101
|
Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, Pawlak EA, Dhingra R, Noah TL, Jaspers I. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021; 64:126-137. [PMID: 33095645 PMCID: PMC7781000 DOI: 10.1165/rcmb.2020-0164oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function. Clinical trial registered with www.clinicaltrials.gov (NCT 02019745).
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | | | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences
| | | | | | - Adam M Speen
- Curriculum in Toxicology and Environmental Medicine
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, and
| | - Radhika Dhingra
- Institute for Environmental Health Solutions, and.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine.,Institute for Environmental Health Solutions, and
| |
Collapse
|
102
|
Hawkins FJ, Suzuki S, Beermann ML, Barillà C, Wang R, Villacorta-Martin C, Berical A, Jean JC, Le Suer J, Matte T, Simone-Roach C, Tang Y, Schlaeger TM, Crane AM, Matthias N, Huang SXL, Randell SH, Wu J, Spence JR, Carraro G, Stripp BR, Rab A, Sorsher EJ, Horani A, Brody SL, Davis BR, Kotton DN. Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells. Cell Stem Cell 2021; 28:79-95.e8. [PMID: 33098807 PMCID: PMC7796997 DOI: 10.1016/j.stem.2020.09.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/03/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Shingo Suzuki
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Cristina Barillà
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ruobing Wang
- Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jake Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Taylor Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | | | - Yang Tang
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston, MA 02115, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Gianni Carraro
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Department of Medicine, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andras Rab
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J Sorsher
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
103
|
Nemeth J, Schundner A, Frick M. Insights Into Development and Progression of Idiopathic Pulmonary Fibrosis From Single Cell RNA Studies. Front Med (Lausanne) 2020; 7:611728. [PMID: 33392232 PMCID: PMC7772461 DOI: 10.3389/fmed.2020.611728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options. The current model suggests that chronic or repetitive "micro-injuries" of the alveolar epithelium lead to activation and proliferation of fibroblasts and excessive extracellular matrix (ECM) deposition. Disruption of alveolar type II (ATII) epithelial cell homeostasis and the characteristics of mesenchymal cell populations in IPF have received particular attention in recent years. Emerging data from single cell RNA sequencing (scRNAseq) analysis shed novel light on alterations in ATII cell progenitor dysfunction and the diversity of mesenchymal cells within the fibrotic lung. Within this minireview, we summarize the data from most recent human scRNAseq studies. We aim to collate the current knowledge on cellular plasticity and heterogeneity in the development and progression of IPF, effects of drug treatment on transcriptional changes. Finally, we provide a brief outlook on future challenges and promises for large scale sequencing studies in the development of novel therapeutics for IPF.
Collapse
Affiliation(s)
- Julia Nemeth
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Annika Schundner
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
| |
Collapse
|
105
|
Choi SH, Reeves RE, Romano Ibarra GS, Lynch TJ, Shahin WS, Feng Z, Gasser GN, Winter MC, Evans TIA, Liu X, Luo M, Zhang Y, Stoltz DA, Devor EJ, Yan Z, Engelhardt JF. Detargeting Lentiviral-Mediated CFTR Expression in Airway Basal Cells Using miR-106b. Genes (Basel) 2020; 11:E1169. [PMID: 33036232 PMCID: PMC7601932 DOI: 10.3390/genes11101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral-mediated integration of a CFTR transgene cassette into airway basal cells is a strategy being considered for cystic fibrosis (CF) cell-based therapies. However, CFTR expression is highly regulated in differentiated airway cell types and a subset of intermediate basal cells destined to differentiate. Since basal stem cells typically do not express CFTR, suppressing the CFTR expression from the lentiviral vector in airway basal cells may be beneficial for maintaining their proliferative capacity and multipotency. We identified miR-106b as highly expressed in proliferating airway basal cells and extinguished in differentiated columnar cells. Herein, we developed lentiviral vectors with the miR-106b-target sequence (miRT) to both study miR-106b regulation during basal cell differentiation and detarget CFTR expression in basal cells. Given that miR-106b is expressed in the 293T cells used for viral production, obstacles of viral genome integrity and titers were overcome by creating a 293T-B2 cell line that inducibly expresses the RNAi suppressor B2 protein from flock house virus. While miR-106b vectors effectively detargeted reporter gene expression in proliferating basal cells and following differentiation in the air-liquid interface and organoid cultures, the CFTR-miRT vector produced significantly less CFTR-mediated current than the non-miR-targeted CFTR vector following transduction and differentiation of CF basal cells. These findings suggest that miR-106b is expressed in certain airway cell types that contribute to the majority of CFTR anion transport in airway epithelium.
Collapse
Affiliation(s)
- Soon H. Choi
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Rosie E. Reeves
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | | | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Weam S. Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Michael C. Winter
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - T. Idil Apak Evans
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Meihui Luo
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA;
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA;
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (S.H.C.); (R.E.R.); (T.J.L.); (W.S.S.); (Z.F.); (G.N.G.); (M.C.W.); (T.I.A.E.); (X.L.); (M.L.); (Y.Z.); (Z.Y.)
| |
Collapse
|
106
|
Neumark N, Cosme C, Rose KA, Kaminski N. The Idiopathic Pulmonary Fibrosis Cell Atlas. Am J Physiol Lung Cell Mol Physiol 2020; 319:L887-L893. [PMID: 32996785 DOI: 10.1152/ajplung.00451.2020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Nir Neumark
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Cosme
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kadi-Ann Rose
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|