 2
| | - A. I. Kochetkov
- Russian Medical Academy of Continuing Professional Education
| | - A. E. Vorobieva
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimova
| | | | | | - O. V. Bondarets
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimova
| | | | - D. A. Sychev
- Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
120
|
Conditional immortalization of human atrial myocytes for the generation of in vitro models of atrial fibrillation. Nat Biomed Eng 2022; 6:389-402. [PMID: 34992271 DOI: 10.1038/s41551-021-00827-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6-8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.
Collapse
|
121
|
Murphy MB, Kim K, Kannankeril PJ, Subati T, Van Amburg JC, Barnett JV, Murray KT. Optimizing transesophageal atrial pacing in mice to detect atrial fibrillation. Am J Physiol Heart Circ Physiol 2022; 322:H36-H43. [PMID: 34767487 PMCID: PMC8698503 DOI: 10.1152/ajpheart.00434.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
Mice are routinely used to investigate molecular mechanisms underlying the atrial fibrillation (AF) substrate. We sought to optimize transesophageal rapid atrial pacing (RAP) protocols for the detection of AF susceptibility in mouse models. Hypertensive and control C57Bl/6J mice were subjected to burst RAP at a fixed stimulus amplitude. The role of parasympathetic involvement in pacing-related atrioventricular (AV) block and AF was examined using an intraperitoneal injection of atropine. In a crossover study, burst and decremental RAP at twice diastolic threshold were compared for induction of AV block during pacing. The efficacy of burst and decremental RAP to elicit an AF phenotype was subsequently investigated in mice deficient in the lymphocyte adaptor protein (Lnk-/-) resulting in systemic inflammation, or the paired-like homeodomain-2 transcription factor (Pitx2+/-) as a positive control. When pacing at a fixed stimulus intensity, pacing-induced AV block with AF induction occurred frequently, so that there was no difference in AF burden between hypertensive and control mice. These effects were prevented by atropine administration, implicating parasympathetic activation due to ganglionic stimulation as the etiology. When mice with AV block during pacing were eliminated from the analysis, male Lnk-/- mice displayed an AF phenotype only during burst RAP compared with controls, whereas male Pitx2+/- mice showed AF susceptibility during burst and decremental RAP. Notably, Lnk-/- and Pitx2+/- females exhibited no AF phenotype. Our data support the conclusion that multiple parameters should be used to ascertain AF inducibility and facilitate reproducibility across models and studies.NEW & NOTEWORTHY Methods were developed to optimize transesophageal rapid atrial pacing (RAP) to detect AF susceptibility in new and established mouse models. High stimulus intensity and pacing rates caused parasympathetic stimulation, with pacing-induced AV block and excessive AF induction in normal mice. For a given model, pacing at twice TH enabled improved phenotype discrimination in a pacing mode and sex-specific manner. Transesophageal RAP should be individually optimized when developing a mouse model of AF.
Collapse
Affiliation(s)
- Matthew B Murphy
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kyungsoo Kim
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Prince J Kannankeril
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tuerdi Subati
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joseph C Van Amburg
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joey V Barnett
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Katherine T Murray
- Departments of Medicine, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
122
|
Increased cytosolic calcium buffering contributes to a cellular arrhythmogenic substrate in iPSC-cardiomyocytes from patients with dilated cardiomyopathy. Basic Res Cardiol 2022; 117:5. [PMID: 35499658 PMCID: PMC9061684 DOI: 10.1007/s00395-022-00912-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/31/2023]
Abstract
Dilated cardiomyopathy (DCM) is a major risk factor for heart failure and is associated with the development of life-threatening cardiac arrhythmias. Using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model harbouring a mutation in cardiac troponin T (R173W), we aim to examine the cellular basis of arrhythmogenesis in DCM patients with this mutation. iPSC from control (Ctrl) and DCM-TnT-R173W donors from the same family were differentiated into iPSC-CM and analysed through optical action potential (AP) recordings, simultaneous measurement of cytosolic calcium concentration ([Ca2+]i) and membrane currents and separately assayed using field stimulation to detect the threshold for AP- and [Ca2+]i-alternans development. AP duration was unaltered in TnT-R173W iPSC-CM. Nevertheless, TnT-R173W iPSC-CM showed a strikingly low stimulation threshold for AP- and [Ca2+]i-alternans. Myofilaments are known to play a role as intracellular Ca2+ buffers and here we show increased Ca2+ affinity of intracellular buffers in TnT-R173W cells, indicating increased myofilament sensitivity to Ca2+. Similarly, EMD57033, a myofilament Ca2+ sensitiser, replicated the abnormal [Ca2+]i dynamics observed in TnT-R173W samples and lowered the threshold for alternans development. In contrast, application of a Ca2+ desensitiser (blebbistatin) to TnT-R173W iPSC-CM was able to phenotypically rescue Ca2+ dynamics, normalising Ca2+ transient profile and minimising the occurrence of Ca2+ alternans at physiological frequencies. This finding suggests that increased Ca2+ buffering likely plays a major arrhythmogenic role in patients with DCM, specifically in those with mutations in cardiac troponin T. In addition, we propose that modulation of myofilament Ca2+ sensitivity could be an effective anti-arrhythmic target for pharmacological management of this disease.
Collapse
|
123
|
Function and regulation of phosphatase 1 in healthy and diseased heart. Cell Signal 2021; 90:110203. [PMID: 34822978 DOI: 10.1016/j.cellsig.2021.110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.
Collapse
|
124
|
Chang JH, Cheng CC, Lu YY, Chung CC, Yeh YH, Chen YC, Higa S, Chen SA, Chen YJ. Vascular endothelial growth factor modulates pulmonary vein arrhythmogenesis via vascular endothelial growth factor receptor 1/NOS pathway. Eur J Pharmacol 2021; 911:174547. [PMID: 34624234 DOI: 10.1016/j.ejphar.2021.174547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is a common form of arrhythmia with serious public health impacts, but its underlying mechanisms are not yet fully understood. Vascular endothelial growth factor (VEGF) is highly expressed in the atrium of patients with AF, but whether VEGF affects AF pathogenesis remains unclear. Pulmonary veins (PVs) are important sources for the genesis of atrial tachycardia or AF. Therefore, this study assessed the effects of VEGF on PV electrophysiological properties and evaluated its underlying mechanisms. Conventional microelectrodes and whole-cell patch clamps were performed using isolated rabbit PV preparations or single isolated PV cardiomyocytes before and after VEGF or VEGF receptor (VEGFR), Akt, NOS inhibitor administration. We found that VEGF (0.1, 1, and 10 ng/mL) reduced the PV beating rate in a dose-dependent manner. Furthermore, VEGF (10 ng/mL) reduced late diastolic depolarization and diastolic tension. Isoproterenol increased PV beating and burst firing, which was attenuated by VEGF (1 ng/mL). In the presence of VEGFR-1 inhibition (ZM306416 at 10 μM) and L-NAME (100 μM), VEGF (1 ng/mL) did not alter PV spontaneous activity. In isolated PV cardiomyocytes, VEGF (1 ng/mL) decreased L-type calcium, sodium/calcium exchanger, and late sodium currents. In conclusion, we found that VEGF reduces PV arrhythmogenesis by modulating sodium/calcium homeostasis through VEGFR-1/NOS signaling pathway.
Collapse
Affiliation(s)
- Jun-Hei Chang
- Department of Medicine, Country Hospital, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Chuan Cheng
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
125
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
126
|
Emmert DB, Vukovic V, Dordevic N, Weichenberger CX, Losi C, D’Elia Y, Volpato C, Hernandes VV, Gögele M, Foco L, Pontali G, Mascalzoni D, Domingues FS, Paulmichl R, Pramstaller PP, Pattaro C, Rossini A, Rainer J, Fuchsberger C, De Bortoli M. Genetic and Metabolic Determinants of Atrial Fibrillation in a General Population Sample: The CHRIS Study. Biomolecules 2021; 11:1663. [PMID: 34827661 PMCID: PMC8615508 DOI: 10.3390/biom11111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) is a supraventricular arrhythmia deriving from uncoordinated electrical activation with considerable associated morbidity and mortality. To expand the limited understanding of AF biological mechanisms, we performed two screenings, investigating the genetic and metabolic determinants of AF in the Cooperative Health Research in South Tyrol study. We found 110 AF cases out of 10,509 general population individuals. A genome-wide association scan (GWAS) identified two novel loci (p-value < 5 × 10-8) around SNPs rs745582874, next to gene PBX1, and rs768476991, within gene PCCA, with genotype calling confirmed by Sanger sequencing. Risk alleles at both SNPs were enriched in a family detected through familial aggregation analysis of the phenotype, and both rare alleles co-segregated with AF. The metabolic screening of 175 metabolites, in a subset of individuals, revealed a 41% lower concentration of lysophosphatidylcholine lysoPC a C20:3 in AF cases compared to controls (p-adj = 0.005). The genetic findings, combined with previous evidence, indicate that the two identified GWAS loci may be considered novel genetic rare determinants for AF. Considering additionally the association of lysoPC a C20:3 with AF by metabolic screening, our results demonstrate the valuable contribution of the combined genomic and metabolomic approach in studying AF in large-scale population studies.
Collapse
Affiliation(s)
- David B. Emmert
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Vladimir Vukovic
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
- Centre for Disease Control and Prevention, Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Nikola Dordevic
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Christian X. Weichenberger
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Chiara Losi
- Department of Cardiology, Tappeiner F. Merano Hospital, 39012 Merano, Italy; (C.L.); (R.P.)
| | - Yuri D’Elia
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Claudia Volpato
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Vinicius V. Hernandes
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Martin Gögele
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Luisa Foco
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Giulia Pontali
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy
| | - Deborah Mascalzoni
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
- Centre for Research, Ethics and Bioethics Uppsala University, SE-751 05 Uppsala, Sweden
| | - Francisco S. Domingues
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Rupert Paulmichl
- Department of Cardiology, Tappeiner F. Merano Hospital, 39012 Merano, Italy; (C.L.); (R.P.)
| | - Peter P. Pramstaller
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Alessandra Rossini
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Johannes Rainer
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Marzia De Bortoli
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| |
Collapse
|
127
|
Reinhardt F, Beneke K, Pavlidou NG, Conradi L, Reichenspurner H, Hove-Madsen L, Molina CE. Abnormal Calcium Handling in Atrial Fibrillation Is Linked to Changes in Cyclic AMP Dependent Signaling. Cells 2021; 10:cells10113042. [PMID: 34831263 PMCID: PMC8616167 DOI: 10.3390/cells10113042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023] Open
Abstract
Both, the decreased L-type Ca2+ current (ICa,L) density and increased spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), have been associated with atrial fibrillation (AF). In this study, we tested the hypothesis that remodeling of 3′,5′-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is linked to these compartment-specific changes (up- or down-regulation) in Ca2+-handling. Perforated patch-clamp experiments were performed in atrial myocytes from 53 patients with AF and 104 patients in sinus rhythm (Ctl). A significantly higher frequency of transient inward currents (ITI) activated by spontaneous Ca2+ release was confirmed in myocytes from AF patients. Next, inhibition of PKA by H-89 promoted a stronger effect on the ITI frequency in these myocytes compared to myocytes from Ctl patients (7.6-fold vs. 2.5-fold reduction), while the β-agonist isoproterenol (ISO) caused a greater increase in Ctl patients (5.5-fold vs. 2.1-fold). ICa,L density was larger in myocytes from Ctl patients at baseline (p < 0.05). However, the effect of ISO on ICa,L density was only slightly stronger in AF than in Ctl myocytes (3.6-fold vs. 2.7-fold). Interestingly, a significant reduction of ICa,L and Ca2+ sparks was observed upon Ca2+/Calmodulin-dependent protein kinase II inhibition by KN-93, but this inhibition had no effect on ITI. Fluorescence resonance energy transfer (FRET) experiments showed that although AF promoted cytosolic desensitization to β-adrenergic stimulation, ISO increased cAMP to similar levels in both groups of patients in the L-type Ca2+ channel and ryanodine receptor compartments. Basal cAMP signaling also showed compartment-specific regulation by phosphodiesterases in atrial myocytes from 44 Ctl and 43 AF patients. Our results suggest that AF is associated with opposite changes in compartmentalized PKA/cAMP-dependent regulation of ICa,L (down-regulation) and ITI (up-regulation).
Collapse
Affiliation(s)
- Franziska Reinhardt
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg UKE, 20251 Hamburg, Germany; (F.R.); (L.C.); (H.R.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (K.B.); (N.G.P.)
| | - Kira Beneke
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (K.B.); (N.G.P.)
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Nefeli Grammatica Pavlidou
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (K.B.); (N.G.P.)
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Lenard Conradi
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg UKE, 20251 Hamburg, Germany; (F.R.); (L.C.); (H.R.)
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg UKE, 20251 Hamburg, Germany; (F.R.); (L.C.); (H.R.)
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona, IIBB-CSIC and IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
| | - Cristina E. Molina
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany; (K.B.); (N.G.P.)
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-407-4105-7095
| |
Collapse
|
128
|
Avula UMR, Dridi H, Chen BX, Yuan Q, Katchman AN, Reiken SR, Desai AD, Parsons S, Baksh H, Ma E, Dasrat P, Ji R, Lin Y, Sison C, Lederer WJ, Joca HC, Ward CW, Greiser M, Marks AR, Marx SO, Wan EY. Attenuating persistent sodium current-induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCI Insight 2021; 6:e147371. [PMID: 34710060 PMCID: PMC8675199 DOI: 10.1172/jci.insight.147371] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.
Collapse
Affiliation(s)
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, and
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Haajra Baksh
- Division of Cardiology, Department of Medicine, and
| | - Elaine Ma
- Division of Cardiology, Department of Medicine, and
| | | | - Ruiping Ji
- Division of Cardiology, Department of Medicine, and
| | - Yejun Lin
- Division of Cardiology, Department of Medicine, and
| | | | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Christopher W. Ward
- Center for Biomedical Engineering and Technology and Department of Physiology and
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, and
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
129
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
130
|
Yoo S, Geist GE, Pfenniger A, Rottmann M, Arora R. Recent advances in gene therapy for atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:2854-2864. [PMID: 34053133 PMCID: PMC9281901 DOI: 10.1111/jce.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments for AF are suboptimal as they are not targeting the molecular mechanisms underlying AF. In this regard, gene therapy is emerging as a promising approach for mechanism-based treatment of AF. In this review, we summarize recent advances and challenges in gene therapy for this important cardiovascular disease.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Markus Rottmann
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
131
|
Kaplan AD, Joca HC, Boyman L, Greiser M. Calcium Signaling Silencing in Atrial Fibrillation: Implications for Atrial Sodium Homeostasis. Int J Mol Sci 2021; 22:10513. [PMID: 34638854 PMCID: PMC8508839 DOI: 10.3390/ijms221910513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more than 33 million people worldwide. Despite important advances in therapy, AF's incidence remains high, and treatment often results in recurrence of the arrhythmia. A better understanding of the cellular and molecular changes that (1) trigger AF and (2) occur after the onset of AF will help to identify novel therapeutic targets. Over the past 20 years, a large body of research has shown that intracellular Ca2+ handling is dramatically altered in AF. While some of these changes are arrhythmogenic, other changes counteract cellular arrhythmogenic mechanisms (Calcium Signaling Silencing). The intracellular Na+ concentration ([Na+])i is a key regulator of intracellular Ca2+ handling in cardiac myocytes. Despite its importance in the regulation of intracellular Ca2+ handling, little is known about [Na+]i, its regulation, and how it might be changed in AF. Previous work suggests that there might be increases in the late component of the atrial Na+ current (INa,L) in AF, suggesting that [Na+]i levels might be high in AF. Indeed, a pharmacological blockade of INa,L has been suggested as a treatment for AF. Here, we review calcium signaling silencing and changes in intracellular Na+ homeostasis during AF. We summarize the proposed arrhythmogenic mechanisms associated with increases in INa,L during AF and discuss the evidence from clinical trials that have tested the pharmacological INa,L blocker ranolazine in the treatment of AF.
Collapse
Affiliation(s)
- Aaron D. Kaplan
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| | - Maura Greiser
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| |
Collapse
|
132
|
Atrial Fibrillation in Heart Failure Is Associated with High Levels of Circulating microRNA-199a-5p and 22-5p and a Defective Regulation of Intracellular Calcium and Cell-to-Cell Communication. Int J Mol Sci 2021; 22:ijms221910377. [PMID: 34638717 PMCID: PMC8508749 DOI: 10.3390/ijms221910377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.
Collapse
|
133
|
Obergrussberger A, Rinke-Weiß I, Goetze TA, Rapedius M, Brinkwirth N, Becker N, Rotordam MG, Hutchison L, Madau P, Pau D, Dalrymple D, Braun N, Friis S, Pless SA, Fertig N. The suitability of high throughput automated patch clamp for physiological applications. J Physiol 2021; 600:277-297. [PMID: 34555195 DOI: 10.1113/jp282107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023] Open
Abstract
Although automated patch clamp (APC) devices have been around for many years and have become an integral part of many aspects of drug discovery, high throughput instruments with gigaohm seal data quality are relatively new. Experiments where a large number of compounds are screened against ion channels are ideally suited to high throughput APC, particularly when the amount of compound available is low. Here we evaluate different APC approaches using a variety of ion channels and screening settings. We have performed a screen of 1920 compounds on GluN1/GluN2A NMDA receptors for negative allosteric modulation using both the SyncroPatch 384 and FLIPR. Additionally, we tested the effect of 36 arthropod venoms on NaV 1.9 using a single 384-well plate on the SyncroPatch 384. As an example for mutant screening, a range of acid-sensing ion channel variants were tested and the success rate increased through fluorescence-activated cell sorting (FACS) prior to APC experiments. Gigaohm seal data quality makes the 384-format accessible to recording of primary and stem cell-derived cells on the SyncroPatch 384. We show recordings in voltage and current clamp modes of stem cell-derived cardiomyocytes. In addition, the option of intracellular solution exchange enabled investigations into the effects of intracellular Ca2+ and cAMP on TRPC5 and HCN2 currents, respectively. Together, these data highlight the broad applicability and versatility of APC platforms and also outlines some limitations of the approach. KEY POINTS: High throughput automated patch clamp (APC) can be used for a variety of applications involving ion channels. Lower false positive rates were achieved using automated patch clamp versus a fluorometric imaging plate reader (FLIPR) in a high throughput compound screen against NMDA receptors. Genetic variants and mutations can be screened on a single 384-well plate to reduce variability of experimental parameters. Intracellular solution can be perfused to investigate effects of ions and second messenger systems without the need for excised patches. Primary cells and stem cell-derived cells can be used on high throughput APC with reasonable success rates for cell capture, voltage clamp measurements and action potential recordings in current clamp mode.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nina Braun
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | |
Collapse
|
134
|
Cely-Ortiz A, Felice JI, Díaz-Zegarra LA, Valverde CA, Federico M, Palomeque J, Wehrens XHT, Kranias EG, Aiello EA, Lascano EC, Negroni JA, Mattiazzi A. Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling. J Gen Physiol 2021; 152:152125. [PMID: 32986800 PMCID: PMC7594441 DOI: 10.1085/jgp.201912512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023] Open
Abstract
Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.
Collapse
Affiliation(s)
- Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leandro A Díaz-Zegarra
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marilén Federico
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Xander H T Wehrens
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Neuroscience, Pediatrics, Center for Space Medicine, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX
| | - Evangelia G Kranias
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elena C Lascano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Negroni
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
135
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
136
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
137
|
Fong SPT, Agrawal S, Gong M, Zhao J. Modulated Calcium Homeostasis and Release Events Under Atrial Fibrillation and Its Risk Factors: A Meta-Analysis. Front Cardiovasc Med 2021; 8:662914. [PMID: 34355025 PMCID: PMC8329373 DOI: 10.3389/fcvm.2021.662914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Atrial fibrillation (AF) is associated with calcium (Ca2+) handling remodeling and increased spontaneous calcium release events (SCaEs). Nevertheless, its exact mechanism remains unclear, resulting in suboptimal primary and secondary preventative strategies. Methods: We searched the PubMed database for studies that investigated the relationship between SCaEs and AF and/or its risk factors. Meta-analysis was used to examine the Ca2+ mechanisms involved in the primary and secondary AF preventative groups. Results: We included a total of 74 studies, out of the identified 446 publications from inception (1982) until March 31, 2020. Forty-five were primary and 29 were secondary prevention studies for AF. The main Ca2+ release events, calcium transient (standardized mean difference (SMD) = 0.49; I2 = 35%; confidence interval (CI) = 0.33–0.66; p < 0.0001), and spark amplitude (SMD = 0.48; I2 = 0%; CI = −0.98–1.93; p = 0.054) were enhanced in the primary diseased group, while calcium transient frequency was increased in the secondary group. Calcium spark frequency was elevated in both the primary diseased and secondary AF groups. One of the key cardiac currents, the L-type calcium current (ICaL) was significantly downregulated in primary diseased (SMD = −1.07; I2 = 88%; CI = −1.94 to −0.20; p < 0.0001) and secondary AF groups (SMD = −1.28; I2 = 91%; CI = −2.04 to −0.52; p < 0.0001). Furthermore, the sodium–calcium exchanger (INCX) and NCX1 protein expression were significantly enhanced in the primary diseased group, while only NCX1 protein expression was shown to increase in the secondary AF studies. The phosphorylation of the ryanodine receptor at S2808 (pRyR-S2808) was significantly elevated in both the primary and secondary groups. It was increased in the primary diseased and proarrhythmic subgroups (SMD = 0.95; I2 = 64%; CI = 0.12–1.79; p = 0.074) and secondary AF group (SMD = 0.66; I2 = 63%; CI = 0.01–1.31; p < 0.0001). Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) expression was elevated in the primary diseased and proarrhythmic drug subgroups but substantially reduced in the secondary paroxysmal AF subgroup. Conclusions: Our study identified that ICaL is reduced in both the primary and secondary diseased groups. Furthermore, pRyR-S2808 and NCX1 protein expression are enhanced. The remodeling leads to elevated Ca2+ functional activities, such as increased frequencies or amplitude of Ca2+ spark and Ca2+ transient. The main difference identified between the primary and secondary diseased groups is SERCA expression, which is elevated in the primary diseased group and substantially reduced in the secondary paroxysmal AF subgroup. We believe our study will add new evidence to AF mechanisms and treatment targets.
Collapse
Affiliation(s)
- Sarah Pei Ting Fong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shaleka Agrawal
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Mengqi Gong
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
138
|
Investigational Anti-Atrial Fibrillation Pharmacology and Mechanisms by Which Antiarrhythmics Terminate the Arrhythmia: Where Are We in 2020? J Cardiovasc Pharmacol 2021; 76:492-505. [PMID: 33165131 PMCID: PMC7641178 DOI: 10.1097/fjc.0000000000000892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiarrhythmic drugs remain the mainstay therapy for patients with atrial fibrillation (AF). A major disadvantage of the currently available anti-AF agents is the risk of induction of ventricular proarrhythmias. Aiming to reduce this risk, several atrial-specific or -selective ion channel block approaches have been introduced for AF suppression, but only the atrial-selective inhibition of the sodium channel has been demonstrated to be valid in both experimental and clinical studies. Among the other pharmacological anti-AF approaches, “upstream therapy” has been prominent but largely disappointing, and pulmonary delivery of anti-AF drugs seems to be promising. Major contradictions exist in the literature about the electrophysiological mechanisms of AF (ie, reentry or focal?) and the mechanisms by which anti-AF drugs terminate AF, making the search for novel anti-AF approaches largely empirical. Drug-induced termination of AF may or may not be associated with prolongation of the atrial effective refractory period. Anti-AF drug research has been largely based on the “suppress reentry” ideology; however, results of the AF mapping studies increasingly indicate that nonreentrant mechanism(s) plays an important role in the maintenance of AF. Also, the analysis of anti-AF drug-induced electrophysiological alterations during AF, conducted in the current study, leans toward the focal source as the prime mechanism of AF maintenance. More effort should be placed on the investigation of pharmacological suppression of the focal mechanisms.
Collapse
|
139
|
Arslanova A, Shafaattalab S, Lin E, Barszczewski T, Hove-Madsen L, Tibbits GF. Investigating inherited arrhythmias using hiPSC-derived cardiomyocytes. Methods 2021; 203:542-557. [PMID: 34197925 DOI: 10.1016/j.ymeth.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.
Collapse
Affiliation(s)
- Alia Arslanova
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Eric Lin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada
| | - Tiffany Barszczewski
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
140
|
Pabel S, Mustroph J, Stehle T, Lebek S, Dybkova N, Keyser A, Rupprecht L, Wagner S, Neef S, Maier LS, Sossalla S. Dantrolene reduces CaMKIIδC-mediated atrial arrhythmias. Europace 2021; 22:1111-1118. [PMID: 32413138 DOI: 10.1093/europace/euaa079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023] Open
Abstract
AIMS In atrial fibrillation (AF), an increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) mediated by calcium/calmodulin-dependent-protein-kinaseIIδC (CaMKII) can serve as a substrate for arrhythmia induction and persistence. Dantrolene has been shown to stabilize the cardiac ryanodine-receptor. This study investigated the effects of dantrolene on arrhythmogenesis in human and mouse atria with enhanced CaMKII activity. METHODS AND RESULTS Human atrial cardiomyocytes (CMs) were isolated from patients with AF. To investigate CaMKII-mediated arrhythmogenesis, atrial CMs from mice overexpressing CaMKIIδC (TG) and the respective wildtype (WT) were studied using confocal microscopy (Fluo-4), patch-clamp technique, and in vivo atrial catheter-based burst stimulations. Dantrolene potently reduced Ca2+ spark frequency (CaSpF) and diastolic SR Ca2+ leak in AF CMs. Additional CaMKII inhibition did not further reduce CaSpF or leak compared to dantrolene alone. While the increased SR CaSpF and leak in TG mice were reduced by dantrolene, no effects could be detected in WT. Dantrolene also potently reduced the pathologically enhanced frequency of diastolic SR Ca2+ waves in TG without having effects in WT. As an increased diastolic SR Ca2+ release can induce a depolarizing transient inward current, we could demonstrate that the incidence of afterdepolarizations in TG, but not in WT, mice was significantly diminished in the presence of dantrolene. To translate these findings into an in vivo situation we could show that dantrolene strongly suppressed the inducibility of AF in vivo in TG mice. CONCLUSION Dantrolene reduces CaMKII-mediated atrial arrhythmogenesis and may therefore constitute an interesting antiarrhythmic drug for treating patients with atrial arrhythmias driven by an enhanced CaMKII activity, such as AF.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Thea Stehle
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology & Pneumology, Georg-August University Göttingen, DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Andreas Keyser
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.,Clinic for Cardiology & Pneumology, Georg-August University Göttingen, DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Robert Koch Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
141
|
Szilágyi J, Sághy L. Atrial Remodeling in Atrial Fibrillation. Comorbidities and Markers of Disease Progression Predict Catheter Ablation Outcome. Curr Cardiol Rev 2021; 17:217-229. [PMID: 32693769 PMCID: PMC8226201 DOI: 10.2174/1573403x16666200721153620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation is the most common supraventricular arrhythmia affecting an increasing proportion of the population in which mainstream therapy, i.e. catheter ablation, provides freedom from arrhythmia in only a limited number of patients. Understanding the mechanism is key in order to find more effective therapies and to improve patient selection. In this review, the structural and electrophysiological changes of the atrial musculature that constitute atrial remodeling in atrial fibrillaton and how risk factors and markers of disease progression can predict catheter ablation outcome will be discussed in detail.
Collapse
Affiliation(s)
- Judit Szilágyi
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Sághy
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
142
|
Calcium Regulation on the Atrial Regional Difference of Collagen Production Activity in Atrial Fibrogenesis. Biomedicines 2021; 9:biomedicines9060686. [PMID: 34204537 PMCID: PMC8233809 DOI: 10.3390/biomedicines9060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Atrial fibrosis plays an important role in the genesis of heart failure and atrial fibrillation. The left atrium (LA) exhibits a higher level of fibrosis than the right atrium (RA) in heart failure and atrial arrhythmia. However, the mechanism for the high fibrogenic potential of the LA fibroblasts remains unclear. Calcium (Ca2+) signaling contributes to the pro-fibrotic activities of fibroblasts. This study investigated whether differences in Ca2+ homeostasis contribute to differential fibrogenesis in LA and RA fibroblasts. Methods: Ca2+ imaging, a patch clamp assay and Western blotting were performed in isolated rat LA and RA fibroblasts. Results: The LA fibroblasts exhibited a higher Ca2+ entry and gadolinium-sensitive current compared with the RA fibroblasts. The LA fibroblasts exhibited greater pro-collagen type I, type III, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), phosphorylated phospholipase C (PLC), stromal interaction molecule 1 (STIM1) and transient receptor potential canonical (TRPC) 3 protein expression compared with RA fibroblasts. In the presence of 1 mmol/L ethylene glycol tetra-acetic acid (EGTA, Ca2+ chelator), the LA fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII expression compared with RA fibroblasts. Moreover, in the presence of KN93 (a CaMKII inhibitor, 10 μmol/L), the LA fibroblasts had similar pro-collagen type I and type III compared with RA fibroblasts. Conclusion: The discrepancy of phosphorylated PLC signaling and gadolinium-sensitive Ca2+ channels in LA and RA fibroblasts induces different levels of Ca2+ influx, phosphorylated CaMKII expression and collagen production.
Collapse
|
143
|
Sato D, Uchinoumi H, Bers DM. Increasing SERCA function promotes initiation of calcium sparks and breakup of calcium waves. J Physiol 2021; 599:3267-3278. [PMID: 33963531 PMCID: PMC8249358 DOI: 10.1113/jp281579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Increasing sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump activity enhances sarcoplasmic reticulum calcium (Ca) load, which increases both ryanodine receptor opening and driving force of Ca release flux. Both of these effects promote Ca spark formation and wave propagation. However, increasing SERCA activity also accelerates local cytosolic Ca decay as the wave front travels to the next cluster, which limits wave propagation. As a result, increasing SERCA pump activity has a biphasic effect on the propensity of arrhythmogenic Ca waves, but a monotonic effect to increase Ca spark frequency and amplitude. ABSTRACT Waves of sarcoplasmic reticulum (SR) calcium (Ca) release can cause arrhythmogenic afterdepolarizations in cardiac myocytes. Ca waves propagate when Ca sparks at one Ca release unit (CRU) recruit new Ca sparks in neighbouring CRUs. Under normal conditions, Ca sparks are too small to recruit neighbouring Ca sparks where Ca sensitivity is also low. However, under pathological conditions such as a Ca overload or ryanodine receptor (RyR) sensitization, Ca sparks can be larger and propagate more readily as macro-sparks or full Ca waves. Increasing SERCA pump activity promotes SR Ca load, which promotes RyR opening and increases driving force of the Ca release flux from SR to cytosol, promoting Ca waves. However, high sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) activity can also decrease local cytosolic [Ca] as it approaches the next CRU, thereby reducing wave appearance and propagation. In this study, we use a physiologically detailed model of subcellular Ca cycling and experiments in phospholamban-knockout mice, to show how Ca waves are initiated and propagate and how different conditions contribute to the generation and propagation of Ca waves. We show that reducing diffusive coupling between Ca sparks by increasing SERCA activity prevents Ca waves by reducing [Ca] at the next CRU, as do Ca buffers, low intra-SR Ca diffusion and distance between CRUs. Increasing SR Ca uptake rate has a biphasic effect on Ca wave propagation; initially it enhances Ca spark probability and amplitude and CRU coupling, thereby promoting arrhythmogenic Ca wave propagation, but at higher levels SR Ca uptake can abort those arrhythmogenic Ca waves.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California, Davis School of Medicine, California, USA
| | - Hitoshi Uchinoumi
- Department of Pharmacology, University of California, Davis School of Medicine, California, USA.,Department of Cardiology, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, California, USA
| |
Collapse
|
144
|
Aitken-Buck HM, Krause J, van Hout I, Davis PJ, Bunton RW, Parry DJ, Williams MJA, Coffey S, Zeller T, Jones PP, Lamberts RR. Long-chain acylcarnitine 18:1 acutely increases human atrial myocardial contractility and arrhythmia susceptibility. Am J Physiol Heart Circ Physiol 2021; 321:H162-H174. [PMID: 34085842 DOI: 10.1152/ajpheart.00184.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-chain acylcarnitines (LCACs) are known to directly alter cardiac contractility and electrophysiology. However, the acute effect of LCACs on human cardiac function is unknown. We aimed to determine the effect of LCAC 18:1, which has been associated with cardiovascular disease, on the contractility and arrhythmia susceptibility of human atrial myocardium. Additionally, we aimed to assess how LCAC 18:1 alters Ca2+ influx and spontaneous Ca2+ release in vitro. Human right atrial trabeculae (n = 32) stimulated at 1 Hz were treated with LCAC 18:1 at a range of concentrations (1-25 µM) for a 45-min period. Exposure to the LCAC induced a dose-dependent positive inotropic effect on myocardial contractility (maximal 1.5-fold increase vs. control). At the 25 µM dose (n = 8), this was paralleled by an enhanced propensity for spontaneous contractions (50% increase). Furthermore, all LCAC 18:1 effects on myocardial function were reversed following LCAC 18:1 washout. In fluo-4-AM-loaded HEK293 cells, LCAC 18:1 dose dependently increased cytosolic Ca2+ influx relative to vehicle controls and the short-chain acylcarnitine C3. In HEK293 cells expressing ryanodine receptor (RyR2), this increased Ca2+ influx was linked to an increased propensity for RyR2-mediated spontaneous Ca2+ release events. Our study is the first to show that LCAC 18:1 directly and acutely alters human myocardial function and in vitro Ca2+ handling. The metabolite promotes proarrhythmic muscle contractions and increases contractility. The exploratory findings in vitro suggest that LCAC 18:1 increases proarrhythmic RyR2-mediated spontaneous Ca2+ release propensity. The direct effects of metabolites on human myocardial function are essential to understand cardiometabolic dysfunction.NEW & NOTEWORTHY For the first time, the fatty acid metabolite, long-chain acylcarnitine 18:1, is shown to acutely increase the arrhythmia susceptibility and contractility of human atrial myocardium. In vitro, this was linked to an influx of Ca2+ and an enhanced propensity for spontaneous RyR2-mediated Ca2+ release.
Collapse
Affiliation(s)
- Hamish M Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Julia Krause
- University Heart and Vascular Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Isabelle van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Philip J Davis
- Department of Cardiothoracic Surgery, Otago Medical School-Dunedin Campus, Dunedin Hospital, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Otago Medical School-Dunedin Campus, Dunedin Hospital, Dunedin, New Zealand
| | - Dominic J Parry
- Department of Cardiothoracic Surgery, Otago Medical School-Dunedin Campus, Dunedin Hospital, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, Heart Otago, Otago Medical School-Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, Heart Otago, Otago Medical School-Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Tanja Zeller
- University Heart and Vascular Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Peter P Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
145
|
Fakuade FE, Tomsits P, Voigt N. Connexin hemichannels in atrial fibrillation: orphaned and irrelevant? Cardiovasc Res 2021; 117:4-6. [PMID: 33112373 DOI: 10.1093/cvr/cvaa308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Funsho E Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany.,Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University (LMU), Marchioninistraße 27, 81377 Munich, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center, Robert-Koch-Str. 40, D-37075 Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| |
Collapse
|
146
|
Zhang C, Li Y, Cao J, Yu B, Zhang K, Li K, Xu X, Guo Z, Liang Y, Yang X, Yang Z, Sun Y, Kaartinen V, Ding K, Wang J. Hedgehog signalling controls sinoatrial node development and atrioventricular cushion formation. Open Biol 2021; 11:210020. [PMID: 34062094 PMCID: PMC8169207 DOI: 10.1098/rsob.210020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.
Collapse
Affiliation(s)
- Chaohui Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yuxin Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Jiaheng Cao
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Beibei Yu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Kaiyue Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Ke Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xinhui Xu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, People's Republic of China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, People's Republic of China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou 450003, People's Republic of China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| |
Collapse
|
147
|
Implications of SGLT Inhibition on Redox Signalling in Atrial Fibrillation. Int J Mol Sci 2021; 22:ijms22115937. [PMID: 34073033 PMCID: PMC8198069 DOI: 10.3390/ijms22115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained (atrial) arrhythmia, a considerable global health burden and often associated with heart failure. Perturbations of redox signalling in cardiomyocytes provide a cellular substrate for the manifestation and maintenance of atrial arrhythmias. Several clinical trials have shown that treatment with sodium-glucose linked transporter inhibitors (SGLTi) improves mortality and hospitalisation in heart failure patients independent of the presence of diabetes. Post hoc analysis of the DECLARE-TIMI 58 trial showed a 19% reduction in AF in patients with diabetes mellitus (hazard ratio, 0.81 (95% confidence interval: 0.68-0.95), n = 17.160) upon treatment with SGLTi, regardless of pre-existing AF or heart failure and independent from blood pressure or renal function. Accordingly, ongoing experimental work suggests that SGLTi not only positively impact heart failure but also counteract cellular ROS production in cardiomyocytes, thereby potentially altering atrial remodelling and reducing AF burden. In this article, we review recent studies investigating the effect of SGLTi on cellular processes closely interlinked with redox balance and their potential effects on the onset and progression of AF. Despite promising insight into SGLTi effect on Ca2+ cycling, Na+ balance, inflammatory and fibrotic signalling, mitochondrial function and energy balance and their potential effect on AF, the data are not yet conclusive and the importance of individual pathways for human AF remains to be established. Lastly, an overview of clinical studies investigating SGLTi in the context of AF is provided.
Collapse
|
148
|
Wiedmann F, Beyersdorf C, Zhou XB, Kraft M, Paasche A, Jávorszky N, Rinné S, Sutanto H, Büscher A, Foerster KI, Blank A, El-Battrawy I, Li X, Lang S, Tochtermann U, Kremer J, Arif R, Karck M, Decher N, van Loon G, Akin I, Borggrefe M, Kallenberger S, Heijman J, Haefeli WE, Katus HA, Schmidt C. Treatment of atrial fibrillation with doxapram: TASK-1 potassium channel inhibition as a novel pharmacological strategy. Cardiovasc Res 2021; 118:1728-1741. [PMID: 34028533 DOI: 10.1093/cvr/cvab177] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS TASK-1 (K2P3.1) two-pore domain potassium channels are atrial-specific and significantly upregulated in atrial fibrillation (AF) patients, contributing to AF-related electrical remodelling. Inhibition of TASK-1 in cardiomyocytes of AF patients was shown to counteract AF-related action potential duration shortening. Doxapram was identified as a potent inhibitor of the TASK-1 channel. In the present study, we investigated the antiarrhythmic efficacy of doxapram in a porcine model of AF. METHODS AND RESULTS Doxapram successfully cardioverted pigs with artificially induced episodes of AF. We established a porcine model of persistent AF in domestic pigs via intermittent atrial burst stimulation using implanted pacemakers. All pigs underwent catheter-based electrophysiological investigations prior to and after 14 d of doxapram treatment. Pigs in the treatment group received intravenous administration of doxapram once per day. In doxapram-treated AF pigs, the AF burden was significantly reduced. After 14 d of treatment with doxapram, TASK-1 currents were still similar to values of sinus rhythm animals. Doxapram significantly suppressed AF episodes and normalized cellular electrophysiology by inhibition of the TASK-1 channel. Patch-clamp experiments on human atrial cardiomyocytes, isolated from patients with and without AF could reproduce the TASK-1 inhibitory effect of doxapram. CONCLUSIONS Repurposing doxapram might yield a promising new antiarrhythmic drug to treat AF in patients. TRANSLATIONAL PERSPECTIVE Pharmacological suppression of atrial TASK 1 potassium currents prolongs atrial refractoriness with no effects on ventricular repolarization, resulting in atrial-specific class III antiarrhythmic effects. In our preclinical pilot study the respiratory stimulant doxapram was successfully administered for cardioversion of acute AF as well as rhythm control of persistent AF in a clinically relevant porcine animal model.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Christoph Beyersdorf
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Xiao-Bo Zhou
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Amelie Paasche
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Natasa Jávorszky
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBB, University of Marburg, Marburg, Germany
| | - Henry Sutanto
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antonius Büscher
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ibrahim El-Battrawy
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Xin Li
- First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Siegfried Lang
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ursula Tochtermann
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jamila Kremer
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBB, University of Marburg, Marburg, Germany
| | - Gunther van Loon
- Department of Large Animal Internal Medicine, Equine Cardioteam, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ibrahim Akin
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Martin Borggrefe
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,First Department of Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Stefan Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany and Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Jordi Heijman
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
149
|
Gök C, Plain F, Robertson AD, Howie J, Baillie GS, Fraser NJ, Fuller W. Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP. Cell Rep 2021; 31:107697. [PMID: 32521252 PMCID: PMC7296346 DOI: 10.1016/j.celrep.2020.107697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The transmembrane sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates cytoplasmic Ca levels by facilitating electrogenic exchange of Ca for Na. Palmitoylation, the only reversible post-translational modification known to modulate NCX1 activity, controls NCX1 inactivation. Here, we show that palmitoylation of NCX1 modifies the structural arrangement of the NCX1 dimer and controls its affinity for lipid-ordered membrane domains. NCX1 palmitoylation occurs dynamically at the cell surface under the control of the enzymes zDHHC5 and APT1. We identify the position of the endogenous exchange inhibitory peptide (XIP) binding site within the NCX1 regulatory intracellular loop and demonstrate that palmitoylation controls the ability of XIP to bind this site. We also show that changes in NCX1 palmitoylation change cytosolic Ca. Our results thus demonstrate the broad molecular consequences of NCX1 palmitoylation and highlight a means to manipulate the inactivation of this ubiquitous ion transporter that could ameliorate pathologies linked to Ca overload via NCX1. NCX1 is dynamically palmitoylated at the cell surface by zDHHC5 and APT1 Palmitoylation modifies the NCX1 dimer’s structure and affinity for lipid rafts We identify the binding site of the endogenous XIP domain in NCX1’s regulatory loop Palmitoylation modifies NCX1 XIP affinity and hence regulates intracellular Ca
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jacqueline Howie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
150
|
Lin FJ, Li SJ, Lu YY, Wu WS, Chen YC, Chen SA, Chen YJ. Toll-like receptor 4 activation modulates pericardium-myocardium interactions in lipopolysaccharide-induced atrial arrhythmogenesis. Europace 2021; 23:1837-1846. [PMID: 33837408 DOI: 10.1093/europace/euab073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Inflammation plays a role in the pathogenesis of atrial fibrillation (AF). Pericarditis enhanced atrial arrhythmogenesis, but the role of the pericardium remains unclear in AF. Activation of the toll-like receptor 4 (TLR4) by binding to lipopolysaccharide (LPS) promotes cardiac electrical remodelling. In this study, we hypothesized that pericarditis may induce atrial arrhythmogenesis via pericardium-myocardium interactions by TLR4 signalling. METHODS AND RESULTS Pericarditis was induced in rabbits by injecting LPS (1-2 mg/kg) into the pericardium. Conventional microelectrodes were used to record the action potentials of left atrial (LA) posterior walls (LAPWs) and LA appendages (LAAs) with and without attached pericardium in the control or pericarditis-induced rabbits. Cytokine array was used to measure the expression levels of proinflammatory cytokines in control and LPS-treated pericardium. Compared with the controls, the LPS-treated pericardium had higher expressions of IL-1α, IL-8, and MIP-1β. Rapid atrial pacing-induced burst firing in LPS-treated LAPWs and LAAs, and in control LAPWs (but not in LAAs). The incidence of pacing-induced spontaneous activity and burst firing was increased by LPS-treated pericardium but was attenuated by the control pericardium. Moreover, burst firing induced by LPS-treated pericardium was blocked upon administration of the TLR4 inhibitor, TAK-242 (100 ng/mL), ryanodine receptor inhibitor (ryanodine, 3 μM), or calmodulin kinase II inhibitor (KN-93, 1 μM). CONCLUSIONS Healthy and inflamed pericardium differently modulate LPS-induced atrial arrhythmogenesis. Targeting pericardium via TLR4 signalling may be a novel therapeutic strategy for AF.
Collapse
Affiliation(s)
- Fong-Jhih Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University Taipei, Taipei Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Shiann Wu
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yao-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|