101
|
Inhibition of Klf10 Attenuates Oxidative Stress-Induced Senescence of Chondrocytes via Modulating Mitophagy. Molecules 2023; 28:molecules28030924. [PMID: 36770589 PMCID: PMC9921806 DOI: 10.3390/molecules28030924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease in the elderly. Accumulation of evidence has suggested that chondrocyte senescence plays a significant role in OA development. Here, we show that Krüppel-like factor 10 (Klf10), also named TGFβ inducible early gene-1 (TIEG1), is involved in the pathology of chondrocyte senescence. Knocking down the Klf10 in chondrocytes attenuated the tert-butyl hydroperoxide (TBHP)-induced senescence, inhibited generation of reactive oxygen species (ROS), and maintained mitochondrial homeostasis by activating mitophagy. These findings suggested that knocking down Klf10 inhibited senescence-related changes in chondrocytes and improved cartilage homeostasis, indicating that Klf10 may be a therapeutic target for protecting cartilage against OA.
Collapse
|
102
|
ATOH8 binds SMAD3 to induce cellular senescence and prevent Ras-driven malignant transformation. Proc Natl Acad Sci U S A 2023; 120:e2208927120. [PMID: 36626550 PMCID: PMC9934021 DOI: 10.1073/pnas.2208927120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The process of oncogene-induced senescence (OIS) and the conversion between OIS and malignant transformation during carcinogenesis is poorly understood. Here, we show that following overactivation of oncogene Ras in lung epithelial cells, high-level transforming growth factor β1 (TGF-β1)-activated SMAD3, but not SMAD2 or SMAD4, plays a determinant role in inducing cellular senescence independent of the p53/p16/p15 senescence pathways. Importantly, SMAD3 binds a potential tumor suppressor ATOH8 to form a transcriptional complex that directly represses a series of cell cycle-promoting genes and consequently causes senescence in lung epithelial cells. Interestingly, the prosenescent SMAD3 converts to being oncogenic and essentially facilitates oncogenic Ras-driven malignant transformation. Furthermore, depleting Atoh8 rapidly accelerates oncogenic Ras-driven lung tumorigenesis, and lung cancers driven by mutant Ras and Atoh8 loss, but not by mutant Ras only, are sensitive to treatment of a specific SMAD3 inhibitor. Moreover, hypermethylation of the ATOH8 gene can be found in approximately 12% of clinical lung cancer cases. Together, our findings demonstrate not only epithelial cellular senescence directed by a potential tumor suppressor-controlled transcriptional program but also an important interplay between the prosenescent and transforming effects of TGF-β/SMAD3, potentially laying a foundation for developing early detection and anticancer strategies.
Collapse
|
103
|
Tian Z, Khan AI, Rehman AU, Deng T, Ma C, Wang L. Virulence factors and mechanisms of paediatric pneumonia caused by Enterococcus faecalis. Gut Pathog 2023; 15:2. [PMID: 36624474 PMCID: PMC9830894 DOI: 10.1186/s13099-022-00522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Paediatric pneumonia is a respiratory infection that affects infants and young children under the age of 3. This disease is the leading cause of infant and child mortality in developing countries because of the weak immune system of young children. The difficulty and length of time required to identify the pathogen and causative agent are the main reasons for this high mortality rate. In addition, the identification of certain causative agents is particularly important for the treatment of paediatric pneumonia. In this study, we explored the possible mechanisms by which pathogenic Enterococcus faecalis induced pneumonia in vivo. The potential virulence factors of bacteria isolated from the intestines of paediatric pneumonia patients were determined. Taken together, the results suggested that lysophosphatidic acid (LTA) from pathogenic E. faecalis decreases the expression of platelet-activating factor receptor (PAFR), which in turn disrupts the function of intestinal tight junctions (Occ and Ccldn1), leading to the entry of LE-LTA into the bloodstream because of the disruption of the intestinal barrier. Although LTA can enter circulation, it cannot directly infiltrate the lungs, which indicates that lung inflammation in mice is not caused by the direct entry of LE-LTA into the lungs. We further found that LTA activates immune cells, such as CD8 + T cells and type 2 innate lymphocytes, in vivo. Interleukin-6 and interleukin-17 can produce large amounts of inflammatory factors and thus promote the development of pneumonia. In conclusion, our findings demonstrate that the LTA of pathogenic E. faecalis in the intestine is a virulence factor that can cause paediatric pneumonia. This study found that intestinal bacterial virulence factors can induce immune responses in the lungs and blood. These findings could provide further insight into the mechanism of infectious diseases in the lung that are caused by bacteria in the intestine.
Collapse
Affiliation(s)
- Zhiying Tian
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Asif Iqbal Khan
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Ata Ur Rehman
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Ting Deng
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Chao Ma
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Liang Wang
- National Joint Engineering Laboratory, Regenerative Medicine Centre, Stem Cell Clinical Research Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
104
|
Dhanabalan KM, Dravid AA, Agarwal S, Sharath RK, Padmanabhan AK, Agarwal R. Intra-articular injection of rapamycin microparticles prevent senescence and effectively treat osteoarthritis. Bioeng Transl Med 2023; 8:e10298. [PMID: 36684078 PMCID: PMC9842044 DOI: 10.1002/btm2.10298] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Trauma to the knee joint is associated with significant cartilage degeneration and erosion of subchondral bone, which eventually leads to osteoarthritis (OA), resulting in substantial morbidity and healthcare burden. With no disease-modifying drugs in clinics, the current standard of care focuses on symptomatic relief and viscosupplementation. Modulation of autophagy and targeting senescence pathways are emerging as potential treatment strategies. Rapamycin has shown promise in OA disease amelioration by autophagy upregulation, yet its clinical use is hindered by difficulties in achieving therapeutic concentrations, necessitating multiple weekly injections. Rapamycin-loaded in poly(lactic-co-glycolic acid) microparticles (RMPs) induced autophagy, prevented senescence, and sustained sulphated glycosaminoglycans production in primary human articular chondrocytes from OA patients. RMPs were potent, nontoxic, and exhibited high retention time (up to 35 days) in mice joints. Intra-articular delivery of RMPs effectively mitigated cartilage damage and inflammation in surgery-induced OA when administered as a prophylactic or therapeutic regimen. Together, the study demonstrates the feasibility of using RMPs as a potential clinically translatable therapy to prevent the progression of post-traumatic OA.
Collapse
Affiliation(s)
- Kaamini M. Dhanabalan
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | - Ameya A. Dravid
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | - Smriti Agarwal
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| | | | | | - Rachit Agarwal
- Centre for BioSystems Science and EngineeringIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
105
|
Hu S, Shen C, Yao X, Zou Y, Wang T, Sun X, Nie M. m6A regulator-mediated methylation modification patterns and immune microenvironment infiltration characterization in osteoarthritis. BMC Med Genomics 2022; 15:273. [PMID: 36585683 PMCID: PMC9805027 DOI: 10.1186/s12920-022-01429-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis (OA) is a common disease in orthopedics. RNA N6-methyladenosine (m6A) exerts an essential effect in a variety of biological processes in the eukaryotes. In this study, we determined the effect of m6A regulators in the OA along with performing the subtype classification. Differential analysis of OA and normal samples in the database of Gene Expression Omnibus identified 9 significantly differentially expressed m6A regulators. These regulators were monitored by a random forest algorithm so as to evaluate the risk of developing OA disease. On the basis of these 9 moderators, a nomogram was established. The results of decision curve analysis suggested that the patients could benefit from a nomogram model. The OA sample was classified as 2 m6A models through a consensus clustering algorithm in accordance with these 9 regulators. These 2 m6A patterns were then assessed with principal component analysis. We also determined the m6A scores for the 2 m6A patterns and their correlation with immune infiltration. The results indicated that type A had a higher m6A score than type B. Thus, we suggest that the m6A pattern may provide a new approach for diagnose and provide novel ideas for molecular targeted therapy of OA.
Collapse
Affiliation(s)
- Shidong Hu
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| | - Chen Shen
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| | - Xudong Yao
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| | - Yulong Zou
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| | - Ting Wang
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| | - Xianding Sun
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| | - Mao Nie
- grid.412461.40000 0004 9334 6536Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
106
|
Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nat Commun 2022; 13:7658. [PMID: 36496445 PMCID: PMC9741608 DOI: 10.1038/s41467-022-35424-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Sirt6 has been implicated as a key regulator in aging-related diseases, including osteoarthritis. However, its functional role and molecular mechanism in chondrocyte senescence and osteoarthritis pathophysiology remain largely undefined. Here we show that Sirt6 deficiency exaggerates chondrocyte senescence and osteoarthritis progression, whereas intra-articular injection of adenovirus-Sirt6 markedly attenuates surgical destabilization of medial meniscus-induced osteoarthritis. Mechanistically, Sirt6 can directly interact with STAT5 and deacetylate STAT5, thus inhibiting the IL-15/JAK3-induced STAT5 translocation from cytoplasm to nucleus, which inactivates IL-15/JAK3/STAT5 signaling. Mass spectrometry revealed that Sirt6 deacetylated conserved lysine 163 on STAT5. Mutation of lysine 163 to arginine in STAT5 abolished the regulatory effect of Sirt6. In vivo, specific ablation of Sirt6 in chondrocytes exacerbated osteoarthritis. Pharmacological activation of Sirt6 substantially alleviated chondrocyte senescence. Taken together, Sirt6 attenuates chondrocyte senescence by inhibiting IL-15/JAK3/STAT5 signaling. Targeting Sirt6 represents a promising new approach for osteoarthritis.
Collapse
|
107
|
Wen M, Ying Y, Xiao X, Arnold PR, Wang G, Chu X, Ghobrial RM, Li XC. Ox40-Cre-mediated deletion of BRD4 reveals an unexpected phenotype of hair follicle stem cells in alopecia. JCI Insight 2022; 7:e164534. [PMID: 36256455 PMCID: PMC9746908 DOI: 10.1172/jci.insight.164534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
BRD4 is a bromodomain extraterminal domain family member and functions primarily as a chromatin reader regulating genes involved in cell-fate decisions. Here, we bred Brd4fl/fl Ox40-Cre mice in which Brd4 was conditionally deleted in OX40-expressing cells to examine the role of BRD4 in regulating immune responses. We found that the Brd4fl/fl Ox40-Cre mice developed profound alopecia and dermatitis, while other organs and tissues were not affected. Surprisingly, lineage-tracing experiments using the Rosa26fl/fl-Yfp mice identified a subset of hair follicle stem cells (HFSCs) that constitutively express OX40, and deletion of Brd4 specifically in such HFSCs resulted in cell death and a complete loss of skin hair growth. We also found that death of HFSCs triggered massive activation of the intradermal γδ T cells, which induced epidermal hyperplasia and dermatitis by producing the inflammatory cytokine IL-17. Interestingly, deletion of Brd4 in Foxp3+ Tregs, which also constitutively express OX40, compromised their suppressive functions, and this, in turn, contributed to the enhanced activation of γδ T cells, as well as the severity of dermatitis and hair follicle destruction. Thus, our data demonstrate an unexpected role of BRD4 in regulating skin follicle stem cells and skin inflammation.
Collapse
Affiliation(s)
- Mou Wen
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuanlin Ying
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
| | - Xiang Xiao
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
| | - Preston R. Arnold
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
| | - Xiufeng Chu
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
| | - Rafik M. Ghobrial
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Xian C. Li
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
108
|
Liu Y, Zhang Z, Li T, Xu H, Zhang H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther 2022; 24:174. [PMID: 35869508 PMCID: PMC9306208 DOI: 10.1186/s13075-022-02859-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage degenerative disease, and chondrocyte senescence has been extensively studied in recent years. Increased numbers of senescent chondrocytes are found in OA cartilage. Selective clearance of senescent chondrocytes in a post-traumatic osteoarthritis (PTOA) mouse model ameliorated OA development, while intraarticular injection of senescent cells induced mouse OA. However, the means and extent to which senescence affects OA remain unclear. Here, we review the latent mechanism of senescence in OA and propose potential therapeutic methods to target OA-related senescence, with an emphasis on immunotherapies. Natural killer (NK) cells participate in the elimination of senescent cells in multiple organs. A relatively comprehensive discussion is presented in that section. Risk factors for OA are ageing, obesity, metabolic disorders and mechanical overload. Determining the relationship between known risk factors and senescence will help elucidate OA pathogenesis and identify optimal treatments.
Collapse
|
109
|
Zhang J, Wang AX, Wu Y, Zhang S. IL-1 receptor antagonist (IL-1RA) suppresses a hyper-IL-17 response-mediated bone loss in a murine experimental periodontitis. Arch Oral Biol 2022; 144:105555. [DOI: 10.1016/j.archoralbio.2022.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
110
|
Vaamonde-García C, Capelo-Mera E, Flórez-Fernández N, Torres MD, Rivas-Murias B, Mejide-Faílde R, Blanco FJ, Domínguez H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int J Mol Sci 2022; 23:14236. [PMID: 36430716 PMCID: PMC9698873 DOI: 10.3390/ijms232214236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis, one of the most common joint degenerative pathologies, still has no cure, and current treatments, such as nonsteroidal anti-inflammatory drugs, can cause serious adverse effects when taken for a long time. Brown seaweed crude fucoidans are used for the clinical treatment of several pathologies. In this study, the therapeutical potential of these biocompounds was analyzed in primary chondrocytes and the 260TT human chondrocyte cell line. Crude fucoidan from Undaria pinnatifida (Up) and Sargassum muticum (Sm) was obtained by different extraction techniques (microwave-assisted extraction, pressurized hot-water extraction, ultrasound-assisted extraction) and chemically and structurally characterized by Fourier transform infrared spectroscopy, high-performance size-exclusion chromatography, proton nuclear magnetic resonance, and scanning electron microscopy. Once cell viability was confirmed in chondrocytes treated with crude fucoidans, we evaluated their anti-inflammatory effects, observing a significant reduction in IL-6 production stimulated by IL-1β. Findings were confirmed by analysis of IL-6 and IL-8 gene expression, although only fucoidans from Up achieved a statistically significant reduction. Besides this, the antioxidant capacity of crude fucoidans was observed through the upregulation of Nrf-2 levels and the expression of its transcriptional target genes HO-1 and SOD-2, with compounds from Up again showing a more consistent effect. However, no evidence was found that crude fucoidans modulate senescence, as they failed to reduced β-galactosidase activity, cell proliferation, or IL-6 production in chondrocytes stimulated with etoposide. Thus, the findings of this research seem to indicate that the tested crude fucoidans are capable of partially alleviating OA-associated inflammation and oxidative stress, but fail to attenuate chondrocyte senescence.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Emma Capelo-Mera
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Noelia Flórez-Fernández
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - María Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Rosa Mejide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
111
|
Jin S, Wang Y, Qie C, Yang L, Wu Y, Zhang T, Di J, Liu J. Single-Cell RNA Sequencing Reveals the Immune Cell Profiling in IMQ Induced Psoriasis-Like Model. J Inflamm Res 2022; 15:5999-6012. [PMID: 36330167 PMCID: PMC9626250 DOI: 10.2147/jir.s379349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Psoriasis is a chronic systemic inflammatory skin disease with a high recurrence rate. The immune response plays an important role in psoriasis. However, the subsets of immune cells involved in inflammation in psoriatic mice have not been fully studied. This study showed the immune environment characteristics of psoriasis in mice. METHODS We used single-cell RNA sequencing (10× Genomics) as an unbiased analytical strategy to investigate the heterogeneity of skin immune cells in imiquimod-induced psoriasis mice systematically. RESULTS We identified 10 major clusters and their marker genes among 14,439 cells. The proportions of macrophages, NK/T cells, conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) were increased in psoriatic mice. Macrophages were the largest group and were further divided into 7 subgroups, and all macrophage clusters were increased in psoriatic mice. Differentially expressed genes in control versus psoriatic mice skin lesions showed that Fcgr4, Saa3 and Acp5 in macrophages, Acp5, Fcgr4 and Ms4a6d in NK/T cells, Saa3 in cDCs, and Ifitm1 in pDCs were upregulated in psoriasis mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis emphasized the role of oxidative phosphorylation signals and antigen processing and presentation signals in murine psoriasis-like models. CONCLUSION Our study reveals the immune environment characteristics of the commonly used IMQ induced psoriasis-like models and provides a systematic insight into the immune response of mice with psoriasis, which is conducive to comparing the similarities and differences between the mouse model and human psoriasis.
Collapse
Affiliation(s)
- Shasha Jin
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yixin Wang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chenxin Qie
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Lu Yang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yinhao Wu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tingting Zhang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Jianwen Di
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China,Correspondence: Jun Liu, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China, Tel +86-25-83271043, Fax +86-25-83271142, Email
| |
Collapse
|
112
|
Tang H, Zhu W, Cao L, Zhang J, Li J, Ma D, Guo C. miR-210-3p protects against osteoarthritis through inhibiting subchondral angiogenesis by targeting the expression of TGFBR1 and ID4. Front Immunol 2022; 13:982278. [PMID: 36263050 PMCID: PMC9575949 DOI: 10.3389/fimmu.2022.982278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive subchondral angiogenesis is a key pathological feature of osteoarthritis (OA), as it alters the balance of subchondral bone remodeling and causes progressive cartilage degradation. We previously found that miR-210-3p correlates negatively with angiogenesis, though the specific mechanism of miR-210-3p-related angiogenesis in subchondral bone during OA progression remains unclear. This study was conducted to identify the miR-210-3p-modulating subchondral angiogenesis mechanism in OA and investigate its therapeutic effect. We found that miR-210-3p expression correlated negatively with subchondral endomucin positive (Emcn+) vasculature in the knee joints of OA mice. miR-210-3p overexpression regulated the angiogenic ability of endothelial cells (ECs) under hypoxic conditions in vitro. Mechanistically, miR-210-3p inhibited ECs angiogenesis by suppressing transforming growth factor beta receptor 1 (TGFBR1) mRNA translation and degrading DNA-binding inhibitor 4 (ID4) mRNA. In addition, TGFBR1 downregulated the expression of ID4. Reduced ID4 levels led to a negative feedback regulation of TGFBR1, enhancing the inhibitory effect of miR-210-3p on angiogenesis. In OA mice, miR-210-3p overexpression in ECs via adeno-associated virus (AAV) alleviated cartilage degradation, suppressed the type 17 immune response and relieved symptoms by attenuating subchondral Emcn+ vasculature and subchondral bone remodeling. In conclusion, we identified a miR-210-3p/TGFBR1/ID4 axis in subchondral ECs that modulates OA progression via subchondral angiogenesis, representing a potential OA therapy target.
Collapse
Affiliation(s)
- Han Tang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenrun Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juncheng Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Changan Guo, ; Duan Ma,
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Changan Guo, ; Duan Ma,
| |
Collapse
|
113
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
114
|
Cao M, Ong MTY, Yung PSH, Tuan RS, Jiang Y. Role of synovial lymphatic function in osteoarthritis. Osteoarthritis Cartilage 2022; 30:1186-1197. [PMID: 35487439 DOI: 10.1016/j.joca.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteoarthritis (OA) affects the entire joint, initially with a low degree of inflammation. Synovitis is correlated with the severity of OA clinical symptoms and cartilage degradation. The synovial lymphatic system (SLS) plays a prominent role in clearing macromolecules within the joint, including the pro-inflammatory cytokines in arthritic status. Scattered evidence shows that impaired SLS drainage function leads to the accumulation of inflammatory factors in the joint and aggravates the progression of OA, and the role of SLS function in OA is less studied. DESIGN This review summarizes the current understanding of synovial lymphatic function in OA progression and potential regulatory pathways and aims to provide a framework of knowledge for the development of OA treatments targeting lymphatic structure and functions. RESULTS SLS locates in the subintima layer of the synovium and consists of lymphatic capillaries and lymphatic collecting vessels. Vascular endothelial growth factor C (VEGF-C) is the most critical regulating factor of lymphatic endothelial cells (LECs) and SLS. Nitric oxide production-induced impairment of lymphatic muscle cells (LMCs) and contractile function may attribute to drainage dysfunction. Preclinical evidence suggests that promoting lymphatic drainage may help restore intra-articular homeostasis to attenuate the progression of OA. CONCLUSION SLS is actively involved in the homeostatic maintenance of the joint. Understanding the drainage function of the SLS at different stages of OA development is essential for further design of therapies targeting the function of these vessels.
Collapse
Affiliation(s)
- M Cao
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - M T Y Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - P S H Yung
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - R S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y Jiang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
115
|
L'Hôte V, Mann C, Thuret JY. From the divergence of senescent cell fates to mechanisms and selectivity of senolytic drugs. Open Biol 2022; 12:220171. [PMID: 36128715 PMCID: PMC9490338 DOI: 10.1098/rsob.220171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cellular stress response that involves prolonged cell survival, a quasi-irreversible proliferative arrest and a modification of the transcriptome that sometimes includes inflammatory gene expression. Senescent cells are resistant to apoptosis, and if not eliminated by the immune system they may accumulate and lead to chronic inflammation and tissue dysfunction. Senolytics are drugs that selectively induce cell death in senescent cells, but not in proliferative or quiescent cells, and they have proved a viable therapeutic approach in multiple mouse models of pathologies in which senescence is implicated. As the catalogue of senolytic compounds is expanding, novel survival strategies of senescent cells are uncovered, and variations in sensitivity to senolysis between different types of senescent cells emerge. We propose herein a mechanistic classification of senolytic drugs, based on the level at which they target senescent cells: directly disrupting BH3 protein networks that are reorganized upon senescence induction; downregulating survival-associated pathways essential to senescent cells; or modulating homeostatic processes whose regulation is challenged in senescence. With this approach, we highlight the important diversity of senescent cells in terms of physiology and pathways of apoptosis suppression, and we describe possible avenues for the development of more selective senolytics.
Collapse
Affiliation(s)
- Valentin L'Hôte
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Carl Mann
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| |
Collapse
|
116
|
Torrance BL, Haynes L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front Immunol 2022; 13:1006710. [PMID: 36119079 PMCID: PMC9473698 DOI: 10.3389/fimmu.2022.1006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging. Many of these age-related changes can impair the normal function of the respiratory system and its capability to respond appropriately to potential pathogens that are encountered daily. In this review, we aim to establish the effects of cellular senescence on the disruption of normal lung function with aging and describe how these effects compound to leave an aged respiratory system at great risk when exposed to a pathogen. We will also discuss the role cellular senescence may play in the inability of most vaccines to confer protection against respiratory infections when administered to older adults. We posit that cellular senescence may be the point of convergence of many age-related immunological declines. Enhanced investigation into this area could provide much needed insight to understand the aging immune system and how to effectively ameliorate responses to pathogens that continue to disproportionately harm this vulnerable population.
Collapse
Affiliation(s)
| | - Laura Haynes
- UConn Center on Aging and Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
117
|
Mao R, Wang Y, Wang F, Zhou L, Yan S, Lu S, Shi W, Zhang Y. Identification of Four Biomarkers of Human Skin Aging by Comprehensive Single Cell Transcriptome, Transcriptome, and Proteomics. Front Genet 2022; 13:881051. [PMID: 36081986 PMCID: PMC9445490 DOI: 10.3389/fgene.2022.881051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Aging is characterized by the gradual loss of physiological integrity, resulting in impaired function and easier death. This deterioration is a major risk factor for major human pathological diseases, including cancer, diabetes, cardiovascular disease and neurodegenerative diseases. It is very important to find biomarkers that can prevent aging.Methods: Q-Exactive-MS was used for proteomic detection of young and senescence fibroblast. The key senescence-related molecules (SRMs) were identified by integrating transcriptome and proteomics from aging tissue/cells, and the correlation between these differentially expressed genes and well-known aging-related pathways. Next, we validated the expression of these molecules using qPCR, and explored the correlation between them and immune infiltrating cells. Finally, the enriched pathways of the genes significantly related to the four differential genes were identified using the single cell transcriptome.Results: we first combined proteomics and transcriptome to identified four SRMs. Data sets including GSE63577, GSE64553, GSE18876, GSE85358, and qPCR confirmed that ETF1, PLBD2, ASAH1, and MOXD1 were identified as SRMs. Then the correlation between SRMs and aging-related pathways was excavated and verified. Next, we verified the expression of SRMs at the tissue level and qPCR, and explored the correlation between them and immune infiltrating cells. Finally, at the single-cell transcriptome level, we verified their expression and explored the possible pathway by which they lead to aging. Briefly, ETF1 may affect the changes of inflammatory factors such as IL-17, IL-6, and NFKB1 by indirectly regulating the enrichment and differentiation of immune cells. MOXD1 may regulate senescence by affecting the WNT pathway and changing the cell cycle. ASAH1 may affect development and regulate the phenotype of aging by affecting cell cycle-related genes.Conclusion: In general, based on the analysis of proteomics and transcriptome, we identified four SRMs that may affect aging and speculated their possible mechanisms, which provides a new target for preventing aging, especially skin aging.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Sha Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yiya Zhang, ; Wei Shi,
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yiya Zhang, ; Wei Shi,
| |
Collapse
|
118
|
Gil TH, Zheng H, Lee HG, Shin JW, Hwang SW, Jang KM, Jeon OH. Senolytic drugs relieve pain by reducing peripheral nociceptive signaling without modifying joint tissue damage in spontaneous osteoarthritis. Aging (Albany NY) 2022; 14:6006-6027. [PMID: 35951358 PMCID: PMC9417227 DOI: 10.18632/aging.204204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Aging is a risk factor for the development of osteoarthritis (OA), a progressive joint disease leading to cartilage damage, pain, and loss of function. In a mouse model of OA, senolytic drugs to selectively clear senescent cells (SnCs) that accumulate with injury or aging yielded a chondroprotective effect; however, this therapeutic benefit was limited in aged mice. Due to inconsistency between cartilage destruction and pain-associated symptoms, we studied the therapeutic effect of senolytics on joint pain in spontaneous OA. We orally treated 21- and 22-month old mice with an ABT263 and Dasatinib and Quercetin (D+Q) drug combination. Selective elimination of the SnCs that accumulated in the articular cartilage and synovium by these two drugs did not alter cartilage degeneration and abnormal bone changes during spontaneous OA progression. Treatment reduced thermal and mechanical hyperalgesia associated with OA and peripheral sensitization through decreased expression of axon guidance proteins (nerve growth factor NGF/TrkA) and nociceptive neuron (calcitonin gene-related peptide, CGRP) projection to the synovium, subchondral bone marrow, and dorsal root ganglion, and knee joint angiogenesis. Selective removal of the SnCs from in vitro cultures of synovial cells from human OA patients also decreased expression of senescent markers, axonal growth-promoting factors, such as NGF, and angiogenesis markers. We suggest that systemic administration of ABT263 and D+Q is an exciting therapeutic approach to age-related OA pain.
Collapse
Affiliation(s)
- Tae-Hwan Gil
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.,Department of Physiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hyo Gyeong Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Won Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.,Department of Physiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
119
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 500] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
120
|
Chin AF, Elisseeff JH. Senescent cells in tissue engineering. Curr Opin Biotechnol 2022; 76:102737. [PMID: 35660479 DOI: 10.1016/j.copbio.2022.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Tissue engineers have long worked to develop cells, biomaterial matrices, and signaling molecules designed to restore or promote the repair of lost or damaged tissue. Senescent cells (SnCs), that is, cells that have entered permanent cell-cycle arrest, exert powerful cell non-autonomous effects on their local environments. As such, SnCs influence cell fates and pathologies in adult tissue, including in settings where tissue engineers have directed their efforts. Here, we compare transient SnCs in tissue repair, contrasted with chronic SnCs in osteoarthritic pathology and the foreign-body response. Then, we discuss recent advances in strategies to control the presence and downstream effects of SnCs in tissues, such as immunomodulatory biomaterials, human trials of senolytic molecules, and senescent-cell-directed CAR-T therapy.
Collapse
Affiliation(s)
- Alexander F Chin
- Translational Tissue Engineering Center, Department of Biomedical Engineering and Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Department of Biomedical Engineering and Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
121
|
Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9043300. [PMID: 35785145 PMCID: PMC9246600 DOI: 10.1155/2022/9043300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Background Knee osteoarthritis (KOA) is a common degenerative joint disease. In this study, we aimed to identify new biomarkers of KOA to improve the accuracy of diagnosis and treatment. Methods GSE98918 and GSE51588 were downloaded from the Gene Expression Omnibus database as training sets, with a total of 74 samples. Gene differences were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Disease Ontology enrichment analyses for the differentially expressed genes (DEGs), and GSEA enrichment analysis was carried out for the training gene set. Through least absolute shrinkage and selection operator regression analysis, the support vector machine recursive feature elimination algorithm, and gene expression screening, the range of DEGs was further reduced. Immune infiltration analysis was carried out, and the prediction results of the combined biomarker logistic regression model were verified with GSE55457. Results In total, 84 DEGs were identified through differential gene expression analysis. The five biomarkers that were screened further showed significant differences in cartilage, subchondral bone, and synovial tissue. The diagnostic accuracy of the model synthesized using five biomarkers through logistic regression was better than that of a single biomarker and significantly better than that of a single clinical trait. Conclusions CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 might be used as novel biomarkers to improve the accuracy of KOA disease diagnosis, monitor disease progression, and improve the efficacy of clinical treatment.
Collapse
|
122
|
Liu G, He G, Zhang J, Zhang Z, Wang L. Identification of SCRG1 as a Potential Therapeutic Target for Human Synovial Inflammation. Front Immunol 2022; 13:893301. [PMID: 35720295 PMCID: PMC9204521 DOI: 10.3389/fimmu.2022.893301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 01/15/2023] Open
Abstract
Synovial inflammation of joint tissue is the most important cause of tissue damage, joint destruction, and disability and is associated with higher morbidity or mortality. Therefore, this study aims to identify key genes in osteoarthritis synovitis tissue to increase our understanding of the underlying mechanisms of osteoarthritis and identify new therapeutic targets. Five GEO datasets with a total of 41 normal synovial membrane tissues and 45 osteoarthritis synovial membrane samples were used for analysis, and seven common differential genes were identified. The classification model constructed by LASSO analysis showed that six genes including CDKN1A, FOSB, STMN2, SLC2A3, TAC, and SCRG1 can be used as biomarkers of osteoarthritis, and the SCRG1 gene shows importance in osteoarthritis. Furthermore, drug database enrichment found that these six DEGs may be the drug targets of synovitis in osteoarthritis, and Valproic Acid CTD 00006977 may be a potential targeted therapeutic drug of SCRG1. Spearman correlation analysis was performed on the SCRG1 gene, and 27 genes with consistent expression were obtained. Functional analysis showed that 27 genes were mainly involved in metabolism, complement, antigen presentation, apoptosis, and regulation of immune pathways. The co-regulatory network of TFs-miRNA suggested that the SCRG1 gene may be regulated by hsa-miR-363-3p miRNA. In conclusion, SCRG1, as a diagnostic marker of osteoarthritis, co-regulates immune-related pathways through the interaction of related proteins, playing an important role in the occurrence and development of osteoarthritis, which may be a novel drug target.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of Orthopedics, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Guisong He
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Zhang
- Department of Orthopedics, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Department of Orthopedics, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
123
|
Jiang N, Xing B, Peng R, Shang J, Wu B, Xiao P, Lin S, Xu X, Lu H. Inhibition of Cpt1a alleviates oxidative stress-induced chondrocyte senescence via regulating mitochondrial dysfunction and activating mitophagy. Mech Ageing Dev 2022; 205:111688. [PMID: 35728631 DOI: 10.1016/j.mad.2022.111688] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022]
Abstract
Osteoarthritis (OA) is an age-related chronic degenerative disease, and chondrocyte senescence has been established to play an important role in the pathological process. There is ample evidence to suggest that lipid metabolism plays an important role in the aging process. However, the effect of lipid metabolism on chondrocyte senescence and OA remains unclear. Accordingly, we constructed a TBHP-induced senescent chondrocytes model and a destabilization of the medial meniscus (DMM) mouse model. We found that lipid accumulation and fatty acid oxidation were enhanced in senescent chondrocytes. Interestingly, carnitine palmitoyltransferase 1A (Cpt1a), the rate-limiting enzyme for fatty acid oxidation, was highly expressed in senescent chondrocytes and murine knee cartilage tissue. Suppressing Cpt1a expression using siRNA or Etomoxir, an inhibitor of Cpt1a, could attenuate oxidative stress-induced premature senescence and OA phenotype of primary murine chondrocytes, decrease cellular ROS levels, restore mitochondrial function, and maintain mitochondrial homeostasis via activating mitophagy. In vivo, pharmacological inhibition of Cpt1a by Etomoxir attenuated cartilage destruction, relieved joint space narrowing and osteophyte formation in the DMM mouse model. Overall, these findings suggested that knockdown of Cpt1a alleviated chondrocyte senescence by regulating mitochondrial dysfunction and promoting mitophagy, providing a new therapeutic strategy and target for OA treatment.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Baizhou Xing
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Rong Peng
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Peilun Xiao
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Shiyuan Lin
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Xianghe Xu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
124
|
Tang S, Cao Y, Cai Z, Nie X, Ruan J, Zhou Z, Ruan G, Zhu Z, Han W, Ding C. The lncRNA PILA promotes NF-κB signaling in osteoarthritis by stimulating the activity of the protein arginine methyltransferase PRMT1. Sci Signal 2022; 15:eabm6265. [PMID: 35609127 DOI: 10.1126/scisignal.abm6265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory cytokine-induced activation of nuclear factor κB (NF-κB) signaling plays a critical role in the pathogenesis of osteoarthritis (OA). We identified PILA as a long noncoding RNA (lncRNA) that enhances NF-κB signaling and OA. The abundance of PILA was increased in damaged cartilage from patients with OA and in human articular chondrocytes stimulated with the proinflammatory cytokine tumor necrosis factor (TNF). Knockdown of PILA inhibited TNF-induced NF-κB signaling, extracellular matrix catabolism, and apoptosis in chondrocytes, whereas ectopic expression of PILA promoted NF-κB signaling and matrix degradation. PILA promoted PRMT1-mediated arginine methylation of DExH-box helicase 9 (DHX9), leading to an increase in the transcription of the gene encoding transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of NF-κB signaling. Furthermore, intra-articular injection of an adenovirus vector encoding PILA triggered spontaneous cartilage loss and exacerbated posttraumatic OA in mice. This study provides insight into the regulation of NF-κB signaling in OA and identifies a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Yumei Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Zhaopeng Cai
- Department of Orthopedics, Eighth Affiliated Hospital, Sun Yat-sen University, 518033 Shenzhen, Guangdong, China
| | - Xiaoyu Nie
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Zuoqing Zhou
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Department of Orthopedics, First Affiliated Hospital, Shaoyang University, 422099 Shaoyang, Hunan, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, 7000 Hobart, Tasmania, Australia
| |
Collapse
|
125
|
Kim C, Lee SG, Lim S, Jung M, Kwon SP, Hong J, Kang M, Sohn HS, Go S, Moon S, Lee SJ, Kim JS, Kim BS. A Senolytic-Eluting Coronary Stent for the Prevention of In-Stent Restenosis. ACS Biomater Sci Eng 2022; 8:1921-1929. [PMID: 35416659 DOI: 10.1021/acsbiomaterials.1c01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The vast majority of drug-eluting stents (DES) elute either sirolimus or one of its analogues. While limus drugs stymie vascular smooth muscle cell (VSMC) proliferation to prevent in-stent restenosis, their antiproliferative nature is indiscriminate and limits healing of the endothelium in stented vessels, increasing the risk of late-stent thrombosis. Oxidative stress, which is associated with vascular injury from stent implantation, can induce VSMCs to undergo senescence, and senescent VSMCs can produce pro-inflammatory cytokines capable of inducing proliferation of neighboring nonsenescent VSMCs. We explored the potential of senolytic therapy, which involves the selective elimination of senescent cells, in the form of a senolytic-eluting stent (SES) for interventional cardiology. Oxidative stress was modeled in vitro by exposing VSMCs to H2O2, and H2O2-mediated senescence was evaluated by cytochemical staining of senescence-associated β-galactosidase activity and qRT-PCR. Quiescent VSMCs were then treated with the conditioned medium (CM) of H2O2-treated VSMCs. Proliferative effects of CM were analyzed by staining for proliferating cell nuclear antigen. Senolytic effects of the first-generation senolytic ABT263 were observed in vitro, and the effects of ABT263 on endothelial cells were also investigated through an in vitro re-endothelialization assay. SESs were prepared by dip coating. Iliofemoral arteries of hypercholesteremic rabbits were implanted with SES, everolimus-eluting stents (EESs), or bare-metal stents (BMSs), and the area of stenosis was measured 4 weeks post-implantation using optical coherence tomography. We found that a portion of H2O2-treated VSMCs underwent senescence, and that CM of H2O2-treated senescent VSMCs triggered the proliferation of quiescent VSMCs. ABT263 reverted H2O2-mediated senescence and the proliferative capacity of senescent VSMC CM. Unlike everolimus, ABT263 did not affect endothelial cell migration and/or proliferation. SES, but not EES, significantly reduced stenosis area in vivo compared with bare-metal stents (BMSs). This study shows the potential of SES as an alternative to current forms of DES.
Collapse
Affiliation(s)
- Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul-Gee Lee
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Jun Lee
- Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Sun Kim
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
126
|
Conway J, Certo M, Lord JM, Mauro C, Duggal NA. Understanding the role of host metabolites in the induction of immune senescence: Future strategies for keeping the ageing population healthy. Br J Pharmacol 2022; 179:1808-1824. [PMID: 34435354 DOI: 10.1111/bph.15671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham and University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
127
|
Vincent TL, Alliston T, Kapoor M, Loeser RF, Troeberg L, Little CB. Osteoarthritis Pathophysiology: Therapeutic Target Discovery may Require a Multifaceted Approach. Clin Geriatr Med 2022; 38:193-219. [PMID: 35410676 PMCID: PMC9107912 DOI: 10.1016/j.cger.2021.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular understanding of osteoarthritis (OA) has greatly increased through careful analysis of tissue samples, preclinical models, and large-scale agnostic "-omic" studies. There is broad acceptance that systemic and biomechanical signals affect multiple tissues of the joint, each of which could potentially be targeted to improve patient outcomes. In this review six experts in different aspects of OA pathogenesis provide their independent view on what they believe to be good tractable approaches to OA target discovery. We conclude that molecular discovery has been high but future transformative studies require a multidisciplinary holistic approach to develop therapeutic strategies with high clinical efficacy.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mohit Kapoor
- Department of Surgery and Laboratory Medicine and Pathobiology, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Richard F Loeser
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Troeberg
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, UK
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute University of Sydney Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
128
|
Astrike-Davis EM, Coryell P, Loeser RF. Targeting cellular senescence as a novel treatment for osteoarthritis. Curr Opin Pharmacol 2022; 64:102213. [PMID: 35447516 DOI: 10.1016/j.coph.2022.102213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Cellular senescence is associated with normal development and wound healing, but has also been implicated in the pathogenesis of numerous aging-related diseases including osteoarthritis (OA). Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of the senescence-associated secretory phenotype (SASP). The field of potential therapies continues to expand as new mechanistic targets of cell senescence and the SASP are identified. Ongoing pre-clinical and clinical studies of drugs targeting cellular senescence yield significant promise, but have yet to demonstrate long-term efficacy. Therapeutic targeting of senescence is challenged by the diverse phenotypes of senescent cells, which can vary depending on age, species, tissue source, and type of physiologic stressor. Accordingly, there remains considerable demand for more studies to further develop and assess senotherapeutics as disease-modifying treatments for OA.
Collapse
Affiliation(s)
- Emma M Astrike-Davis
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Philip Coryell
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, The Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
129
|
Zhang W, Deng X, Liu H, Ke J, Xiang M, Ma Y, Zhang L, Yang M, Liu Y, Huang F. Identification and Verification of Potential Hub Genes in Amphetamine-Type Stimulant (ATS) and Opioid Dependence by Bioinformatic Analysis. Front Genet 2022; 13:837123. [PMID: 35432486 PMCID: PMC9006114 DOI: 10.3389/fgene.2022.837123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Amphetamine-type stimulant (ATS) and opioid dependencies are chronic inflammatory diseases with similar symptoms and common genomics. However, their coexpressive genes have not been thoroughly investigated. We aimed to identify and verify the coexpressive hub genes and pathway involved in the pathogenesis of ATS and opioid dependencies. Methods: The microarray of ATS- and opioid-treatment mouse models was obtained from the Gene Expression Omnibus database. GEO2R and Venn diagram were performed to identify differentially expressed genes (DEGs) and coexpressive DEGs (CDEGs). Functional annotation and protein–protein interaction network detected the potential functions. The hub genes were screened using the CytoHubba and MCODE plugin with different algorithms, and further validated by receiver operating characteristic analysis in the GSE15774 database. We also validated the hub genes mRNA levels in BV2 cells using qPCR. Result: Forty-four CDEGs were identified between ATS and opioid databases, which were prominently enriched in the PI3K/Akt signaling pathway. The top 10 hub genes were mainly enriched in apoptotic process (CD44, Dusp1, Sgk1, and Hspa1b), neuron differentiation, migration, and proliferation (Nr4a2 and Ddit4), response to external stimulation (Fos and Cdkn1a), and transcriptional regulation (Nr4a2 and Npas4). Receiver operating characteristic (ROC) analysis found that six hub genes (Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, and Nr4a2) have an area under the curve (AUC) of more than 0.70 in GSE15774. The mRNA levels of Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, PI3K, and Akt in BV2 cells and GSE15774 with METH and heroin treatments were higher than those of controls. However, the Nr4a2 mRNA levels increased in BV2 cells and decreased in the bioinformatic analysis. Conclusions: The identification of hub genes was associated with ATS and opioid dependencies, which were involved in apoptosis, neuron differentiation, migration, and proliferation. The PI3K/Akt signaling pathway might play a critical role in the pathogenesis of substance dependence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaodong Deng
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huan Liu
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ke
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Mingliang Xiang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Zhang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ming Yang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Criminal Investigation, Nanchong Municipal Public Security Bureau, Nanchong, China
| | - Yun Liu
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| |
Collapse
|
130
|
Cytokine-Induced Senescence in the Tumor Microenvironment and Its Effects on Anti-Tumor Immune Responses. Cancers (Basel) 2022; 14:cancers14061364. [PMID: 35326515 PMCID: PMC8946098 DOI: 10.3390/cancers14061364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
In contrast to surgical excision, chemotherapy or radiation therapy, immune checkpoint blockade therapies primarily influence cells in the tumor microenvironment, especially the tumor-associated lymphocytes and antigen-presenting cells. Besides complete remission of tumor lesions, in some patients, early tumor regression is followed by a consolidation phase where residing tumors remain dormant. Whereas the cytotoxic mechanisms of the regression phase (i.e., apoptosis, necrosis, necroptosis, and immune cell-mediated cell death) have been extensively described, the mechanisms underlying the dormant state are still a matter of debate. Here, we propose immune-mediated induction of senescence in cancers as one important player. Senescence can be achieved by tumor-associated antigen-specific T helper 1 cells, cytokines or antibodies targeting immune checkpoints. This concept differs from cytotoxic treatment, which often targets the genetic makeup of cancer cells. The immune system's ability to establish "defensive walls" around tumors also places the tumor microenvironment into the fight against cancer. Those "defensive walls" isolate the tumor cells instead of increasing the selective pressure. They also keep the tumor cells in a non-proliferating state, thereby correcting the derailed tissue homeostasis. In conclusion, strengthening the senescence surveillance of tumors by the immune cells of the microenvironment is a future goal to dampen this life-threatening disease.
Collapse
|
131
|
Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing. Osteoarthritis Cartilage 2022; 30:475-480. [PMID: 34971754 PMCID: PMC10097426 DOI: 10.1016/j.joca.2021.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To reveal the heterogeneity of different cell types of osteoarthritis (OA) synovial tissues at a single-cell resolution, and determine by novel methodology whether bulk-RNA-seq data could be deconvoluted to create in silico scRNA-seq data for synovial tissue analyses. METHODS OA scRNA-seq data (102,077 synoviocytes) were provided by 17 patients undergoing total knee arthroplasty; 9 tissues with matched scRNA-seq and bulk RNA-seq data were used to evaluate six in silico gene deconvolution tools. Predicted and observed cell types and proportions were compared to identify the best deconvolution tool for synovium. RESULTS We identified seven distinct cell types in OA synovial tissues. Gene deconvolution identified three (of six) platforms as suitable for extrapolating cellular gene expression from bulk RNA-seq data. Using paired scRNA-seq and bulk RNA-seq data, an "arthritis" specific signature matrix was created and validated to have a significantly better predictive performance for synoviocytes than a default signature matrix. Use of the machine learning tool, Cell-type Identification By Estimating Relative Subsets of RNA Transcripts x (CIBERSORTx), to analyze rheumatoid arthritis (RA) and OA bulk RNA-seq data yielded proportions of T cells and fibroblasts that were similar to the gold standard observations from RA and OA scRNA-seq data, respectively. CONCLUSION This novel study revealed heterogeneity of synovial cell types in OA and the feasibility of gene deconvolution for synovial tissue.
Collapse
|
132
|
Zhu R, Wan H, Yang H, Song M, Chai Y, Yu B. The Role of Senescence-Associated Secretory Phenotype in Bone Loss. Front Cell Dev Biol 2022; 10:841612. [PMID: 35223858 PMCID: PMC8864518 DOI: 10.3389/fcell.2022.841612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
As the population of most nations have a large proportion of older individuals, there is an increase in the prevalence of osteoporosis. Consequently, scientists have focused their attention on the pathogenic mechanisms of osteoporosis. Owing to an increase in studies on cellular senescence in recent years, research has begun to focus on the function of the senescent microenvironment in osteoporosis. With chronic inflammation, senescent cells in the bone marrow secrete a series of factors known as senescence-associated secretory phenotype (SASP) factors, acting on their own or surrounding healthy cells and consequently exacerbating ageing.The components of the SASP may differ depending on the cause of osteoporosis. This review aimed to summarize the relationship between SASP factors and osteoporosis and suggest new insights into the mechanistic investigation of osteoporosis.
Collapse
Affiliation(s)
- Runjiu Zhu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyang Wan
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Chai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
133
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
134
|
Wu CJ, Liu RX, Huan SW, Tang W, Zeng YK, Zhang JC, Yang J, Li ZY, Zhou Y, Zha ZG, Zhang HT, Liu N. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Res Ther 2022; 24:59. [PMID: 35227288 PMCID: PMC8883702 DOI: 10.1186/s13075-022-02747-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) has been recognized as an age-related degenerative disease commonly seen in the elderly that affects the whole “organ” including cartilage, subchondral bone, synovium, and muscles. An increasing number of studies have suggested that the accumulation of senescent cells triggering by various stresses in the local joint contributes to the pathogenesis of age-related diseases including OA. In this review, we mainly focus on the role of the senescent skeletal cells (chondrocytes, osteoblasts, osteoclasts, osteocyte, and muscle cells) in initiating the development and progression of OA alone or through cross-talk with the macrophages/synovial cells. Accordingly, we summarize the current OA-targeted therapies based on the abovementioned theory, e.g., by eliminating senescent skeletal cells and/or inhibiting the senescence-associated secretory phenotype (SASP) that drives senescence. Furthermore, the existing animal models for the study of OA from the perspective of senescence are highlighted to fill the gap between basic research and clinical applications. Overall, in this review, we systematically assess the current understanding of cellular senescence in OA, which in turn might shed light on the stratified OA treatments.
Collapse
Affiliation(s)
- Chong-Jie Wu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Song-Wei Huan
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jun-Cheng Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jie Yang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Ying Zhou
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
135
|
Xu Y, Xue S, Zhang T, Jin X, Wang C, Lu H, Zhong Y, Chen H, Zhu L, Ma J, Sang W. Toddalolactone protects against osteoarthritis by ameliorating chondrocyte inflammation and suppressing osteoclastogenesis. Chin Med 2022; 17:18. [PMID: 35123541 PMCID: PMC8817519 DOI: 10.1186/s13020-022-00576-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoarthritis (OA) is widely recognized as the most common chronic joint disease accompanied by progressive cartilage and subchondral bone damage. Toddalolactone (TOD), a natural compound extracted from Toddalia asiatica (L.) Lam., has been widely used in the treatment of stroke, rheumatoid arthritis, and oedema. Nevertheless, what TOD acts as in the pathogenesis and progression of OA hasn’t been reported. In this investigation, we have aimed to determine how TOD affects OA in vitro and in vivo. Methods LPS (10 µg/ml) and IL-1β (10 ng/ml) were employed to induce chondrocyte inflammation or RANKL to induce osteoclast differentiation in bone marrow derived macrophages (BMMs). The effects of TOD on chondrocyte inflammation and osteoclast differentiation were evaluated. Anterior cruciate ligament transection (ACLT) was performed to develop an OA animal model and study the effects of TOD. Results We found that TOD inhibited the expression of inflammatory and catabolic mediators (IL-6, IL-8, TNF-α, MMP2, MMP9, and MMP13) in inflammatory chondrocytes in vitro. Furthermore, TOD was proven to inhibit RANKL-induced-osteoclastogenesis and inhibit the expression of osteoclast marker genes. Our data also confirmed that TOD suppressed the destruction of articular cartilage and osteoclastogenesis via inhibiting the activation of NF-κB and MAPK signalling pathways. In the ACLT mouse model, we found that TOD attenuated cartilage erosion and inhibited bone resorption. Conclusions These results showed that TOD can be adopted as a potential therapeutic agent for OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00576-w.
Collapse
|
136
|
Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage 2022; 30:207-215. [PMID: 34801671 DOI: 10.1016/j.joca.2021.11.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/02/2023]
Abstract
This year in review on osteoarthritis biology summarizes a series of research articles published between the 2020 and 2021 Osteoarthritis Research Society International (OARSI) World Congress. Research hightlights were selected and discussed based on the new discoveries of OA's cellular molecular mechanism, anatomical signatures, potential therapeutic targets, and regenerative therapy. The recently developed potential therapeutic targets are summarized, and the research focuses on TGFβ and WNT signaling in joint tissue homeostasis, joint aging and the dynamic of synolytics in OA joint, and the roles of TRP2, LDHA, OSCAR in cartilage homeostasis and OA joints are highlighted. Subsquencially, new anatomical structures and OA features are introduced, such as synovitis-induced venous portal circulation, horiozontal fissures between cartilage and subchondral bone, the cellular derivation of osteophytes formation, OA subtypes, and subchondral remodeling and pain biology. Then, research on the possibility of tissue regeneration in OA joints are discussed; skeletal stem cells in OA cartilage regeneration, and preclinical results of regenerative therapy for meniscus tear and osteochondral tissue morphoghesis are included. At last, the clinical evidence of the importance of delivery site of bone marrow stem cells for OA treatment is discussed. These findings represent advances in our understanding of OA pathophysiology.
Collapse
Affiliation(s)
- Y Jiang
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
137
|
Kwon DG, Kim MK, Jeon YS, Nam YC, Park JS, Ryu DJ. State of the Art: The Immunomodulatory Role of MSCs for Osteoarthritis. Int J Mol Sci 2022; 23:1618. [PMID: 35163541 PMCID: PMC8835711 DOI: 10.3390/ijms23031618] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton's jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, 22332 Inhang-ro 27, Jung-gu, Incheon 22332, Korea; (D.G.K.); (M.K.K.); (Y.S.J.); (Y.C.N.); (J.S.P.)
| |
Collapse
|
138
|
Liu W, Chen Y, Zeng G, Yang S, Yang T, Ma M, Song W. Single-Cell Profiles of Age-Related Osteoarthritis Uncover Underlying Heterogeneity Associated With Disease Progression. Front Mol Biosci 2022; 8:748360. [PMID: 35083277 PMCID: PMC8784753 DOI: 10.3389/fmolb.2021.748360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: Osteoarthritis (OA) is the most common chronic degenerative joint disease, which represents the leading cause of age-related disability. Here, this study aimed to depict the intercellular heterogeneity of OA synovial tissues. Methods: Single-cell RNA sequencing (scRNA-seq) data were preprocessed and quality controlled by the Seurat package. Cell cluster was presented and cell types were annotated based on the mRNA expression of corresponding marker genes by the SingleR package. Cell-cell communication was assessed among different cell types. After integrating the GSE55235 and GSE55457 datasets, differentially expressed genes were identified between OA and normal synovial tissues. Then, differentially expressed marker genes were overlapped and their biological functions were analyzed. Results: Totally, five immune cell subpopulations were annotated in OA synovial tissues including macrophages, dendritic cells, T cells, monocytes and B cells. Pseudo-time analysis revealed the underlying evolution process in the inflammatory microenvironment of OA synovial tissue. There was close crosstalk between five cell types according to the ligand-receptor network. The genetic heterogeneity was investigated between OA and normal synovial tissues. Furthermore, functional annotation analysis showed the intercellular heterogeneity across immune cells in OA synovial tissues. Conclusion: This study offered insights into the heterogeneity of OA, which provided in-depth understanding of the transcriptomic diversities within synovial tissue. This transcriptional heterogeneity may improve our understanding on OA pathogenesis and provide potential molecular therapeutic targets for OA.
Collapse
Affiliation(s)
- Wenzhou Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuting Yang
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Weidong Song, ; Mengjun Ma,
| | - Weidong Song
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weidong Song, ; Mengjun Ma,
| |
Collapse
|
139
|
Li Y, Kong C, Wang B, Sun W, Chen X, Zhu W, Ding J, Lu S. Identification of differentially expressed genes in mouse paraspinal muscle in response to microgravity. Front Endocrinol (Lausanne) 2022; 13:1020743. [PMID: 36313746 PMCID: PMC9611771 DOI: 10.3389/fendo.2022.1020743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Lower back pain (LBP) is the primary reason leading to dyskinesia in patients, which can be experienced by people of all ages. Increasing evidence have revealed that paraspinal muscle (PSM) degeneration (PSMD) is a causative contributor to LBP. Current research revealed that fatty infiltration, tissue fibrosis, and muscle atrophy are the characteristic pathological alterations of PSMD, and muscle atrophy is associated with abnormally elevated oxidative stress, reactive oxygen species (ROS) and inflammation. Interestingly, microgravity can induce PSMD and LBP. However, studies on the molecular mechanism of microgravity in the induction of PSMD are strongly limited. This study identified 23 differentially expressed genes (DEGs) in the PSM (longissimus dorsi) of mice which were flown aboard the Bion M1 biosatellite in microgravity by bioinformatics analysis. Then, we performed protein-protein interaction, Gene Ontology function, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the DEGs. We found that Il6ra, Tnfaip2, Myo5a, Sesn1, Lcn2, Lrg1, and Pik3r1 were inflammatory genes; Fbox32, Cdkn1a, Sesn1, and Mafb were associated with muscle atrophy; Cdkn1a, Sesn1, Lcn2, and Net1 were associated with ROS; and Sesn1 and Net1 were linked to oxidative stress. Furthermore, Lcn2, Fbxo32, Cdkn1a, Pik3r1, Sesn1, Net1, Il6ra, Myo5a, Lrg1, and Pfkfb3 were remarkably upregulated, whereas Tnfaip2 and Mafb were remarkably downregulated in PSMD, suggesting that they might play a significant role in regulating the occurrence and development of PSMD. These findings provide theoretical basis and therapeutic targets for the treatment of PSMD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baobao Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Sun
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiguo Zhu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junzhe Ding
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Shibao Lu,
| |
Collapse
|
140
|
Cho Y, Jeong S, Kim H, Kang D, Lee J, Kang SB, Kim JH. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 2021; 53:1689-1696. [PMID: 34848838 PMCID: PMC8640059 DOI: 10.1038/s12276-021-00710-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology, several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Yongsik Cho
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Sumin Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Department of Business Administration, Business School, Seoul National University, Seoul, 08826 South Korea
| | - Hyeonkyeong Kim
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Donghyun Kang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Jeeyeon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Boramae Hospital, Seoul, 07061, South Korea.
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
141
|
Prediction of Rhizoma Drynariae Targets in the Treatment of Osteoarthritis Based on Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5233462. [PMID: 34840589 PMCID: PMC8616695 DOI: 10.1155/2021/5233462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Rhizoma Drynariae has been widely used for the treatment of osteoarthritis (OA), but its potential targets and molecular mechanisms remain to be further explored. Targets of Rhizoma Drynariae and OA were predicted by relevant databases, and a protein-protein interaction (PPI) network was constructed to identify key targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to obtain related pathways and then select significant pathways associated with OA. The OA chondrocyte model was established by inflammatory factor-induced SW1353 chondrocytes, and molecular docking was conducted to verify the above theoretical prediction. The results showed that a total of 86 Rhizoma Drynariae-OA interaction targets were identified, among which IL-6 and AKT1 were the key targets in the PPI network. Luteolin was the most critical component of Rhizoma Drynariae. KEGG results indicated that the effects of Rhizoma Drynariae on OA are associated with the PI3K/AKT, TNF, IL-17, apoptosis, and HIF-1 signaling pathway. The PI3K/AKT pathway can activate the downstream NF-κB pathway and further regulate the transcription and expression of downstream IL-6, IL-17, HIF-1α, Bax, and TNF, suggesting that the PI3K/AKT/NF-κB pathway is the critical pathway in the treatment of OA with Rhizoma Drynariae. Active components of Rhizoma Drynariae and key proteins of the PI3K/AKT/NF-κB signaling pathway were subjected to molecular docking, whose results showed that luteolin and IKK-α played a critical role. In vitro experiments indicated that both aqueous extracts of Rhizoma Drynariae (AERD) and luteolin inhibited the expression of IL-6 and HIF-1α and suppressed the activation of PI3K/AKT/NF-κB, IL-17, and TNF pathways. The measurement of mitochondrial membrane potential (Δψm) indicated that AERD and luteolin can decrease the LPS-induced early apoptotic cells. Luteolin had a more prominent inhibitory effect than AERD in the abovementioned in vitro experiments. In conclusion, the therapeutic mechanism of Rhizoma Drynariae against OA may be closely related to the inhibition of the PI3K/AKT/NF-κB pathway and downstream pathways, and luteolin plays a vital role in the treatment.
Collapse
|
142
|
Kim-Wang SY, Holt AG, McGowan AM, Danyluk ST, Goode AP, Lau BC, Toth AP, Wittstein JR, DeFrate LE, Yi JS, McNulty AL. Immune cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries. Arthritis Res Ther 2021; 23:280. [PMID: 34736523 PMCID: PMC8567695 DOI: 10.1186/s13075-021-02661-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) and meniscus tears are common knee injuries. Despite the high rate of post-traumatic osteoarthritis (PTOA) following these injuries, the contributing factors remain unclear. In this study, we characterized the immune cell profiles of normal and injured joints at the time of ACL and meniscal surgeries. Methods Twenty-nine patients (14 meniscus-injured and 15 ACL-injured) undergoing ACL and/or meniscus surgery but with a normal contralateral knee were recruited. During surgery, synovial fluid was aspirated from both normal and injured knees. Synovial fluid cells were pelleted, washed, and stained with an antibody cocktail consisting of fluorescent antibodies for cell surface proteins. Analysis of immune cells in the synovial fluid was performed by polychromatic flow cytometry. A broad spectrum immune cell panel was used in the first 10 subjects. Based on these results, a T cell-specific panel was used in the subsequent 19 subjects. Results Using the broad spectrum immune cell panel, we detected significantly more total viable cells and CD3 T cells in the injured compared to the paired normal knees. In addition, there were significantly more injured knees with T cells above a 500-cell threshold. Within the injured knees, CD4 and CD8 T cells were able to be differentiated into subsets. The frequency of total CD4 T cells was significantly different among injury types, but no statistical differences were detected among CD4 and CD8 T cell subsets by injury type. Conclusions Our findings provide foundational data showing that ACL and meniscus injuries induce an immune cell-rich microenvironment that consists primarily of T cells with multiple T helper phenotypes. Future studies investigating the relationship between immune cells and joint degeneration may provide an enhanced understanding of the pathophysiology of PTOA following joint injury.
Collapse
Affiliation(s)
- Sophia Y Kim-Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Abigail G Holt
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa M McGowan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie T Danyluk
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Adam P Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian C Lau
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alison P Toth
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - John S Yi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
143
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
144
|
Feng M, Liu W, Ding J, Qiu Y, Chen Q. Sonic Hedgehog Induces Mesenchymal Stromal Cell Senescence-Associated Secretory Phenotype and Chondrocyte Apoptosis in Human Osteoarthritic Cartilage. Front Cell Dev Biol 2021; 9:716610. [PMID: 34646822 PMCID: PMC8502980 DOI: 10.3389/fcell.2021.716610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Hedgehog (HH) signaling plays a critical role in osteoarthritis (OA) pathogenesis, but the molecular mechanism remains to be elucidated. We show here that Sonic Hedgehog (SHH) gene expression is initiated in human normal cartilage stromal cells (NCSC) and increased in OA cartilage mesenchymal stromal cells (OA-MSCs) during aging. Manifesting a reciprocal cellular distribution pattern, the SHH receptors PTCH1 and SMO and transcription factors GLI2 and GLI3 are expressed by chondrocytes (OAC) in OA cartilage. SHH autocrine treatment of osteoarthritis MSC stimulates proliferation, chondrogenesis, hypertrophy, and replicative senescence with elevated SASP gene expression including IL1B, IL6, CXCL1, and CXCL8. SHH paracrine treatment of OAC suppresses COL2A1, stimulates MMP13, and induces chondrocyte apoptosis. The OA-MSC conditioned medium recapitulates the stimulatory effects of SHH on OAC catabolism and apoptosis. SHH knock-down in OA-MSC not only inhibits catabolic and senescence marker expression in OA-MSC, but also abolishes the effect of the OA-MSC conditioned medium on OAC catabolism and apoptosis. We propose that SHH is a key mediator between OA-MSC and OA chondrocytes interaction in human OA cartilage via two mechanisms: (1) SHH mediates MSC growth and aging by activating not only its proliferation and chondrogenesis, but also low-grade inflammation and replicative senescence, and (2) SHH mediates OA-MSC-induced OAC catabolism and apoptosis by creating a pro-inflammatory microenvironment favoring tissue degeneration during OA pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
145
|
Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9:41. [PMID: 34508069 PMCID: PMC8433460 DOI: 10.1038/s41413-021-00164-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging insights into cellular senescence highlight the relevance of senescence in musculoskeletal disorders, which represent the leading global cause of disability. Cellular senescence was initially described by Hayflick et al. in 1961 as an irreversible nondividing state in in vitro cell culture studies. We now know that cellular senescence can occur in vivo in response to various stressors as a heterogeneous and tissue-specific cell state with a secretome phenotype acquired after the initial growth arrest. In the past two decades, compelling evidence from preclinical models and human data show an accumulation of senescent cells in many components of the musculoskeletal system. Cellular senescence is therefore a defining feature of age-related musculoskeletal disorders, and targeted elimination of these cells has emerged recently as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration of the skeleton and skeletal muscles. In this review, we summarize evidence of the role of senescent cells in the maintenance of bone homeostasis during childhood and their contribution to the pathogenesis of chronic musculoskeletal disorders, including osteoporosis, osteoarthritis, and sarcopenia. We highlight the diversity of the senescent cells in the microenvironment of bone, joint, and skeletal muscle tissue, as well as the mechanisms by which these senescent cells are involved in musculoskeletal diseases. In addition, we discuss how identifying and targeting senescent cells might positively affect pathologic progression and musculoskeletal system regeneration.
Collapse
|
146
|
Xie J, Wang Y, Lu L, Liu L, Yu X, Pei F. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 2021; 70:101413. [PMID: 34298194 DOI: 10.1016/j.arr.2021.101413] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is the inability of cells to proliferate, which has both beneficial and detrimental effects on tissue development and homeostasis. Chronic accumulation of senescent cells is associated with age-related disease, including osteoarthritis, a common joint disease responsible for joint pain and disability in older adults. The pathology of this disease includes loss of cartilage, synovium inflammation, and subchondral bone remodeling. Senescent cells are present in the cartilage of people with advanced osteoarthritis, but the link between cellular senescence and this disease is unclear. In this review, we summarize current evidence for the role of cellular senescence of different cell types in the onset and progression of osteoarthritis. We focus on the underlying mechanisms of senescence in chondrocytes, which maintain the cartilage in joints, and review the role of the Forkhead family of transcription factors, which are involved in cartilage maintenance and osteoarthritis. Finally, we discuss the potential therapeutic value and implications of targeting senescent cells using senolytic agents or immune therapies, targeting the senescence-associated secretory phenotype of these cells using senomorphic agents, and renewing the plasticity of stem cells and chondrocytes. Our review highlights current gaps in understanding of the mechanism of senescence that may, when addressed, provided new options for modifying and treating disease in osteoarthritis.
Collapse
|
147
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
148
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
149
|
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol 2021; 22:97-111. [PMID: 34099898 DOI: 10.1038/s41577-021-00557-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.
Collapse
Affiliation(s)
- Elisa Carrasco
- Departamento de Biología, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gabriela Desdín-Micó
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan Francisco Aranda
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maria Mittelbrunn
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
150
|
Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos-Sanchez L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. Interleukin-17A: Potential mediator and therapeutic target in hypertension. Nefrologia 2021; 41:244-257. [PMID: 36166242 DOI: 10.1016/j.nefroe.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/16/2023] Open
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marquez-Exposito
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Elena Cantero-Navarro
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación La Paz (IdiPAZ), Hospital Universitario La Paz, Universidad Autónoma, IRSIN, Madrid, Spain
| | - Juan F Navarro-González
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Jose M Valdivielso
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|