101
|
Ravanfar P, Namazi G, Atigh M, Zafarmand S, Hamedi A, Salehi A, Izadi S, Borhani-Haghighi A. Efficacy of whole extract of licorice in neurological improvement of patients after acute ischemic stroke. J Herb Med 2016. [DOI: 10.1016/j.hermed.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
102
|
Hakimizadeh E, Kazemi Arababadi M, Shamsizadeh A, Roohbakhsh A, Allahtavakoli M. The Possible Role of Toll-Like Receptor 4 in the Pathology of Stroke. Neuroimmunomodulation 2016; 23:131-136. [PMID: 27287756 DOI: 10.1159/000446481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
Stroke is a prevalent and dangerous health problem, which triggers an intense inflammatory response to Toll-like receptor (TLR) activation. TLRs are the essential components of the response of the innate immunity system, and, therefore, they are one of the key factors involved in recognizing pathogens and internal ligands. Among TLRs, TLR4 significantly participates in the induction of inflammation and brain functions; hence, it has been hypothesized that this molecule is associated with several immune-related brain diseases such as stroke. It has also been proved that animals with TLR4 deficiency have higher protection against ischemia and that the absence of TLR4 reduces neuroinflammation and injuries associated with brain trauma. TLR4 deficiency may play a neuroprotective role in the occurrence of stroke. This article reviews recent information regarding the impact of TLR4 on the pathogenicity of stroke.
Collapse
Affiliation(s)
- Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences,Rafsanjan, Iran
| | | | | | | | | |
Collapse
|
103
|
Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, Guo S, Xu J. MicroRNA-9 Mediates the Cell Apoptosis by Targeting Bcl2l11 in Ischemic Stroke. Mol Neurobiol 2015; 53:6809-6817. [PMID: 26660116 DOI: 10.1007/s12035-015-9605-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Ischemic strokes occur as a result of an obstruction within a blood vessel supplying blood to the brain and accounts for about 87 % of all cases. During the cerebral ischemia, most of the neurons undergo the necrosis and apoptosis upon the exposure to the dramatic blood flow reduction. Although, it is known that both the intrinsic and extrinsic pathways are involved in the neuronal apoptosis of ischemic brain injury. The complex underlying mechanisms remains less known. MicroRNAs are a class of endogenous small non-coding RNAs and the role of miRNAs in the pathophysiology of stroke has been studied. In this study, we found that miR-9 is downregulated in the mice with middle cerebral artery occlusion (MCAO) brain and oxygen-glucose deprivation (OGD) neurons. Application of miR-9 gamer could restore the neurological scores and reduces the infarct volume, brain water content, and the behavioral impairments. Moreover, upregulation of miR-9 suppresses the neuronal apoptosis in MCAO brain and OGD neurons. Furthermore, we identified that Bcl2l11 as the direct target of miR-9 and manipulation of miR-9 induces the corresponding changing of Bcl2l11 protein level. Finally, we found that the protein level of Bcl2l11 is increased in the MCAO brain and OGD neurons. Our study demonstrated the critical role of miR-9 in the neuronal apoptosis of ischemic brain injury.
Collapse
Affiliation(s)
- Na Wei
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Lin Xiao
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Rui Xue
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jun Zhou
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Huayan Ren
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Si Guo
- Clinical Laboratory, Henan Provincial People's Hospital, 7 Wei Wu Road, Zhengzhou, 450000, China.
| | - Jingjing Xu
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
104
|
Brea D, Agulla J, Staes A, Gevaert K, Campos F, Sobrino T, Blanco M, Dávalos A, Castillo J, Ramos-Cabrer P. Study of Protein Expression in Peri-Infarct Tissue after Cerebral Ischemia. Sci Rep 2015; 5:12030. [PMID: 26153530 PMCID: PMC4495553 DOI: 10.1038/srep12030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022] Open
Abstract
In this work, we report our study of protein expression in rat peri-infarct tissue, 48 h after the induction of permanent focal cerebral ischemia. Two proteomic approaches, gel electrophoresis with mass spectrometry and combined fractional diagonal chromatography (COFRADIC), were performed using tissue samples from the periphery of the induced cerebral ischemic lesions, using tissue from the contra-lateral hemisphere as a control. Several protein spots (3408) were identified by gel electrophoresis, and 11 showed significant differences in expression between peri-infarct and contra-lateral tissues (at least 3-fold, p < 0.05). Using COFRADIC, 5412 proteins were identified, with 72 showing a difference in expression. Apart from blood-related proteins (such as serum albumin), both techniques showed that the 70 kDa family of heat shock proteins were highly expressed in the peri-infarct tissue. Further studies by 1D and 2D western blotting and immunohistochemistry revealed that only one member of this family (the inducible form, HSP72 or HSP70i) is specifically expressed by the peri-infarct tissue, while the majority of this family (the constitutive form, HSC70 or HSP70c) is expressed in the whole brain. Our data support that HSP72 is a suitable biomarker of peri-infarct tissue in the ischemic brain.
Collapse
Affiliation(s)
- David Brea
- 1] Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain [2] Cellular and Molecular Neurobiology Research Group and Grup de Recerça en Neurociencies del IGTP, Department of Neurosciences, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias I Pujol-Universitat Autónoma de Barcelona, Badalona, Spain
| | - Jesús Agulla
- 1] Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain [2] Research Unit, University Hospital of Salamanca and Institute of Health Sciences of Castilla and Leon, Salamanca, Spain
| | - An Staes
- 1] Department of Medical Protein Research, VIB, Ghent, Belgium [2] Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- 1] Department of Medical Protein Research, VIB, Ghent, Belgium [2] Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Francisco Campos
- Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain
| | - Tomás Sobrino
- Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain
| | - Miguel Blanco
- Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain
| | - Antoni Dávalos
- Cellular and Molecular Neurobiology Research Group and Grup de Recerça en Neurociencies del IGTP, Department of Neurosciences, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias I Pujol-Universitat Autónoma de Barcelona, Badalona, Spain
| | - José Castillo
- Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain
| | - Pedro Ramos-Cabrer
- Neurology Department, Neurovascular Area, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Spain
| |
Collapse
|
105
|
Igarashi H, Suzuki Y, Huber VJ, Ida M, Nakada T. N-acetylaspartate decrease in acute stage of ischemic stroke: a perspective from experimental and clinical studies. Magn Reson Med Sci 2014; 14:13-24. [PMID: 25500779 DOI: 10.2463/mrms.2014-0039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
N-acetylaspartate (NAA) appears in a prominent peak in proton magnetic resonance spectroscopy ((1)H-MRS) of the brain. Exhibition by NAA of time-dependent attenuation that reflects energy metabolism during the acute stage of cerebral ischemia makes this metabolite a unique biomarker for assessing ischemic stroke. Although magnetic resonance (MR) imaging is a powerful technique for inspecting the pathological changes that occur during ischemic stroke, biomarkers that directly reflect the drastic metabolic changes associated with acute-stage ischemia are strongly warranted for appropriate therapeutic decision-making in daily clinical settings. In this review, we provide a brief overview of NAA metabolism and focus on the use of attenuation in NAA as a means for assessing the pathophysiological changes that occur during the acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata
| | | | | | | | | |
Collapse
|
106
|
Zheng S, Bai YY, Changyi Y, Gao X, Zhang W, Wang Y, Zhou L, Ju S, Li C. Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models. Adv Healthc Mater 2014; 3:1909-18. [PMID: 24898608 DOI: 10.1002/adhm.201400159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Indexed: 12/25/2022]
Abstract
Ischemic stroke accounts for 80% strokes and originates from a reduction of cerebral blood flow (CBF) after vascular occlusion. For treatment, the first action is to restore CBF by thrombolytic agent recombinant tissue-type plasminogen activator (rt-PA). Although rt-PA benefits clinical outcome, its application is limited by short therapeutic time window and risk of brain hemorrhage. Different to thrombolytic agents, neuroprotectants reduce neurological injuries by blocking ischemic cascade events such as excitotoxicity and oxidative stress. Nano-neuroprotectants demonstrate higher therapeutic effect than small molecular analogues due to their prolonged circulation lifetime and disrupted blood-brain barrier (BBB) in ischemic region. Even enhanced BBB permeability in ischemic territories is verified, the pore size of ischemic vasculatures determining how large and how efficient the therapeutics can pass is barely studied. In this work, nanoprobes (NPs) with different diameters are developed. In vivo multimodal imaging indicates that NP uptakes in ischemic region depended on their diameters and the pore size upper limit of ischemic vasculatures is determined as 10-11 nm. Additionally, penumbra defined as salvageable ischemic tissues performed a higher BBB permeability than infarct core. This work provides a guideline for developing nano-neuroprotectants by taking advantage of the locally enhanced BBB permeability in ischemic brain tissues.
Collapse
Affiliation(s)
- Shuyan Zheng
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Ying-Ying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Yinzhi Changyi
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Wenqing Zhang
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Lu Zhou
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology; Zhongda Hospital Medical School of Southeast University; Nanjing 210009 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of Education; School of Pharmacy Fudan University; Shanghai 201203 China
| |
Collapse
|
107
|
Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS One 2014; 9:e106544. [PMID: 25192322 PMCID: PMC4156357 DOI: 10.1371/journal.pone.0106544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor-βs (TGF-βs) regulate cellular proliferation, differentiation, and survival. TGF-βs bind to type I (TGF-βRI) and II receptors (TGF-βRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-βRIII). TGF-β may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-β is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-β1-3 after MCAO. To establish how TGF-βs exert their actions following MCAO, the present study describes the induction of TGF-βRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-βRI had significant expression: neurons in cortical layer IV contained TGF-βRI. At 24 h after the occlusion, no TGF-β receptors showed induction. At 72 h following MCAO, all four types of TGF-β receptors were induced in the infarct area, while TGF-βRI and RII also appeared in the penumbra. Most cells with elevated TGF-βRI mRNA levels were microglia. TGF-βRII co-localized with both microglial and endothelial markers while TGF-βRIII and Alk1 were present predominantly in endothels. All four TGF-β receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-βRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-βRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-β receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-β receptor expression is preceded by increased TGF-β expression. TGF-βRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-βRII, and RIII in endothels within the infarct where TGF-β1 may be their ligand. At later time points, TGF-βRIII may also appear in glial cells to potentially affect signal transduction via TGF-βRI and RII.
Collapse
Affiliation(s)
- Gabriella Pál
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Lovas
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
108
|
Abstract
For many years, brain ischemia has been known to be a leading cause of adult neurological disorder. In particular, many reports have shown that hyperexcitability of neurons and inflammatory response of the glia induced by ischemic reperfusion (I/R) determine the fate of cells in the ischemic core and the penumbra region. Although there are many reports on the activation and roles of signal transducer and activator of transcription (STAT) proteins (STAT1, STAT3, and STAT5) during hyperexcitation in the neuron and inflammation occurring following I/R, the temporal and spatial activation of STAT6 protein in the ischemic cortex still remain elusive. In this study, using a transient rat middle cerebral artery occlusion model, we primarily investigated the time-course expression of the phosphorylated STAT6 (pSTAT6) in the ischemic core region following I/R, which was compared with that of pSTAT3. We found that pSTAT6 significantly decreases at 1 and 12 h following I/R, whereas pSTAT3 markedly increases at each follow-up time point. In addition, the level of pSTAT6 is reduced in the ischemic core in comparison with the penumbra region at 12 h following I/R. However, there is no significant difference in pSTAT3 expression between the ischemic core and the penumbra. Taken together, our data suggest that pSTAT6 and pSTAT3 are modulated differently following I/R during ischemic stroke.
Collapse
|
109
|
Du G, Liu Y, Dang M, Zhu G, Su R, Fan Y, Tan Z, Wang LX, Fang J. Comparison of administration routes for adipose-derived stem cells in the treatment of middle cerebral artery occlusion in rats. Acta Histochem 2014; 116:1075-84. [PMID: 24962764 DOI: 10.1016/j.acthis.2014.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
Given that adult adipose tissue is an abundant, accessible and safe source of stem cells, the use of adipose-derived stem cells (ADSCs) provides a promising approach in ischemic stroke. The delivery route, however, for transplantation of ADSCs in clinical application remains controversial regarding the time window, cell type, safety issues, 'first pass' effect and therapeutic effect. To determine the optimal administration route in transplantation of ADSCs, we compared the therapeutic effect of the three mainly used administration routes of ADSCs in a middle cerebral artery occlusion (MCAO) rat model. Cells isolated from the adipose tissue of adult rodents were differentiated and characterized in vitro, and further transplanted in vivo by intravenous, intra-arterial or intra-ventricular delivery. The infarct volume, expression of neurotrophic factors and the neurobehavioral improvements were evaluated after the equal dose of BrdU labeled ADSCs transplantation. Our results indicated that the equal dose of ADSCs delivered intravenously were effective in improving the neurological outcome and reducing the infarct volume after ischemic brain injury in long term duration in contrast to intra-arterial and intra-ventricular delivery. At 1-7 days after transplantation, the increased expression levels of BDNF, VEGF, bFGF, Bcl-2, IL-10 and decreased levels of caspase-3 and TNF-α in the intra-ventricular and intra-arterial groups were significant in contrast to the intravenous group. There was no significant difference among the three groups after 7 days. Our findings suggest that compared with the intra-ventricular delivery, intravascular injection allows higher dose injection with fewer invasions and appears to be optimal in application with regard to therapeutic efficacy, safety and feasibility.
Collapse
Affiliation(s)
- Guojia Du
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yao Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan, China
| | - Muren Dang
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China.
| | - Guohua Zhu
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Riqing Su
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yandong Fan
- Department of Neurosurgery, The First Teaching Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Zeming Tan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Li Xin Wang
- Department of Neurology, Guang Dong Hospital of Chinese Traditional Medicine, China
| | - Jiasheng Fang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
110
|
Liao LD, Bandla A, Ling JM, Liu YH, Kuo LW, Chen YY, King NKK, Lai HY, Lin YR, Thakor NV. Improving neurovascular outcomes with bilateral forepaw stimulation in a rat photothrombotic ischemic stroke model. NEUROPHOTONICS 2014; 1:011007. [PMID: 26157965 PMCID: PMC4478786 DOI: 10.1117/1.nph.1.1.011007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 05/19/2023]
Abstract
Restoring perfusion to the penumbra during the hyperacute phase of ischemic stroke is a key goal of neuroprotection. Thrombolysis is currently the only approved treatment for ischemic stroke. However, its use is limited by the narrow therapeutic window and side effect of bleeding. Therefore, other interventions are desired that could potentially increase the perfusion of the penumbra. Here, we hypothesized that bilateral peripheral electrical stimulation will improve cerebral perfusion and restore cortical neurovascular response. We assess the outcomes of bilateral forepaw electrical stimulation at intensities of 2 and 4 mA, administered either unilaterally or bilaterally. We developed a combined electrocorticogram (ECoG)-functional photoacoustic microscopy (fPAM) system to evaluate the relative changes in cerebral hemodynamic function and electrophysiologic response to acute, focal stroke. The fPAM system is used for cerebral blood volume (CBV) and hemoglobin oxygen saturation ([Formula: see text]) and the ECoG for neural activity, namely somatosensory-evoked potential (SSEP), interhemispheric coherence, and alpha-delta ratio (ADR) in response to forepaw stimulation. Our results confirmed the neuroprotective effect of bilateral forepaw stimulation at 2 mA as indicated by the 82% recovery of ADR and 95% improvement in perfusion into the region of penumbra. This experimental model can be used to study other potential interventions such as therapeutic hypertension and hypercarbia.
Collapse
Affiliation(s)
- Lun-De Liao
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- Address all correspondence to: Lun-De Liao, E-mail: or
| | - Aishwarya Bandla
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National University of Singapore, Department of Biomedical Engineering, 9 Engineering Drive 1, Block EA #03-12, Singapore 117575, Singapore
| | - Ji Min Ling
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National Neuroscience Institute, Department of Neurosurgery, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yu-Hang Liu
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National University of Singapore, Department of Electrical & Computer Engineering, Block E4, Level 5, Room 45, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Li-Wei Kuo
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - You-Yin Chen
- National Yang Ming University, Department of Biomedical Engineering, No. 155, Sec. 2, Linong St., Taipei, Taiwan 112
| | - Nicolas KK King
- National Neuroscience Institute, Department of Neurosurgery, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hsin-Yi Lai
- Chang Gung Memorial Hospital and Chang Gung University, Department of Physical Medicine and Rehabilitation, Taoyuan 333, Taiwan
| | - Yan-Ren Lin
- Changhua Christian Hospital, Department of Emergency Medicine, 135 Nanshsiao Street, Changhua, Taiwan 500
| | - Nitish V. Thakor
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), 28 Medical Drive, #05-COR, Singapore 117456, Singapore
- National University of Singapore, Department of Biomedical Engineering, 9 Engineering Drive 1, Block EA #03-12, Singapore 117575, Singapore
- National University of Singapore, Department of Electrical & Computer Engineering, Block E4, Level 5, Room 45, 4 Engineering Drive 3, Singapore 117583, Singapore
- Johns Hopkins University, Department of Biomedical Engineering, Traylor 701/720 Rutland Avenue, Baltimore, Maryland 21205
| |
Collapse
|
111
|
Loureiro JA, Gomes B, Coelho MAN, do Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine (Lond) 2014; 9:709-22. [PMID: 24827845 DOI: 10.2217/nnm.14.27] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Development of therapeutics for brain disorders is one of the more difficult challenges to be overcome by the scientific community due to the inability of most molecules to cross the blood-brain barrier (BBB). Antibody-conjugated nanoparticles are drug carriers that can be used to target encapsulated drugs to the brain endothelial cells and have proven to be very promising. They significantly improve the accumulation of the drug in pathological sites and decrease the undesirable side effect of drugs in healthy tissues. We review the systems that have demonstrated promising results in crossing the BBB through receptor-mediated endocytic mechanisms for the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEBABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | | | | | | | | |
Collapse
|
112
|
Campos F, Sobrino T, Blanco M, López-Arias E, Baluja A, Álvarez J, Castillo J. Glutamate neurotoxicity is involved in the neurological damage in patients undergoing extracorporeal circulation. Int J Cardiol 2014; 172:481-3. [PMID: 24467976 DOI: 10.1016/j.ijcard.2014.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco Campos
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Blanco
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurora Baluja
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Julián Álvarez
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Department of Neurology, Neurovascular Area, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
113
|
Agulla J, Brea D, Campos F, Sobrino T, Argibay B, Al-Soufi W, Blanco M, Castillo J, Ramos-Cabrer P. In vivo theranostics at the peri-infarct region in cerebral ischemia. Am J Cancer Res 2013; 4:90-105. [PMID: 24396517 PMCID: PMC3881229 DOI: 10.7150/thno.7088] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/12/2013] [Indexed: 11/05/2022] Open
Abstract
The use of theranostics in neurosciences has been rare to date because of the limitations imposed on the free delivery of substances to the brain by the blood-brain barrier. Here we report the development of a theranostic system for the treatment of stroke, a leading cause of death and disability in developed countries. We first performed a series of proteomic, immunoblotting and immunohistological studies to characterize the expression of molecular biomarkers for the so-called peri-infarct tissue, a key region of the brain for stroke treatment. We confirmed that the HSP72 protein is a suitable biomarker for the peri-infarct region, as it is selectively expressed by at-risk tissue for up to 7 days following cerebral ischemia. We also describe the development of anti-HSP72 vectorized stealth immunoliposomes containing imaging probes to make them traceable by conventional imaging techniques (fluorescence and MRI) that were used to encapsulate a therapeutic agent (citicoline) for the treatment of cerebral ischemia. We tested the molecular recognition capabilities of these nano-platforms in vitro together with their diagnostic and therapeutic properties in vivo, in an animal model of cerebral ischemia. Using MRI, we found that 80% of vectorized liposomes were located on the periphery of the ischemic lesion, and animals treated with citicoline encapsulated on these liposomes presented lesion volumes up to 30% smaller than animals treated with free (non-encapsulated) drugs. Our results show the potential of nanotechnology for the development of effective tools for the treatment of neurological diseases.
Collapse
|
114
|
Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol 2013; 2013:150952. [PMID: 24324497 PMCID: PMC3845517 DOI: 10.1155/2013/150952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β -sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrP(C)). Many lines of evidence suggest that prions (PrP(Sc)) act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrP(Sc) may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, and prion disease). Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.
Collapse
|
115
|
Kheradmand A, Fisher M, Paydarfar D. Ischemic stroke in evolution: predictive value of perfusion computed tomography. J Stroke Cerebrovasc Dis 2013; 23:836-43. [PMID: 23954606 DOI: 10.1016/j.jstrokecerebrovasdis.2013.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/07/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Various perfusion computed tomography (PCT) parameters have been used to identify tissue at risk of infarction in the setting of acute stroke. The purpose of this study was to examine predictive value of the PCT parameters commonly used in clinical practice to define ischemic penumbra. The patient selection criterion aimed to exclude the effect of thrombolysis from the imaging data. METHODS Consecutive acute stroke patients were screened and a total of 18 patients who initially underwent PCT and CT angiogram (CTA) on presentation but did not qualify to receive thrombolytic therapy were selected. The PCT images were postprocessed using a delay-sensitive deconvolution algorithm. All the patients had follow-up noncontrast CT or magnetic resonance imaging to delineate the extent of their infarction. The extent of lesions on PCT maps calculated from mean transit time (MTT), time to peak (TTP), cerebral blood flow, and cerebral blood volume were compared and correlated with the final infarct size. A collateral grading score was used to measure collateral blood supply on the CTA studies. RESULTS The average size of MTT lesions was larger than infarct lesions (P < .05). The correlation coefficient of TTP/infarct lesions (r = .95) was better than MTT/infarct lesions (r = .66) (P = .004). CONCLUSIONS A widely accepted threshold to define MTT lesions overestimates the ischemic penumbra. In this setting, TTP with appropriate threshold is a better predictor of infarct in acute stroke patients. The MTT/TTP mismatch correlates with the status of collateral blood supply to the tissue at risk of infarction.
Collapse
Affiliation(s)
- Amir Kheradmand
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Marc Fisher
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Paydarfar
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
116
|
Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomedicine 2013; 8:951-60. [PMID: 23486739 PMCID: PMC3592553 DOI: 10.2147/ijn.s30721] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neurological diseases represent a medical, social, and economic problem of paramount importance in developed countries. Although their etiology is generally known, developing therapeutic interventions for the central nervous system is challenging due to the impermeability of the blood-brain barrier. Thus, the fight against neurological diseases usually struggles "at the gates" of the brain. Flooding the bloodstream with drugs, where only a minor fraction reaches its target therapeutic site, is an inefficient, expensive, and dangerous procedure, because of the risk of side effects at nontargeted sites. Currently, advances in the field of nanotechnology have enabled development of a generation of multifunctional molecular platforms that are capable of transporting drugs across the blood-brain barrier, targeting specific cell types or functional states within the brain, releasing drugs in a controlled manner, and enabling visualization of processes in vivo using conventional imaging systems. The marriage between drug delivery and molecular imaging disciplines has resulted in a relatively new discipline, known as theranostics, which represents the basis of the concept of personalized medicine. In this study, we review the concepts of the blood-brain barrier and the strategies used to traverse/bypass it, the role of nanotechnology in theranostics, the wide range of nanoparticles (with emphasis on liposomes) that can be used as stealth drug carriers, imaging probes and targeting devices for the treatment of neurological diseases, and the targets and targeting strategies envisaged in the treatment of different types of brain pathology.
Collapse
Affiliation(s)
- Pedro Ramos-Cabrer
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, Health Research Institute of Santiago, Santiago de Compostela, Spain.
| | | |
Collapse
|
117
|
Cheon SY, Cho KJ, Lee JE, Kim HW, Lee SK, Kim HJ, Kim GW. Cerebroprotective effects of red ginseng extract pretreatment against ischemia-induced oxidative stress and apoptosis. Int J Neurosci 2013; 123:269-77. [PMID: 23240589 DOI: 10.3109/00207454.2012.758120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Panax ginseng C.A. Meyer has been traditionally used as a medicinal plant and has beneficial effects due to pharmacological properties. Although ginseng is thought to be protective under abnormal conditions, the effects of pretreatment with red ginseng (RG) extract on ischemic stroke have not been fully elucidated. We investigated the protective effects of RG extract after focal cerebral ischemia in mice. Crude RG extract (360 mg/kg) was administered intraperitoneally for 2 weeks. Mice were then subjected to occlusion of the middle cerebral artery for 1 hour, followed by reperfusion for 4 and 24 hours. Pretreatment with RG extract followed by ischemia/reperfusion (I/R) resulted in significant reduction of oxidized hydroethidine signals in ischemic areas. At 4 and 24 hours after I/R, the number of 8-hydroxyguanosine and apoptosis signal-regulating kinase 1 (ASK1)-positive cells decreased in the ischemic penumbra as seen using immunofluorescent staining. Western blotting showed that RG efficiently attenuated the protein levels of activated ASK1 in the ischemic penumbra. Consequently, DNA fragmentation and the infarct volume were reduced by RG extract pretreatment 24 hours after I/R. Also, RG extract resulted in better performance in rotarod test after I/R. Thus, RG pretreatment demonstrates a protective effect at suppressing ischemia-induced oxidative stress and apoptosis in ischemic lesions. Pretreatment with crude RG extract may be an effective strategy for preventing brain injury after an ischemic stroke.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Neurology, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
118
|
Ramos-Cejudo J, Gutiérrez-Fernández M, Rodríguez-Frutos B, Expósito Alcaide M, Sánchez-Cabo F, Dopazo A, Díez–Tejedor E. Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: a microarray analysis. PLoS One 2012; 7:e52121. [PMID: 23284893 PMCID: PMC3524135 DOI: 10.1371/journal.pone.0052121] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background A large number of genes are regulated to promote brain repair following stroke. The thorough analysis of this process can help identify new markers and develop therapeutic strategies. This study analyzes gene expression following experimental stroke. Methodology/Principal Findings A microarray study of gene expression in the core, periinfarct and contralateral cortex was performed in adult Sprague-Dawley rats (n = 60) after 24 hours (acute phase) or 3 days (delayed stage) of permanent middle cerebral artery (MCA) occlusion. Independent qRT-PCR validation (n = 12) was performed for 22 of the genes. Functional data were evaluated by Ingenuity Pathway Analysis. The number of genes differentially expressed was 2,612 (24 h) and 5,717 (3 d) in the core; and 3,505 (24 h) and 1,686 (3 d) in the periinfarct area (logFC>|1|; adjP<0.05). Expression of many neurovascular unit development genes was altered at 24 h and 3 d including HES2, OLIG2, LINGO1 and NOGO-A; chemokines like CXCL1 and CXCL12, stress-response genes like HIF-1A, and trophic factors like BDNF or BMP4. Nearly half of the detected genes (43%) had not been associated with stroke previously. Conclusions This comprehensive study of gene regulation in the core and periinfarct areas at different times following permanent MCA occlusion provides new data that can be helpful in translational research.
Collapse
Affiliation(s)
- Jaime Ramos-Cejudo
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - Berta Rodríguez-Frutos
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - Mercedes Expósito Alcaide
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Exuperio Díez–Tejedor
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
119
|
Jin X, Liu J, Liu KJ, Rosenberg GA, Yang Y, Liu W. Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Exp Neurol 2012. [PMID: 23195595 DOI: 10.1016/j.expneurol.2012.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normobaric hyperoxia (NBO), which maintains penumbral oxygenation, reduces brain injury during cerebral ischemia, and minocycline, a tetracycline derivative, reduces reperfusion injury, including inflammation, apoptosis and matrix metalloproteinases (MMPs) activation. Since they have different mechanisms of action, we hypothesized that combining them would provide greater neuroprotection. To test the hypothesis, we evaluated the neuroprotective effects of the combination of NBO with minocycline. Male Sprague-Dawley rats were exposed to NBO (95% O(2)) or normoxia (21% O(2)) during 90-min filament occlusion of the middle cerebral artery, followed by 48 h of reperfusion. Minocycline (3 mg/kg) or vehicle was intravenously administered to rats 15 min after reperfusion onset. Treatment with NBO and minocycline alone resulted in 36% and 30% reductions in infarction volume, respectively. When the two treatments were combined, there was a 68% reduction in infarction volume. The combination therapy also significantly reduced hemispheric swelling, which was absent with monotherapy. In agreement with its greater neuro- and vasoprotection, the combination therapy showed greater inhibitory effects on MMP-2/9 induction, occludin degradation, caspase-3 and -9 activation and apoptosis inducing factor (AIF) induction in ischemic brain tissue. Our results show that NBO plus minocycline effectively reduces brain injury in transient focal cerebral ischemia with protection due to inhibition on MMP-2/9-mediated occludin degradation and attenuation of caspase-dependent and independent apoptotic pathways.
Collapse
Affiliation(s)
- Xinchun Jin
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
120
|
Pál G, Vincze C, Renner É, Wappler EA, Nagy Z, Lovas G, Dobolyi A. Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain. PLoS One 2012; 7:e46731. [PMID: 23056426 PMCID: PMC3466286 DOI: 10.1371/journal.pone.0046731] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/03/2012] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-βs (TGF-β1–3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1–3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.
Collapse
Affiliation(s)
- Gabriella Pál
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Csilla Vincze
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edina A. Wappler
- Cardiovascular Center, Department Section of Vascular Neurology, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Nagy
- Cardiovascular Center, Department Section of Vascular Neurology, Semmelweis University, Budapest, Hungary
| | - Gábor Lovas
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Arpád Dobolyi
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
121
|
Liu R, Yuan H, Yuan F, Yang SH. Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res 2012; 34:331-7. [PMID: 22643076 DOI: 10.1179/1743132812y.0000000020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for the treatment of ischemic stroke. In the last two decades, neuroprotective strategy has been evolving from targeting a signal pathway in neurons to protecting all neurovascular components and improving cell-cell and cell-extracellular matrix interaction that ultimately benefits the brain recovery after ischemic stroke. The progression from potentially reversible to irreversible injury in the ischemic penumbra has provided the opportunity to develop therapies to attenuate the ischemic stroke damage. Thus, the ischemic penumbra has been the main target for the current neuroprotective intervention. However, despite our increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found so far for the treatment of ischemic stroke. The current acute neuroprotective approach focusing on the damaging mechanisms at the ischemic penumbra is greatly limited by the rapid evolution of the deleterious cascades in the ischemic penumbra. Neuroprotective intervention attempts to promote endogenous repairing in the transition zone of the penumbra for the therapeutic purposes may overcome the unrealistic therapeutic windows under the current neuroprotective strategy. In addition, increasing evidence has indicated ischemic stroke could induce long-lasing cellular and hemodynamic changes beyond the ischemic territory. It is unclear whether and how the global responses induced by the ischemic cascade contribute to the progression of cognitive impairment after ischemic stroke. The prolonged pathophysiological cascades induced by ischemic stroke beyond the ischemic penumbra might provide novel therapeutic opportunities for the neuroprotective intervention, which could prevent or slow down the progression of vascular dementia after ischemic stroke.
Collapse
Affiliation(s)
- Ran Liu
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
122
|
Zhang L, Zhang ZG, Chopp M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33:415-22. [PMID: 22595494 DOI: 10.1016/j.tips.2012.04.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023]
Abstract
Tissue plasminogen activator (tPA) administered within 4.5h of symptom onset restores cerebral blood flow (CBF) and promotes neurological recovery of stroke patients. However, the narrow therapeutic time window and the risk of intracerebral hemorrhage after tPA treatment pose major hurdles to its clinical usage. In light of the failures of neuroprotective therapies in clinical trials, emerging concepts suggest that neuroprotection alone without restoration of tissue perfusion and vascular integrity may not be adequate for treatment of acute stroke. Here we review evidence of the use of adjuvant pharmacological agents to extend the therapeutic window for tPA via targeting the neurovascular unit and the underlying mechanisms of the combination therapy in experimental stroke.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
123
|
Xu C, Schmidt WU, Galinovic I, Villringer K, Hotter B, Ostwaldt AC, Denisova N, Kellner E, Kiselev V, Fiebach JB. The Potential of Microvessel Density in Prediction of Infarct Growth: A Two-Month Experimental Study in Vessel Size Imaging. Cerebrovasc Dis 2012; 33:303-9. [DOI: 10.1159/000335302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
|
124
|
Bao G, Han Y, Wang M, Xu G. Relationship between cellular apoptosis and the expression of p75 neurotrophin receptor and tyrosine kinase A receptor in tissue surrounding haematoma in intracerebral haemorrhage. J Int Med Res 2011; 39:150-60. [PMID: 21672317 DOI: 10.1177/147323001103900116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular apoptosis and the expression of p75 neurotrophin receptor (p75(NTR)) and tyrosine kinase A receptor (TrkA) were investigated in the tissues surrounding haematoma in patients with intracerebral haemorrhage. Specimens of tissue from near the haematoma (haemorrhagic samples) and tissue from a distant site (control samples) were collected from 14 patients with basal ganglia haemorrhage undergoing surgical intervention. Cellular apoptosis was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling (TUNEL), and p75(NTR) and TrkA location, protein and gene expression were studied using immunohistochemistry, Western blot and real-time polymerase chain reaction, respectively. The percentage of apoptotic cells and expression of p75(NTR), but not of TrkA, were significantly higher in the haemorrhagic samples than in the control samples. There was a positive correlation between the percentage of TUNEL-positive cells and the percentage of p75(NTR)-positive cells. These results suggest that the p75(NTR)-dependent signal transduction pathway plays an important role in apoptosis after intracerebral haemorrhage.
Collapse
Affiliation(s)
- G Bao
- Department of Neurosurgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | | | | | | |
Collapse
|
125
|
Fraser PA. The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 2011; 51:967-77. [PMID: 21712087 DOI: 10.1016/j.freeradbiomed.2011.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/31/2022]
Abstract
The brain endothelium constitutes a barrier to the passive movement of substances from the blood into the cerebral microenvironment, and disruption of this barrier after a stroke or trauma has potentially fatal consequences. Reactive oxygen species (ROS), which are formed during these cerebrovascular accidents, have a key role in this disruption. ROS are formed constitutively by mitochondria and also by the activation of cell receptors that transduce signals from inflammatory mediators, e.g., activated phospholipase A₂ forms arachidonic acid that interacts with cyclooxygenase and lipoxygenase to generate ROS. Endothelial NADPH oxidase, activated by cytokines, also contributes to ROS. There is a surge in ROS following reperfusion after cerebral ischemia and the interaction of the signaling pathways plays a role in this. This review critically evaluates the literature and concludes that the ischemic penumbra is a consequence of the initial edema resulting from the ROS surge after reperfusion.
Collapse
Affiliation(s)
- Paul A Fraser
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London SE19NH, UK.
| |
Collapse
|
126
|
Proceedings of Recent Developments and Future Directions in Stroke Management and Prevention Symposium. Stroke 2011; 42:S1-2. [DOI: 10.1161/strokeaha.110.608802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|