101
|
Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 2012; 32:35-48. [PMID: 21778573 DOI: 10.3233/bd-2010-0307] [Citation(s) in RCA: 473] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kathryn J Chavez
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
102
|
Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 2012; 23:781-91. [PMID: 22238361 PMCID: PMC3290638 DOI: 10.1091/mbc.e11-06-0537] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Matrix rigidity regulates a switch between TGF-β1–induced cell functions in two epithelial cell lines. On compliant polyacrylamide gels, TGF-β1 induced apoptosis, whereas on rigid gels, cells underwent an epithelial–mesenchymal transition (EMT). Compliant gels reduced PI3K/Akt activity, which was essential for cell survival and EMT on rigid gels. The transforming growth factor-β (TGF-β) signaling pathway is often misregulated during cancer progression. In early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis. However, as the disease progresses, TGF-β switches to promote tumorigenic cell functions, such as epithelial–mesenchymal transition (EMT) and increased cell motility. Dramatic changes in the cellular microenvironment are also correlated with tumor progression, including an increase in tissue stiffness. However, it is unknown whether these changes in tissue stiffness can regulate the effects of TGF-β. To this end, we examined normal murine mammary gland cells and Madin–Darby canine kidney epithelial cells cultured on polyacrylamide gels with varying rigidity and treated with TGF-β1. Varying matrix rigidity switched the functional response to TGF-β1. Decreasing rigidity increased TGF-β1–induced apoptosis, whereas increasing rigidity resulted in EMT. Matrix rigidity did not change Smad signaling, but instead regulated the PI3K/Akt signaling pathway. Direct genetic and pharmacologic manipulations further demonstrated a role for PI3K/Akt signaling in the apoptotic and EMT responses. These findings demonstrate that matrix rigidity regulates a previously undescribed switch in TGF-β–induced cell functions and provide insight into how changes in tissue mechanics during disease might contribute to the cellular response to TGF-β.
Collapse
Affiliation(s)
- Jennifer L Leight
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
103
|
Fang Y, Yu S, Braley-Mullen H. TGF-β promotes proliferation of thyroid epithelial cells in IFN-γ(-/-) mice by down-regulation of p21 and p27 via AKT pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:650-60. [PMID: 22119715 DOI: 10.1016/j.ajpath.2011.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Accepted: 10/17/2011] [Indexed: 01/20/2023]
Abstract
IFN-γ(-/-) NOD.H-2h4 mice develop an autoimmune disease characterized by hyperplasia and proliferation of thyroid epithelial cells (TEC H/P). Proliferating TECs produce TGF-β, and IFN-γ inhibits TEC H/P. In the present study, cultured TECs were used to directly determine the mechanisms by which these cytokines act on TECs to result in proliferation or inhibition of proliferation. With TECs from IFN-γ(-/-) NOD.H-2h4 mice or mice expressing the dominant negative TGF-β type II receptor on TECs, TGF-β was shown to promote TEC proliferation and IFN-γ was shown to inhibit TEC proliferation in vitro. TGF-β may promote TEC proliferation by down-regulating antiproliferative molecules p21 and p27, whereas IFN-γ may inhibit proliferation by up-regulating antiproliferative molecules p18 and p21 and down-regulating the pro-proliferative molecule cyclin D. Inhibition of AKT abolished the effect of TGF-β on p21 and p27, resulting in similar proliferation of TGF-β-treated and control TECs. Increased expression of proliferating cell nuclear antigen (PCNA), TGF-β, and p-AKT and decreased expression of p21 and p27 by proliferating TECs correlated with the proliferative state of TEC H/P. Taken together, the results suggest that TGF-β promotes TEC proliferation by down-regulating p21 and p27 via the AKT pathway in IFN-γ(-/-) NOD.H-2h4 mice, which may have significant implications for development of effective therapeutic strategies targeting the TGF-β and AKT pathways for treatment of hyperplasia and/or neoplasia.
Collapse
Affiliation(s)
- Yujiang Fang
- Department of Internal Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|
104
|
Naber HPH, Wiercinska E, Ten Dijke P, van Laar T. Spheroid assay to measure TGF-β-induced invasion. J Vis Exp 2011:3337. [PMID: 22126971 PMCID: PMC3308603 DOI: 10.3791/3337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TGF-β has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stage(1,2). Moreover, TGF-β is frequently overexpressed in breast cancer and its expression correlates with poor prognosis and metastasis (3,4). The mechanisms by which TGF-β induces invasion are not well understood. TGF-β elicits its cellular responses via TGF-β type II (TβRII) and type I (TβRI) receptors. Upon TGF-β-induced heteromeric complex formation, TβRII phosphorylates the TβRI. The activated TβRI initiates its intracellular canonical signaling pathway by phosphorylating receptor Smads (R-Smads), i.e. Smad2 and Smad3. These activated R-Smads form heteromeric complexes with Smad4, which accumulate in the nucleus and regulate the transcription of target genes(5). In addition to the previously described Smad pathway, receptor activation results in activation of several other non-Smad signaling pathways, for example Mitogen Activated Protein Kinase (MAPK) pathways(6). To study the role of TGF-β in different stages of breast cancer, we made use of the MCF10A cell system. This system consists of spontaneously immortalized MCF10A1 (M1) breast epithelial cells(7), the H-RAS transformed M1-derivative MCF10AneoT (M2), which produces premalignant lesions in mice(8), and the M2-derivative MCF10CA1a (M4), which was established from M2 xenografts and forms high grade carcinomas with the ability to metastasize to the lung(9). This MCF10A series offers the possibility to study the responses of cells with different grades of malignancy that are not biased by a different genetic background. For the analysis of TGF-β-induced invasion, we generated homotypic MCF10A spheroid cell cultures embedded in a 3D collagen matrix in vitro (Fig 1). Such models closely resemble human tumors in vivo by establishing a gradient of oxygen and nutrients, resulting in active and invasive cells on the outside and quiescent or even necrotic cells in the inside of the spheroid(10). Spheroid based assays have also been shown to better recapitulate drug resistance than monolayer cultures(11). This MCF10 3D model system allowed us to investigate the impact of TGF-β signaling on the invasive properties of breast cells in different stages of malignancy.
Collapse
Affiliation(s)
- Hildegonda P H Naber
- Department of Molecular Cell Biology and Centre for Biomedial Genetics, Leiden University Medical Centre
| | | | | | | |
Collapse
|
105
|
Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 2011; 13:406-18. [PMID: 21532881 DOI: 10.1593/neo.101086] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.
Collapse
|
106
|
Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene 2011; 31:3322-32. [PMID: 22037217 DOI: 10.1038/onc.2011.494] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The molecular mechanisms that contribute to the initiation and progression of head and neck squamous cell carcinoma (HNSCC) have not been completely delineated. Our observations indicate that defects in the transforming growth factor-β and PI3K/Akt signaling pathways are common in human HNSCCs. Conditional activation of the PI3K/Akt pathway due to Pten deletion in the mouse head and neck epithelia gives rise to hyperproliferation, but only a few lesions progress to HNSCC. However, Pten-deficient mice developed full-penetrance HNSCC in combination with type I TGF-β receptor (Tgfbr1) deletion. Molecular analysis revealed enhanced cell proliferation, decreased apoptosis, and increased expression of CCND1 in the basal layer of the head and neck epithelia, as well as in the tumors of Tgfbr1/Pten double conditional knockout (2cKO) mice. Furthermore, neoplastic transformation involves senescence evasion, and is associated with an increased number of putative cancer stem cells. In addition, the nuclear factor-κB pathway activation, myeloid-derived suppressor cell infiltration, angiogenesis and immune suppression in the tumor microenvironment, all of which are characteristics of human HNSCCs, contribute significantly to head and neck carcinogenesis in 2cKO mice. These tumors display pathology and multiple molecular alterations resembling human HNSCCs. This suggests that the Tgfbr1/Pten 2cKO mouse model is suitable for preclinical intervention, and that it has significant implications in the development of diagnostic cancer biomarkers and effective strategies for prevention and treatment of HNSCCs.
Collapse
|
107
|
Zheng J, Fang F, Zeng X, Medler TR, Fiorillo AA, Clevenger CV. Negative cross talk between NFAT1 and Stat5 signaling in breast cancer. Mol Endocrinol 2011; 25:2054-64. [PMID: 21964595 DOI: 10.1210/me.2011-1141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms that modulate the activity of the signal transducers and activators of transcription 5 (Stat5) during the progression of breast cancer remain elusive. Here, we present evidence that the calcineurin/nuclear factor of activated T cells (NFAT) pathway negatively regulates the activation of Stat5, and vice versa in breast cancer. NFAT1 interacts with Stat5 in breast cancer cells, and their physical association is mediated by the DNA binding and transactivation domains of Stat5. Ectopically expressed NFAT1 is capable of inhibiting Stat5-dependent functions, including Stat5 transactivation, Stat5-mediated transcription of the downstream target gene expression, and binding of Stat5a to the Stat5 target promoter. By contrast, overexpression of a selective NFAT inhibitor VIVIT reversed NFAT1-mediated suppression of Stat5-dependent gene expression, whereas silencing of NFAT1 through RNA interference enhanced prolactin-induced, Stat5-mediated gene transcription, and breast cancer cell proliferation. A reciprocal inhibitory effect of Stat5 activity on NFAT1 signaling was also observed, implying these two signaling cascades antagonize each other in breast cancer. Importantly, analysis of a matched breast cancer progression tissue microarray revealed a negative correlation between levels of NFAT1 and Stat5 (pY694) during the progression of breast cancer. Taken together, these studies highlight a novel negative cross talk between the NFAT1- and Stat5-signaling cascades that may affect breast tumor formation, growth, and metastasis.
Collapse
Affiliation(s)
- Jiamao Zheng
- Women’s Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center & Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
108
|
BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β(3) expression. Cell Oncol (Dordr) 2011; 35:19-28. [PMID: 21935711 PMCID: PMC3268977 DOI: 10.1007/s13402-011-0058-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2011] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The transforming growth factor (TGF)-β superfamily comprises cytokines such as TGF-β and Bone Morphogenetic Proteins (BMPs), which have a critical role in a multitude of biological processes. In breast cancer, high levels of TGF-β are associated with poor outcome, whereas inhibition of TGF-β-signaling reduces metastasis. In contrast, BMP-7 inhibits bone metastasis of breast cancer cells. METHODS In this study, we investigated the effect of BMP-7 on TGF-β-induced invasion in a 3 dimensional invasion assay. RESULTS BMP-7 inhibited TGF-β-induced invasion of the metastatic breast cancer cell line MCF10CA1a, but not of its premalignant precursor MCF10AT in a spheroid invasion model. The inhibitory effect appears to be specific for BMP-7, as its closest homolog, BMP-6, did not alter the invasion of MCF10CA1a spheroids. To elucidate the mechanism by which BMP-7 inhibits TGF-β-induced invasion, we analyzed invasion-related genes. BMP-7 inhibited TGF-β-induced expression of integrin α(v)β(3) in the spheroids. Moreover, targeting of integrins by a chemical inhibitor or knockdown of integrin β(3) negatively affected TGF-β-induced invasion. On the other hand, overexpression of integrin β(3) counteracted the inhibitory effect of BMP7 on TGF-β-induced invasion. CONCLUSION Thus, BMP-7 may exert anti-invasive actions by inhibiting TGF-β-induced expression of integrin β(3).
Collapse
|
109
|
Borczuk AC, Sole M, Lu P, Chen J, Wilgus ML, Friedman RA, Albelda SM, Powell CA. Progression of human bronchioloalveolar carcinoma to invasive adenocarcinoma is modeled in a transgenic mouse model of K-ras-induced lung cancer by loss of the TGF-β type II receptor. Cancer Res 2011; 71:6665-75. [PMID: 21911454 DOI: 10.1158/0008-5472.can-11-1590] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical investigations have suggested that repression of the TGF-β type II receptor (TβRII) may be an important step in progression of lung adenocarcinoma from an indolent in situ state to a frank invasive carcinoma. To test this hypothesis, we compared the effects of deleting the murine homolog of this receptor (Tgfbr2) in a mouse model of mutant K-ras-induced lung carcinoma, which normally induces the formation of multifocal tumors of low invasive potential. In this model, loss of Tgfbr2 induced a highly invasive phenotype associated with lymph node metastasis and reduced survival. Tumor-associated stromal cells displayed an immunosuppressive profile marked by increased numbers of B and T cells. Moreover, tumor stromal cell profiling revealed a developmental TGF-β response profile that associated with a collagenized extracellular matrix and increased invasion of TGF-β nonresponsive tumor cells. Together, these results suggest that our KrasTgfbr2(-/-) mouse model of invasive lung carcinoma mirrors the genomic response and clinical progression of human lung adenocarcinoma, recapitulating changes in lung stromal pathways that occur in the tumor microenvironment during malignant progression in this disease.
Collapse
Affiliation(s)
- Alain C Borczuk
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
PPAR Ligands as Potential Modifiers of Breast Carcinoma Outcomes. PPAR Res 2011; 2008:230893. [PMID: 18645617 PMCID: PMC2467456 DOI: 10.1155/2008/230893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/19/2008] [Indexed: 01/16/2023] Open
Abstract
Chemically synthesized ligands for nuclear receptors of the PPAR family modulate a number of physiological functions, particularly insulin resistance in the context of energy homeostasis and the metabolic syndrome. Additionally, these compounds may treat or prevent the development of many secondary consequences of the metabolic syndrome. Many PPAR agonists are also known to influence the proliferation and apoptosis of breast carcinoma cells though the experiments were carried out at suprapharmacological doses of PPAR ligands. It is possible that the breast epithelium of diabetics exposed to PPAR agonists will experience perturbation of the corresponding signaling pathway. Consequently, these patients' lifetime breast carcinoma risks could be modified, as their breast lesion incidence or the rates of the conversion of these lesions to carcinomas might vary upward or downward. PPAR activating treatment may also influence the progression of existing, undiagnosed invasive lesions. In this review, we attempt to summarize the possible influence of chemical PPAR ligands on the molecular pathways involved in the initiation and progression of breast carcinoma, with a major emphasis on PPARγ agonists thiazolidinediones (TZDs).
Collapse
|
111
|
Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ, Ghossein RA, Fagin JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene 2011; 30:3153-62. [PMID: 21383698 PMCID: PMC3136543 DOI: 10.1038/onc.2011.44] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 01/12/2011] [Accepted: 01/26/2011] [Indexed: 12/14/2022]
Abstract
Mice with thyroid-specific expression of oncogenic BRAF (Tg-Braf) develop papillary thyroid cancers (PTCs) that are locally invasive and have well-defined foci of poorly differentiated thyroid carcinoma (PDTC). To investigate the PTC-PDTC progression, we performed a microarray analysis using RNA from paired samples of PDTC and PTC collected from the same animals by laser capture microdissection. Analysis of eight paired samples revealed a profound deregulation of genes involved in cell adhesion and intracellular junctions, with changes consistent with an epithelial-mesenchymal transition (EMT). This was confirmed by immunohistochemistry, as vimentin expression was increased and E-cadherin lost in PDTC compared with adjacent PTC. Moreover, PDTC stained positively for phospho-Smad2, suggesting a role for transforming growth factor (TGF)β in mediating this process. Accordingly, TGFβ-induced EMT in primary cultures of thyroid cells from Tg-Braf mice, whereas wild-type thyroid cells retained their epithelial features. TGFβ-induced Smad2 phosphorylation, transcriptional activity and induction of EMT required mitogen-activated protein kinase (MAPK) pathway activation in Tg-Braf thyrocytes. Hence, tumor initiation by oncogenic BRAF renders thyroid cells susceptible to TGFβ-induced EMT, through a MAPK-dependent process.
Collapse
Affiliation(s)
- J A Knauf
- Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Haverfield JT, Ham S, Brown KA, Simpson ER, Meachem SJ. Teasing out the role of aromatase in the healthy and diseased testis. SPERMATOGENESIS 2011; 1:240-249. [PMID: 22319672 DOI: 10.4161/spmg.1.3.18037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
Abstract
Scientific discoveries over the past decade have shifted the stereotypical view of androgens as male hormones and estrogens as female hormones. It is now recognized that a delicate balance of both androgens and estrogens, a process controlled by aromatase, is fundamental for normal testicular development and fertility. While the site-specific actions of these two classes of steroids within the testis are becoming better documented, the role and regulation of estrogen biosynthesis by aromatase within the testis remains unclear. The majority of data comes from a wide range of animal species, particularly genetically modified mouse models; aromatase knockout (ArKO) and overexpressing (AROM(+)), with limited information on humans, however the existence of congenital aromatase mutations has provided some insight into its effects on individual parameters of the testis. This review dissects out the localization and activity of aromatase in the healthy and diseased testis, addresses the cellular insult to the testis that occurs in its absence and over abundance and proposes potential molecular mechanisms of aromatase regulation in the testis.
Collapse
|
113
|
Patel SA, Dave MA, Murthy RG, Helmy KY, Rameshwar P. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev 2011; 5:93-102. [PMID: 21776337 PMCID: PMC3138628 DOI: 10.1007/s12156-010-0071-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Among all cancers, malignancies of the breast are the second leading cause of cancer death in the United States after carcinoma of the lung. One of the major factors considered when assessing the prognosis of breast cancer patients is whether the tumor has metastasized to distant organs. Although the exact phenotype of the malignant cells responsible for metastasis and dormancy is still unknown, growing evidence has revealed that they may have stem cell-like properties that may account for resistance to chemotherapy and radiation. One process that has been attributed to primary tumor metastasis is the epithelial-to-mesenchymal transition. In this review, we specifically discuss breast cancer dissemination to the bone marrow and factors that ultimately serve to shelter and promote tumor growth, including the complex relationship between mesenchymal stem cells (MSCs) and various aspects of the immune system, carcinoma-associated fibroblasts, and the diverse components of the tumor microenvironment. A better understanding of the journey from the primary tumor site to the bone marrow and subsequently the oncoprotective role of MSCs and other factors within that microenvironment can potentially lead to development of novel therapeutic targets.
Collapse
Affiliation(s)
- Shyam A. Patel
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, MSB, Room E-579, 185 South Orange Avenue, Newark, NJ 07103, USA. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Meneka A. Dave
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, MSB, Room E-579, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Raghav G. Murthy
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, MSB, Room E-579, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Karim Y. Helmy
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, MSB, Room E-579, 185 South Orange Avenue, Newark, NJ 07103, USA. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, MSB, Room E-579, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
114
|
Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16:127-46. [PMID: 21448580 PMCID: PMC3723114 DOI: 10.1007/s10911-011-9207-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease comprised of at least five major tumor subtypes that coalesce as the second leading cause of cancer death in women in the United States. Although metastasis clearly represents the most lethal characteristic of breast cancer, our understanding of the molecular mechanisms that govern this event remains inadequate. Clinically, ~30% of breast cancer patients diagnosed with early-stage disease undergo metastatic progression, an event that (a) severely limits treatment options, (b) typically results in chemoresistance and low response rates, and (c) greatly contributes to aggressive relapses and dismal survival rates. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates all phases of postnatal mammary gland development, including branching morphogenesis, lactation, and involution. TGF-β also plays a prominent role in suppressing mammary tumorigenesis by preventing mammary epithelial cell (MEC) proliferation, or by inducing MEC apoptosis. Genetic and epigenetic events that transpire during mammary tumorigenesis conspire to circumvent the tumor suppressing activities of TGF-β, thereby permitting late-stage breast cancer cells to acquire invasive and metastatic phenotypes in response to TGF-β. Metastatic progression stimulated by TGF-β also relies on its ability to induce epithelial-mesenchymal transition (EMT) and the expansion of chemoresistant breast cancer stem cells. Precisely how this metamorphosis in TGF-β function comes about remains incompletely understood; however, recent findings indicate that the initiation of oncogenic TGF-β activity is contingent upon imbalances between its canonical and noncanonical signaling systems. Here we review the molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jenny G Parvani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
115
|
Lee WH, Lee HH, Vo MT, Kim HJ, Ko MS, Im YC, Min YJ, Lee BJ, Cho WJ, Park JW. Casein kinase 2 regulates the mRNA-destabilizing activity of tristetraprolin. J Biol Chem 2011; 286:21577-87. [PMID: 21507959 DOI: 10.1074/jbc.m110.201137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability. We previously showed that TTP acts as a negative regulator of VEGF gene expression in colon cancer cells. The p38 MAPK pathway is known to suppress the TTP activity. However, until now the signaling pathway to enhance TTP function is not well known. Here, we show that casein kinase 2 (CK2) enhances the TTP function in the regulation of the VEGF expression in colon cancer cells. CK2 increased TTP protein levels and enhanced VEGF mRNA decaying activity of TTP. TTP was not a direct target of CK2. Instead, CK2 increased the phosphorylation of MKP-1, which led to a decrease in the phosphorylation of p38 MAPK. Inhibition of MKP-1 by siRNA attenuated the increase in TTP function and the decrease of p38 phosphorylation induced by CK2α overexpression. TGF-β1 increased the expressions of CK2 and TTP and the TTP function. The siRNA against CK2α or TTP reversed TGF-β1-induced increases in the expression of CK2 and TTP and the TTP function. Our data suggest that CK2 enhances the protein level and activity of TTP via the modulation of the MKP-1-p38 MAPK signaling pathway and that TGF-β1 enhances the activity of CK2.
Collapse
Affiliation(s)
- Won Hyeok Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Kriegl L, Horst D, Reiche JA, Engel J, Kirchner T, Jung A. LEF-1 and TCF4 expression correlate inversely with survival in colorectal cancer. J Transl Med 2010; 8:123. [PMID: 21092222 PMCID: PMC2996347 DOI: 10.1186/1479-5876-8-123] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 11/22/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Most colorectal carcinomas are driven by an activation of the canonical Wnt signalling pathway, which promotes the expression of multiple target genes mediating proliferation inavasion and invasion. Upon activation of the Wnt signalling pathway its key player β-catenin translocates from the cytoplasm to the nucleus and binds to members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF-1) family namely LEF-1 and TCF4 which are central mediators of transcription. In this study we investigated the expression of β-Catenin, LEF1 and TCF4 in colorectal carcinomas and their prognostic significance. METHODS Immunohistochemical analyses of LEF-1, TCF4 and nuclear β-Catenin were done using a tissue microarray with 214 colorectal cancer specimens. The expression patterns were compared with each other and the results were correlated with clinicopathologic variables and overall survival in univariate and multivariate analysis. RESULTS LEF-1 expression was found in 56 (26%) and TCF4 expression in 99 (46%) of colorectal carcinomas and both were heterogeneously distributed throughout the tumours. Comparing LEF-1, TCF4 and β-catenin expression patterns we found no correlation. In univariate analysis, TCF4 expression turned out to be a negative prognostic factor being associated with shorter overall survival (p = 0.020), whereas LEF-1 expression as well as a LEF-1/TCF4 ratio were positive prognostic factors and correlated with longer overall survival (p = 0.015 respectively p = 0.001). In multivariate analysis, LEF-1 and TCF4 expression were confirmed to be independent predictors of longer respectively shorter overall survival, when considered together with tumour stage, gender and age (risk ratio for LEF-1: 2.66; p = 0.027 risk ratio for TCF4: 2.18; p = 0.014). CONCLUSIONS This study demonstrates different prognostic values of LEF-1 and TCF4 expression in colorectal cancer patients indicating different regulation of these transcription mediators during tumour progression. Moreover both factors may serve as new potential predictive markers in low stage colon cancer cases in advance.
Collapse
Affiliation(s)
- Lydia Kriegl
- Department of Pathology, Ludwig-Maximilians-Universität (LMU), Thalkirchnerstr, 36, 80337, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Background: Metastatic tumour cells are characterised by acquisition of migratory and invasive properties; properties shared by cells, which have undergone epithelial-to-mesenchymal transition (EMT). Disabled-2 (Dab2) is a putative tumour suppressor whose expression has been shown to be downregulated in various cancer types including breast cancer; however, its exact function in suppressing tumour initiation or progression is unclear. Methods: Disabled-2 isoform expression was determined by RT–PCR analysis in human normal and breast tumour samples. Using shRNA-mediated technology, Dab2 was stably downregulated in two cell model systems representing nontumourigenic human mammary epithelial cells. These cells were characterised for expression of EMT markers by RT–PCR and western blot analysis. Results: Decreased expression of the p96 and p67 isoforms of Dab2 is observed in human breast tumour samples in comparison to normal human breast tissue. Decreased Dab2 expression in normal mammary epithelial cells leads to the appearance of a constitutive EMT phenotype. Disabled-2 downregulation leads to increased Ras/MAPK signalling, which facilitates the establishment of an autocrine transforming growth factor β (TGFβ) signalling loop, concomitant with increased expression of the TGFβ2 isoform. Conclusion: Loss of Dab2 expression, commonly observed in breast cancer, may facilitate TGFβ-stimulated EMT, and therefore increase the propensity for metastasis.
Collapse
|
118
|
Nakano N, Itoh S, Watanabe Y, Maeyama K, Itoh F, Kato M. Requirement of TCF7L2 for TGF-beta-dependent transcriptional activation of the TMEPAI gene. J Biol Chem 2010; 285:38023-33. [PMID: 20889500 DOI: 10.1074/jbc.m110.132209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TGF-β and Wnt pathways are involved in cell fate and tumorigenicity. A recent report indicated that a TGF-β target gene, TMEPAI (transmembrane prostate androgen-induced RNA), is possibly also a downstream target of Wnt signaling. Although TMEPAI was believed to be involved in tumorigenicity because of its blockage of TGF-β signaling, how TGF-β and Wnt signals affect the activation of the TMEPAI gene is not well understood. Herein, we show that the TMEPAI promoter is regulated synergistically by TGF-β/Smad and Wnt/β-catenin/T cell factor (TCF) 7L2. The critical cis-element for dual signals, termed TGF-β-responsive TCF7L2-binding element (TTE), is located in intron 1 of the TMEPAI gene. TCF7L2, but not Smad proteins, bound to TTE, whereas the disruption of TTE by mutagenesis remarkably counteracted both TGF-β and TCF7L2 responses. The introduction of mutations in critical Smad-binding elements blocked the activation of the TMEPAI promoter by TCF7L2. Furthermore, our DNA-protein interaction experiments revealed the indirect binding of TCF7L2 to Smad-binding elements via Smad3 upon TGF-β stimulation as well as its TGF-β-dependent association with TTE. We demonstrate that the Wnt/β-catenin/TCF7L2 pathway is preferentially able to alter the transcriptional regulation of the TGF-β-target gene, TMEPAI.
Collapse
Affiliation(s)
- Naoko Nakano
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
119
|
Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP. Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One 2010; 5:e11030. [PMID: 20543960 PMCID: PMC2882958 DOI: 10.1371/journal.pone.0011030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/18/2010] [Indexed: 01/27/2023] Open
Abstract
Background Mapping the expression changes during breast cancer development should facilitate basic and translational research that will eventually improve our understanding and clinical management of cancer. However, most studies in this area are challenged by genetic and environmental heterogeneities associated with cancer. Methodology/Principal Findings We conducted proteomics of the MCF10AT breast cancer model, which comprises of 4 isogenic xenograft-derived human cell lines that mimic different stages of breast cancer progression, using iTRAQ-based tandem mass spectrometry. Of more than 1200 proteins detected, 98 proteins representing at least 20 molecular function groups including kinases, proteases, adhesion, calcium binding and cytoskeletal proteins were found to display significant expression changes across the MCF10AT model. The number of proteins that showed different expression levels increased as disease progressed from AT1k pre-neoplastic cells to low grade CA1h cancer cells and high grade cancer cells. Bioinformatics revealed that MCF10AT model of breast cancer progression is associated with a major re-programming in metabolism, one of the first identified biochemical hallmarks of tumor cells (the “Warburg effect”). Aberrant expression of 3 novel breast cancer-associated proteins namely AK1, ATOX1 and HIST1H2BM were subsequently validated via immunoblotting of the MCF10AT model and immunohistochemistry of progressive clinical breast cancer lesions. Conclusion/Significance The information generated by this study should serve as a useful reference for future basic and translational cancer research. Dysregulation of ATOX1, AK1 and HIST1HB2M could be detected as early as the pre-neoplastic stage. The findings have implications on early detection and stratification of patients for adjuvant therapy.
Collapse
Affiliation(s)
- Lee Yee Choong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Simin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Poh Kuan Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chow Yin Wong
- Department of General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Nilesh Shah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yoon Pin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail:
| |
Collapse
|
120
|
Andl CD, McCowan KM, Allison GL, Rustgi AK. Cathepsin B is the driving force of esophageal cell invasion in a fibroblast-dependent manner. Neoplasia 2010; 12:485-98. [PMID: 20563251 PMCID: PMC2887089 DOI: 10.1593/neo.10216] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 12/24/2022]
Abstract
Esophageal cancer, which frequently exhibits coordinated loss of E-cadherin (Ecad) and transforming growth factor beta (TGFbeta) receptor II (TbetaRII), has a high mortality rate. In a three-dimensional organotypic culture model system, esophageal keratinocytes expressing dominant-negative mutant versions of both Ecad and TbetaRII (ECdnT) invade into the underlying matrix embedded with fibroblasts. We also find that cathepsin B induction is necessary for fibroblast-mediated invasion. Furthermore, the ECdnT cells in this physiological context activate fibroblasts through the secretion of TGFbeta1, which, in turn, is activated by cathepsin B. These results suggest that the interplay between the epithelial compartment and the surrounding microenvironment is crucial to invasion into the extracellular matrix.
Collapse
Affiliation(s)
- Claudia D Andl
- Departments of Surgery and Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
121
|
Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S, McPherson J, Yingling JM, Biswas S, Mundy GR, Reiss M. Targeting the Transforming Growth Factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 2010; 9:122. [PMID: 20504320 PMCID: PMC2890606 DOI: 10.1186/1476-4598-9-122] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 05/26/2010] [Indexed: 04/02/2025] Open
Abstract
Background Transforming Growth Factor β (TGF-β) plays an important role in tumor invasion and metastasis. We set out to investigate the possible clinical utility of TGF-β antagonists in a human metastatic basal-like breast cancer model. We examined the effects of two types of the TGF-β pathway antagonists (1D11, a mouse monoclonal pan-TGF-β neutralizing antibody and LY2109761, a chemical inhibitor of TGF-β type I and II receptor kinases) on sublines of basal cell-like MDA-MB-231 human breast carcinoma cells that preferentially metastasize to lungs (4175TR, 4173) or bones (SCP2TR, SCP25TR, 2860TR, 3847TR). Results Both 1D11 and LY2109761 effectively blocked TGF-β-induced phosphorylation of receptor-associated Smads in all MDA-MB-231 subclones in vitro. Moreover, both antagonists inhibited TGF-β stimulated in vitro migration and invasiveness of MDA-MB-231 subclones, indicating that these processes are partly driven by TGF-β. In addition, both antagonists significantly reduced the metastatic burden to either lungs or bones in vivo, seemingly independently of intrinsic differences between the individual tumor cell clones. Besides inhibiting metastasis in a tumor cell autonomous manner, the TGF-β antagonists inhibited angiogenesis associated with lung metastases and osteoclast number and activity associated with lytic bone metastases. In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer. Conclusions In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer.
Collapse
Affiliation(s)
- Vidya Ganapathy
- Division of Medical Oncology, Department of Internal Medicine, UMDNJRobert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
The histologic distinction between bronchioloalveolar carcinoma and other adenocarcinomas is tissue invasion. The clinical importance of lung adenocarcinoma invasion is supported by several recent studies indicating that the risk of death in nonmucinous bronchioloalveolar carcinoma is significantly lower than that of pure invasive tumors and in tumors with greater than 0.5 cm of fibrosis or linear invasion. Using microarray gene expression profiling of human tumors, dysregulation of transforming growth factor-beta signaling was identified as an important mediator of tumor invasion. Subsequent studies showed that the CC chemokine regulated on activation, normal T cell expressed, and presumably secreted was up-regulated in invasive tumors and was required for invasion in cells with repressed levels of the transforming growth factor-beta type II receptor. Taken together, these studies illustrate how information gained from global expression profiling of tumors can be used to identify key pathways and genes mediating tumor growth, invasion, and metastasis.
Collapse
|
123
|
Doxorubicin in combination with a small TGFbeta inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. PLoS One 2010; 5:e10365. [PMID: 20442777 PMCID: PMC2860989 DOI: 10.1371/journal.pone.0010365] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/01/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies suggested that induction of epithelial-mesenchymal transition (EMT) might confer both metastatic and self-renewal properties to breast tumor cells resulting in drug resistance and tumor recurrence. TGFbeta is a potent inducer of EMT and has been shown to promote tumor progression in various breast cancer cell and animal models. PRINCIPAL FINDINGS We report that chemotherapeutic drug doxorubicin activates TGFbeta signaling in human and murine breast cancer cells. Doxorubicin induced EMT, promoted invasion and enhanced generation of cells with stem cell phenotype in murine 4T1 breast cancer cells in vitro, which were significantly inhibited by a TGFbeta type I receptor kinase inhibitor (TbetaRI-KI). We investigated the potential synergistic anti-tumor activity of TbetaR1-KI in combination with doxorubicin in animal models of metastatic breast cancer. Combination of Doxorubicin and TbetaRI-KI enhanced the efficacy of doxorubicin in reducing tumor growth and lung metastasis in the 4T1 orthotopic xenograft model in comparison to single treatments. Doxorubicin treatment alone enhanced metastasis to lung in the human breast cancer MDA-MB-231 orthotopic xenograft model and metastasis to bone in the 4T1 orthotopic xenograft model, which was significantly blocked when TbetaR1-KI was administered in combination with doxorubicin. CONCLUSIONS These observations suggest that the adverse activation of TGFbeta pathway by chemotherapeutics in the cancer cells together with elevated TGFbeta levels in tumor microenvironment may lead to EMT and generation of cancer stem cells resulting in the resistance to the chemotherapy. Our results indicate that the combination treatment of doxorubicin with a TGFbeta inhibitor has the potential to reduce the dose and consequently the toxic side-effects of doxorubicin, and improve its efficacy in the inhibition of breast cancer growth and metastasis.
Collapse
|
124
|
Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE. Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 2010; 5:e9832. [PMID: 20352126 PMCID: PMC2843748 DOI: 10.1371/journal.pone.0009832] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 03/01/2010] [Indexed: 11/27/2022] Open
Abstract
Carcinoma are complex societies of mutually interacting cells in which there is a progressive failure of normal homeostatic mechanisms, causing the parenchymal component to expand inappropriately and ultimately to disseminate to distant sites. When a cancer cell metastasizes, it first will be exposed to cancer associated fibroblasts in the immediate tumor microenvironment and then to normal fibroblasts as it traverses the underlying connective tissue towards the bloodstream. The interaction of tumor cells with stromal fibroblasts influences tumor biology by mechanisms that are not yet fully understood. Here, we report a role for normal stroma fibroblasts in the progression of invasive tumors to metastatic tumors. Using a coculture system of human metastatic breast cancer cells (MCF10CA1a) and normal murine dermal fibroblasts, we found that medium conditioned by cocultures of the two cell types (CoCM) increased migration and scattering of MCF10CA1a cells in vitro, whereas medium conditioned by homotypic cultures had little effect. Transient treatment of MCF10CA1a cells with CoCM in vitro accelerated tumor growth at orthotopic sites in vivo, and resulted in an expanded pattern of metastatic engraftment. The effects of CoCM on MCF10CA1a cells were dependent on small amounts of active TGF-β1 secreted by fibroblasts under the influence of the tumor cells, and required intact ALK5-, p38-, and JNK signaling in the tumor cells. In conclusion, these results demonstrate that transient interactions between tumor cells and normal fibroblasts can modify the acellular component of the local microenvironment such that it induces long-lasting increases in tumorigenicity and alters the metastatic pattern of the cancer cells in vivo. TGF-β appears to be a key player in this process, providing further rationale for the development of anti-cancer therapeutics that target the TGF-β pathway.
Collapse
Affiliation(s)
- Christina H Stuelten
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Wendt MK, Schiemann WP. Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res 2010; 11:R68. [PMID: 19740433 PMCID: PMC2790843 DOI: 10.1186/bcr2360] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 02/07/2023] Open
Abstract
Introduction Mammary tumorigenesis is associated with the increased expression of several proteins in the focal adhesion complex, including focal adhesion kinase (FAK) and various integrins. Aberrant expression of these molecules occurs concomitant with the conversion of TGF-β function from a tumor suppressor to a tumor promoter. We previously showed that interaction between β3 integrin and TβR-II facilitates TGF-β-mediated oncogenic signaling, epithelial-mesenchymal transition (EMT), and metastasis. However, the molecular mechanisms by which the focal adhesion complex contributes to β3 integrin:TβR-II signaling and the oncogenic conversion of TGF-β remain poorly understood. Methods FAK expression and activity were inhibited in normal and malignant mammary epithelial cells (MECs) either genetically by using lentiviral-mediated delivery of shRNAs against FAK, or pharmacologically through in vitro and in vivo use of the FAK inhibitors, PF-562271 and PF-573228. Altered Smad2/3 and p38 MAPK activation, migration, EMT, and invasion in response to TGF-β1 were monitored in FAK-manipulated cells. TβR-II expression was increased in metastatic breast cancer cells by retroviral transduction, and the metastasis of FAK- and TβR-II-manipulated tumors was monitored by using bioluminescent imaging. Results TGF-β stimulation of MECs stabilized and activated FAK in a β3 integrin- and Src-dependent manner. Furthermore, by using the human MCF10A breast cancer progression model, we showed that increased FAK expression in metastatic breast cancer cells mirrored the acquisition of enhanced activation of p38 MAPK by TGF-β. Administering FAK inhibitors or rendering metastatic breast cancer cells FAK deficient abrogated the interaction between β3 integrin and TβR-II, thereby preventing TGF-β from (a) activating p38 MAPK; (b) stimulating MEC invasion, migration, and EMT; and (c) inducing early primary tumor dissemination to the lungs. Finally, in contrast to FAK depletion, adjuvant FAK chemotherapy of mammary tumors decreased their growth in part by diminished macrophage tumor infiltration. Conclusions Our studies identify an essential function for FAK in mediating the interaction between β3 integrin and TβR-II, and thus in facilitating the oncogenic conversion of TGF-β required for mammary tumor metastasis. Furthermore, this study establishes chemotherapeutic targeting of FAK as an effective, two-pronged approach in preventing tumor progression both by decreasing innate immune cell infiltration, and by inhibiting early TGF-β-dependent metastasis.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
126
|
Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, Dunn BK, Wakefield LM, Lee MP. Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One 2010; 5:e9201. [PMID: 20169162 PMCID: PMC2821407 DOI: 10.1371/journal.pone.0009201] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/26/2010] [Indexed: 01/22/2023] Open
Abstract
To gain insight into the role of genomic alterations in breast cancer progression, we conducted a comprehensive genetic characterization of a series of four cell lines derived from MCF10A. MCF10A is an immortalized mammary epithelial cell line (MEC); MCF10AT is a premalignant cell line generated from MCF10A by transformation with an activated HRAS gene; MCF10CA1h and MCF10CA1a, both derived from MCF10AT xenografts, form well-differentiated and poorly-differentiated malignant tumors in the xenograft models, respectively. We analyzed DNA copy number variation using the Affymetrix 500 K SNP arrays with the goal of identifying gene-specific amplification and deletion events. In addition to a previously noted deletion in the CDKN2A locus, our studies identified MYC amplification in all four cell lines. Additionally, we found intragenic deletions in several genes, including LRP1B in MCF10CA1h and MCF10CA1a, FHIT and CDH13 in MCF10CA1h, and RUNX1 in MCF10CA1a. We confirmed the deletion of RUNX1 in MCF10CA1a by DNA and RNA analyses, as well as the absence of the RUNX1 protein in that cell line. Furthermore, we found that RUNX1 expression was reduced in high-grade primary breast tumors compared to low/mid-grade tumors. Mutational analysis identified an activating PIK3CA mutation, H1047R, in MCF10CA1h and MCF10CA1a, which correlates with an increase of AKT1 phosphorylation at Ser473 and Thr308. Furthermore, we showed increased expression levels for genes located in the genomic regions with copy number gain. Thus, our genetic analyses have uncovered sequential molecular events that delineate breast tumor progression. These events include CDKN2A deletion and MYC amplification in immortalization, HRAS activation in transformation, PIK3CA activation in the formation of malignant tumors, and RUNX1 deletion associated with poorly-differentiated malignant tumors.
Collapse
Affiliation(s)
- Mitsutaka Kadota
- Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Hu X, Schwarz JK, Lewis JS, Huettner PC, Rader JS, Deasy JO, Grigsby PW, Wang X. A microRNA expression signature for cervical cancer prognosis. Cancer Res 2010; 70:1441-8. [PMID: 20124485 DOI: 10.1158/0008-5472.can-09-3289] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Invasive cervical cancer is a leading cause of cancer death in women worldwide, resulting in about 300,000 deaths each year. The clinical outcomes of cervical cancer vary significantly and are difficult to predict. Thus, a method to reliably predict disease outcome would be important for individualized therapy by identifying patients with high risk of treatment failures before therapy. In this study, we have identified a microRNA (miRNA)-based signature for the prediction of cervical cancer survival. miRNAs are a newly identified family of small noncoding RNAs that are extensively involved in human cancers. Using an established PCR-based miRNA assay to analyze 102 cervical cancer samples, we identified miR-200a and miR-9 as two miRNAs that could predict patient survival. A logistic regression model was developed based on these two miRNAs and the prognostic value of the model was subsequently validated with independent cervical cancers. Furthermore, functional studies were done to characterize the effect of miRNAs in cervical cancer cells. Our results suggest that both miR-200a and miR-9 could play important regulatory roles in cervical cancer control. In particular, miR-200a is likely to affect the metastatic potential of cervical cancer cells by coordinate suppression of multiple genes controlling cell motility.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Departments of Radiation Oncology, Pathology and Immunology, and Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Strand DW, Franco OE, Basanta D, Anderson ARA, Hayward SW. Perspectives on tissue interactions in development and disease. Curr Mol Med 2010; 10:95-112. [PMID: 20205682 PMCID: PMC4195241 DOI: 10.2174/156652410791065363] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/30/2009] [Indexed: 12/20/2022]
Abstract
From the morphogenetic movements of the three germ layers during development to the reactive stromal microenvironment in cancer, tissue interactions are vital to maintaining healthy organ morphologic architecture and function. The stromal compartment is thought to be complicit in tumor progression and, as such, represents an opportune target for disease therapies. However, recent developments in our understanding of the diversity of the stromal compartment and the lack of appropriate models to study its relevance in human disease have limited our further understanding of the role of tissue interactions in tumor progression. The failure any model to fully recapitulate the complexities of systemic biology continue to create a higher imperative for incorporating various perspectives into a broader understanding for the ultimate goal of designing interventional therapies. Understanding this potential, this review examines the biological models used to study stromal-epithelial interactions and includes an attempt to incorporate behavioral terminology to define and mathematically model ecological relationships in stromal-epithelial interactions. In addition, the current attempt to incorporate these diverse ecological perspectives into in silico mathematical models through cross-disciplinary coordination is reviewed, which will provide a fresh perspective on defining cell group behavior and tissue ecology in disease and hopefully lead to the generation of new hypotheses to be empirically validated.
Collapse
Affiliation(s)
- D W Strand
- Vanderbilt Prostate Cancer Center, Department of Urologic Surgery, Vanderbilt University Medical Center, AA-1309 Medical Center North, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
129
|
Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U, Alekseyev YO, Thiagalingam A, Abdolmaleky HM, Lenburg M, Thiagalingam S. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 2010; 70:968-78. [PMID: 20086175 DOI: 10.1158/0008-5472.can-09-1872] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer progression is associated with aberrant DNA methylation and expression of genes that control the epithelial-mesenchymal transition (EMT), a critical step in malignant conversion. Although the genes affected have been studied, there is little understanding of how aberrant activation of the DNA methylation machinery itself occurs. Using a breast cancer cell-based model system, we found that cells that underwent EMT exhibited overactive transforming growth factor beta (TGFbeta) signaling and loss of expression of the CDH1, CGN, CLDN4, and KLK10 genes as a result of hypermethylation of their corresponding promoter regions. Based on these observations, we hypothesized that activated TGFbeta-Smad signaling provides an "epigenetic memory" to maintain silencing of critical genes. In support of this hypothesis, disrupting Smad signaling in mesenchymal breast cancer cells resulted in DNA demethylation and reexpression of the genes identified. This epigenetic reversal was accompanied by an acquisition of epithelial morphology and a suppression of invasive properties. Notably, disrupting TGFbeta signaling decreased the DNA binding activity of DNA methyltransferase DNMT1, suggesting that failure to maintain methylation of newly synthesized DNA was the likely cause of DNA demethylation. Together, our findings reveal a hyperactive TGFbeta-TGFbetaR-Smad2 signaling axis needed to maintain epigenetic silencing of critical EMT genes and breast cancer progression.
Collapse
Affiliation(s)
- Panagiotis Papageorgis
- Departments of Medicine (Genetics and Molecular Medicine Programs and Cancer Research Center), Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Wendt MK, Smith JA, Schiemann WP. p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J Biol Chem 2009; 284:34145-56. [PMID: 19822523 DOI: 10.1074/jbc.m109.023614] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During breast cancer progression, transforming growth factor-beta (TGF-beta) switches from a tumor suppressor to a pro-metastatic molecule. Several recent studies suggest that this conversion in TGF-beta function depends upon fundamental changes in the TGF-beta signaling system. We show here that these changes in TGF-beta signaling are concomitant with aberrant expression of the focal adhesion protein, p130Cas. Indeed, elevating expression of either the full-length (FL) or just the carboxyl terminus (CT) of p130Cas in mammary epithelial cells (MECs) diminished the ability of TGF-beta1 to activate Smad2/3, but increased its coupling to p38 MAPK. This shift in TGF-beta signaling evoked (i) resistance to TGF-beta-induced growth arrest, and (ii) acinar filling upon three-dimensional organotypic cultures of p130Cas-FL or -CT expressing MECs. Furthermore, rendering metastatic MECs deficient in p130Cas enhanced TGF-beta-stimulated Smad2/3 activity, which restored TGF-beta-induced growth inhibition both in vitro and in mammary tumors produced in mice. Additionally, whereas elevating TbetaR-II expression in metastatic MECs had no affect on their phosphorylation of Smad2/3, this event markedly enhanced their activation of p38 MAPK, leading to increased MEC invasion and metastasis. Importantly, depleting p130Cas expression in TbetaR-II-expressing metastatic MECs significantly increased their activation of Smad2/3, which (i) reestablished the physiologic balance between canonical and noncanonical TGF-beta signaling, and (ii) reversed cellular invasion and early mammary tumor cell dissemination stimulated by TGF-beta. Collectively, our findings identify p130Cas as a molecular rheostat that regulates the delicate balance between canonical and noncanonical TGF-beta signaling, a balance that is critical to maintaining the tumor suppressor function of TGF-beta during breast cancer progression.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado, Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
131
|
Divakaran V, Adrogue J, Ishiyama M, Entman ML, Haudek S, Sivasubramanian N, Mann DL. Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail 2009; 2:633-42. [PMID: 19919989 DOI: 10.1161/circheartfailure.108.823070] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies suggest that transforming growth factor-beta provokes cardiac hypertrophy and myocardial fibrosis; however, it is unclear whether the deleterious effects of transforming growth factor-beta signaling are conveyed through SMAD-dependent or SMAD-independent signaling pathways. METHODS AND RESULTS To determine the contribution of SMAD-dependent signaling to cardiac remodeling, we performed transaortic constriction in SMAD3 null (SMAD3(-/-)) and littermate control mice (age, 10 to 12 weeks). Cumulative survival 20 days after transaortic constriction was significantly less in the SMAD3(-/-) mice when compared with littermate controls (43.6% versus 90.9%, P<0.01). Transaortic constriction resulted in a significant increase in cardiac hypertrophy in the SMAD3(-/-) mice, denoted by an increase in the heart weight to tibial length ratio and increased myocyte cross-sectional area. Loss of SMAD3 signaling also resulted in a significant 60% decrease in myocardial fibrosis (P<0.05). A microRNA microarray showed that 55 microRNAs were differentially expressed in littermate and SMAD3(-/-) mice and that 10 of these microRNAs were predicted to bind to genes that regulate the extracellular matrix. Of these 10 candidate microRNAs, both miR-25 and miR-29a were sufficient to decrease collagen gene expression when transfected into isolated cardiac fibroblasts in vitro. CONCLUSIONS The results suggest that SMAD3 signaling plays dual roles in the heart: one beneficial role by delimiting hypertrophic growth and the other deleterious by modulating myocardial fibrosis, possibly through a pathway that entails accumulation of microRNAs that decrease collagen gene expression.
Collapse
Affiliation(s)
- Vijay Divakaran
- Sections of Cardiology and Cardiovascular Sciences, and Departments of Medicine and Molecular Physiology and Biophysics, Winters Center for Heart Failure Research, Baylor College of Medicine, Houston, Tex, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Botelho M, Oliveira P, Gomes J, Gartner F, Lopes C, da Costa JMC, Machado JC. Tumourigenic effect of Schistosoma haematobium total antigen in mammalian cells. Int J Exp Pathol 2009; 90:448-53. [PMID: 19659903 DOI: 10.1111/j.1365-2613.2009.00650.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Schistosoma haematobium is endemic in several regions of Africa and has been shown to be associated with predominantly squamous cell bladder carcinoma. The mechanisms underlying the association between S. haematobium and bladder squamous cell carcinoma is largely unknown. All the reports so far, demonstrate exclusively an epidemiological evidence linking S. haematobium infection with squamous cell bladder carcinoma. We hypothesized that these parasite antigens might induce tumourigenesis. For this, we used normal mammalian cells of Chinese hamster ovary (CHO) and treated the cells in culture with S. haematobium total antigen (Sh). Our results showed increased proliferation in Sh-treated cells in comparison with the controls. The CHO cells exposed to Sh were inoculated subcutaneously into male nude mice and formed sarcomas (n = 5/5). The cells from the sarcomas expressed vimentin filaments and were negative to cytokeratin. Our results demonstrate for the first time that S. haematobium antigens induce tumour development in nude mice.
Collapse
Affiliation(s)
- Monica Botelho
- CIMP - Centre for Parasite Immunology and Biology, National Institute of Health, 4000-055 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
133
|
Overexpression of FOXG1 contributes to TGF-beta resistance through inhibition of p21WAF1/CIP1 expression in ovarian cancer. Br J Cancer 2009; 101:1433-43. [PMID: 19755996 PMCID: PMC2768441 DOI: 10.1038/sj.bjc.6605316] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Loss of growth inhibitory response to transforming growth factor-β (TGF-β) is a common feature of epithelial cancers. Recent studies have reported that genetic lesions and overexpression of oncoproteins in TGF-β/Smads signalling cascade contribute to the TGF-β resistance. Here, we showed that the overexpressed FOXG1 was involved in attenuating the anti-proliferative control of TGF-β/Smads signalling in ovarian cancer. Methods: FOXG1 and p21WAF1/CIP1 expressions were evaluated by real-time quantitative reverse-transcription polymerase chain reaction (RT–PCR), western blot and immunohistochemical analyses. The effect of FOXG1 on p21WAF1/CIP1 transcriptional activity was examined by luciferase reporter assays. Cell lines stably expressing or short hairpin RNA interference-mediated knockdown FOXG1 were established for studying the gain-or-loss functional effects of FOXG1. XTT cell proliferation assay was used to measure cell growth of ovarian cancer cells. Results: Quantitative RT–PCR and western blot analyses showed that FOXG1 was upregulated and inversely associated with the expression levels of p21WAF1/CIP1 in ovarian cancer. The overexpression of FOXG1 was significantly correlated with high-grade ovarian cancer (P=0.025). Immunohistochemical analysis on ovarian cancer tissue array was further evidenced that FOXG1 was highly expressed and significantly correlated with high-grade ovarian cancer (P=0.048). Functionally, enforced expression of FOXG1 selectively blocked the TGF-β-induced p21WAF1/CIP1 expressions and increased cell proliferation in ovarian cancer cells. Conversely, FOXG1 knockdown resulted in a 20–26% decrease in cell proliferation together with 16–33% increase in p21WAF1/CIP1 expression. Notably, FOXG1 was able to inhibit the p21WAF1/CIP1 promoter activity in a p53-independent manner by transient reporter assays. Conclusion Our results suggest that FOXG1 acts as an oncoprotein inhibiting TGF-β-mediated anti-proliferative responses in ovarian cancer cells through suppressing p21WAF1/CIP1 transcription.
Collapse
|
134
|
Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere S, Kageyama SI, Fukuoka J, Nagata T, Tsukada K, Dunn BK, Wakefield LM, Lee MP. Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res 2009; 69:7357-65. [PMID: 19706770 DOI: 10.1158/0008-5472.can-09-0064] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To identify genetic events that characterize cancer progression, we conducted a comprehensive genetic evaluation of 161 primary breast tumors. Similar to the "mountain-and-hill" view of mutations, gene amplification also shows high- and low-frequency alterations in breast cancers. The frequently amplified genes include the well-known oncogenes ERBB2, FGFR1, MYC, CCND1, and PIK3CA, whereas other known oncogenes that are amplified, although less frequently, include CCND2, EGFR, FGFR2, and NOTCH3. More importantly, by honing in on minimally amplified regions containing three or fewer genes, we identified six new amplified genes: POLD3, IRAK4, IRX2, TBL1XR1, ASPH, and BRD4. We found that both the IRX2 and TBL1XR1 proteins showed higher expression in the malignant cell lines MCF10CA1h and MCF10CA1a than in their precursor, MCF10A, a normal immortalized mammary epithelial cell line. To study oncogenic roles of TBL1XR1, we performed knockdown experiments using a short hairpin RNA approach and found that depletion of TBL1XR1 in MCF10CA1h cells resulted in reduction of cell migration and invasion as well as suppression of tumorigenesis in mouse xenografts. Intriguingly, our mutation analysis showed the presence of activation mutations in the PIK3CA gene in a subset of tumors that also had DNA copy number increases in the PIK3CA locus, suggesting an additive effect of coexisting activating amino acid substitution and dosage increase from amplification. Our gene amplification and somatic mutation analysis of breast primary tumors provides a coherent picture of genetic events, both corroborating and novel, offering insight into the genetic underpinnings of breast cancer progression.
Collapse
Affiliation(s)
- Mitsutaka Kadota
- Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Laverty HG, Wakefield LM, Occleston NL, O'Kane S, Ferguson MWJ. TGF-beta3 and cancer: a review. Cytokine Growth Factor Rev 2009; 20:305-17. [PMID: 19656717 DOI: 10.1016/j.cytogfr.2009.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
With the development of growth factors and growth factor modulators as therapeutics for a range of disorders, it is prudent to consider whether modulating the growth factor profile in a tissue can influence tumour initiation or progression. As recombinant human TGF-beta3 (avotermin) is being developed for the improvement of scarring in the skin it is important to understand the role, if any, of this cytokine in tumour progression. Elevated levels of TGF-beta3 expression detected in late-stage tumours have linked this cytokine with tumourigenesis, although functional data to support a causative role are lacking. While it has proved tempting for researchers to interpret a 'correlation' as a 'cause' of disease, what has often been overlooked is the normal biological role of TGF-beta3 in processes that are often subverted in tumourigenesis. Clarifying the role of this cytokine is complicated by inappropriate extrapolation of the data relating to TGF-beta1 in tumourigenesis, despite marked differences in biology between the TGF-beta isoforms. Indeed, published studies have indicated that TGF-beta3 may actually play a protective role against tumourigenesis in a range of tissues including the skin, breast, oral and gastric mucosa. Based on currently available data it is reasonable to hypothesize that administration of acute low doses of exogenous TGF-beta3 is unlikely to influence tumour initiation or progression.
Collapse
Affiliation(s)
- H G Laverty
- Renovo Group Plc, Core Technology Facility, 48 Grafton Street, Manchester M13 9XX, UK
| | | | | | | | | |
Collapse
|
136
|
Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 2009; 69:5918-26. [PMID: 19584284 DOI: 10.1158/0008-5472.can-08-4623] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The precise role of transforming growth factor (TGF)-beta signaling in head and neck squamous cell carcinoma (SCC) is not yet fully understood. Here, we report generation of an inducible head- and neck-specific knockout mouse model by crossing TGF-beta receptor I (Tgfbr1) floxed mice with K14-CreER(tam) mice. By applying tamoxifen to oral cavity of the mouse to induce Cre expression, we were able to conditionally delete Tgfbr1 in the mouse head and neck epithelia. On tumor induction with 7,12-dimethylbenz(a)anthracene (DMBA), 45% of Tgfbr1 conditional knockout (cKO) mice (n = 42) developed SCCs in the head and neck area starting from 16 weeks after treatment. However, no tumors were observed in the control littermates. A molecular analysis revealed an enhanced proliferation and loss of apoptosis in the basal layer of the head and neck epithelia of Tgfbr1 cKO mice 4 weeks after tamoxifen and DMBA treatment. The most notable finding of our study is that the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated in SCCs that developed in the Tgfbr1 cKO mice on inactivation of TGF-beta signaling through Smad2/3 and DMBA treatment. These observations suggest that activation of Smad-independent pathways may contribute cooperatively with inactivation of Smad-dependent pathways to promote head and neck carcinogenesis in these mice. Our results revealed the critical role of the TGF-beta signaling pathway and its cross-talk with the PI3K/Akt pathway in suppressing head and neck carcinogenesis.
Collapse
Affiliation(s)
- Yansong Bian
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 2009; 28:2697-709. [PMID: 19483722 PMCID: PMC3238492 DOI: 10.1038/onc.2009.133] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human melanomas show oncogenic B-Raf mutations which activate the B-Raf/MKK/ERK cascade. We screened microarrays to identify cellular targets of this pathway, and found that genes upregulated by B-Raf/MKK/ERK showed highest association with cell cycle regulators, whereas genes downregulated were most highly associated with axon guidance genes, including plexin-semaphorin family members. Plexin B1 was strongly inhibited by MAP kinase signaling in melanoma cells and melanocytes. In primary melanoma cells, plexin B1 blocked tumorigenesis as measured by growth of colonies in soft agar, spheroids in extracellular matrix, and xenograft tumors. Tumor suppression depended on residues in the C-terminal domain of plexin B1 which mediate receptor GAP activity, and also correlated with AKT inhibition. Interestingly, the inhibitory response to plexin B1 was reduced or absent in cells from a matched metastatic tumor, suggesting that changes occur in metastatic cells which bypass the tumor suppressor mechanisms. Plexin B1 also inhibited cell migration, but this was seen in metastatic cells and not in matched primary cells. Thus, plexin B1 has tumor suppressor function in early-stage cells, while suppressing migration in late-stage cells. Our findings suggest that B-Raf/MKK/ERK provides a permissive environment for melanoma genesis by modulating plexin B1.
Collapse
|
138
|
Wilkes MC, Repellin CE, Hong M, Bracamonte M, Penheiter SG, Borg JP, Leof EB. Erbin and the NF2 tumor suppressor Merlin cooperatively regulate cell-type-specific activation of PAK2 by TGF-beta. Dev Cell 2009; 16:433-44. [PMID: 19289088 DOI: 10.1016/j.devcel.2009.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 10/21/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Transforming growth factor beta (TGF-beta) family ligands are pleotropic proteins with diverse cell-type-specific effects on growth and differentiation. For example, PAK2 activation is critical for the proliferative/profibrotic action of TGF-beta on mesenchymal cells, and yet it is not responsive to TGF-beta in epithelial cells. We therefore investigated the regulatory constraints that prevent inappropriate PAK2 activation in epithelial cultures. The results show that the epithelial-enriched protein Erbin controls the function of the NF2 tumor suppressor Merlin by determining the output of Merlin's physical interactions with active PAK2. Whereas mesenchymal TGF-beta signaling induces PAK2-mediated inhibition of Merlin function in the absence of Erbin, Erbin/Merlin complexes bind and inactivate GTPase-bound PAK2 in epithelia. These results not only identify Erbin as a key determinant of epithelial resistance to TGF-beta signaling, they also show that Erbin controls Merlin tumor suppressor function by switching the functional valence of PAK2 binding.
Collapse
Affiliation(s)
- Mark C Wilkes
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Lei X, Wang L, Yang J, Sun LZ. TGFbeta signaling supports survival and metastasis of endometrial cancer cells. Cancer Manag Res 2009; 2009:15-24. [PMID: 20622970 PMCID: PMC2901109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The association of mutation of the transforming growth factor beta (TGFbeta) type II receptor (RII) with microsatellite instability revealed a significant molecular mechanism of tumorigenesis and tumor progression in gastrointestinal carcinomas with DNA replication error. However, mutation of RII is rare in other types of carcinomas with microsatellite instability including endometrial adenocarcinoma suggesting that TGFbeta receptor signaling may be necessary for tumor progression. To test this hypothesis, we abrogated TGFbeta signaling with ectopic expression of a dominant-negative RII (DNRII) in human endometrial carcinoma HEC-1-A cells with microsatellite instability. Our study showed that over-expression of DNRII blocked the TGFbeta signaling, inhibited anchorage-dependent and -independent growth, and stimulated apoptosis in vitro. Interestingly, the expression of DNRII expression showed little effect on tumor growth of subcutaneously inoculated cells in vivo. On the other hand, the DNRII cells showed more epithelial features whereas the control cells showed more mesenchymal features suggesting a reversal of autocrine TGFbeta-induced epithelial-mesenchymal transition (EMT). Consistent with these findings, DNRII cells were much less migratory and invasive in vitro and metastatic in vivo than the control cells. Therefore, an intact TGFbeta signaling pathway appears necessary for the metastatic phenotypes of this carcinoma model.
Collapse
Affiliation(s)
| | | | | | - Lu-Zhe Sun
- Correspondence: Lu-Zhe Sun, Department of Cellular and Structure Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7743, San Antonio, TX, 78229-3900, USA, Tel +1 210 567 5746, Fax +1 210 567 4664, Email
| |
Collapse
|
140
|
Warusavitarne J, McDougall F, de Silva K, Barnetson R, Messina M, Robinson BG, Schnitzler M. Restoring TGFbeta function in microsatellite unstable (MSI-H) colorectal cancer reduces tumourigenicity but increases metastasis formation. Int J Colorectal Dis 2009; 24:139-44. [PMID: 18985362 DOI: 10.1007/s00384-008-0606-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND TGFbeta is an important cell growth regulator which may have a role in metastasis formation. Microsatellite unstable (MSI-H) colon cancer serves as a unique model to demonstrate this as most MSI-H colon cancers have a mutation in the transforming growth factor beta receptor II (TGFbetaRII) gene and a low metastatic rate. AIMS To demonstrate an increase in invasion and metastasis in a MSI-H colorectal cancer cell line with a known mutation in TGFbetaRII. MATERIALS AND METHODS By restoring the wild-type TGFbetaRII gene in the KM12C MSI-H colorectal carcinoma cell line with a known mutation in TGFbetaRII, we have demonstrated that both invasion and metastasis in this cell line was significantly increased. A mouse metastatic model have shown that liver metastases were increased in mice inoculated with cells containing a wild-type TGFbetaRII gene (42% for the transfected group compared with 15% for the control group; p = 0.0379), despite a reduction in the size of primary tumours. CONCLUSIONS This study highlights an important mechanism which may contribute to the low metastatic rate of MSI-H colon cancers and demonstrates the importance of TGFbeta signalling in metastasis formation. Previous studies involving breast cancer cell lines have shown that blocking TGFbeta signalling results in a reduction in metastasis formation. This study is the first study to use a cell line with a low metastatic rate and TGFbetaRII mutations to demonstrate that restoring TGFbeta signalling increases the metastatic rate.
Collapse
Affiliation(s)
- Janindra Warusavitarne
- Department of Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.
| | | | | | | | | | | | | |
Collapse
|
141
|
Jin C, Yang YA, Anver MR, Morris N, Wang X, Zhang YE. Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res 2009; 69:735-40. [PMID: 19155312 DOI: 10.1158/0008-5472.can-08-1463] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlled protein degradation mediated by ubiquitin/proteasome system (UPS) plays a crucial role in modulating a broad range of cellular responses. Dysregulation of the UPS often accompanies tumorigenesis and progression. Here, we report that Smad ubiquitination regulatory factor 2 (Smurf2), a HECT-domain containing E3 ubiquitin ligase, is up-regulated in certain breast cancer tissues and cells. We show that reduction of Smurf2 expression with specific short interfering RNA in metastatic breast cancer cells induces cell rounding and reorganization of the actin cytoskeleton, which are associated with a less motile and invasive phenotype. Overexpression of Smurf2 promotes metastasis in a nude mouse model and increases migration and invasion of breast cancer cells. Moreover, expression of Smurf2CG, an E3 ligase-defective mutant of Smurf2, suppresses the above metastatic behaviors. These results establish an important role for Smurf2 in breast cancer progression and indicate that Smurf2 is a novel regulator of breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Chaoyang Jin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
142
|
Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol Biol Cell 2008; 20:948-62. [PMID: 19109420 DOI: 10.1091/mbc.e08-08-0867] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.
Collapse
Affiliation(s)
- Jessica L Crowley
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
143
|
A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions. Proc Natl Acad Sci U S A 2008; 105:20251-6. [PMID: 19073914 DOI: 10.1073/pnas.0807200106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TGF-beta isoforms are key modulators of a broad range of biological pathways and increasingly are exploited as therapeutic targets. Here, we describe the crystal structures of a pan-TGF-beta neutralizing antibody, GC-1008, alone and in complex with TGF-beta3. The antibody is currently in clinical evaluation for idiopathic pulmonary fibrosis, melanoma, and renal cell cancer. GC-1008 recognizes an asymmetric binding interface across the TGF-beta homodimer with high affinity. Whereas both cognate receptors, TGF-beta-receptor types I and II, are required to recognize all 3 TGF-beta isoforms, GC-1008 has been engineered to bind with high affinity to TGF-beta1, 2, and 3 via a single interaction surface. Comparison with existing structures and models of TGF-beta interaction with its receptors suggests that the antibody binds to a similar epitope to the 2 receptors together and is therefore a structurally different but functionally identical mimic of the binding mode of both receptors.
Collapse
|
144
|
Stuelten CH, Barbul A, Busch JI, Sutton E, Katz R, Sato M, Wakefield LM, Roberts AB, Niederhuber JE. Acute wounds accelerate tumorigenesis by a T cell-dependent mechanism. Cancer Res 2008; 68:7278-82. [PMID: 18794114 DOI: 10.1158/0008-5472.can-08-1842] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the influence of acute wounding on tumor growth in a syngeneic mouse breast cancer model. Metastatic mouse breast cancer cells (4T1) were orthotopically injected into the mammary fat pads of BALB/c mice, and animals were wounded locally by full thickness dermal incisions above the mammary fat pads or remotely above the scapula 9 days later. Local, but not remote, wounding increased tumor size when compared with sham treatment. Injection of wound fluid close to the tumor site increased tumor growth, whereas in vitro wound fluid compared with serum increased the proliferation rate of 4T1 cells. Our results show that wound stroma can unfavorably influence growth of nearby tumors. This effect is T cell-dependent, as local wounding had no effect on tumor growth in nu/nu mice. The effect of wounding on tumor growth can be mimicked by acellular wound fluid, suggesting that T cells secrete or mediate secretion of cytokines or growth factors that then accelerate tumor growth. Here, we define an experimental model of wound-promoted tumor growth that will enable us to identify mechanisms and therapeutic targets to reduce the negative effect of tissue repair on residual tumors.
Collapse
Affiliation(s)
- Christina H Stuelten
- Cell and Cancer Biology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 2008; 115:453-95. [PMID: 18841463 DOI: 10.1007/s10549-008-0184-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 12/24/2022]
Abstract
In most human breast cancers, lowering of TGFbeta receptor- or Smad gene expression combined with increased levels of TGFbetas in the tumor microenvironment is sufficient to abrogate TGFbetas tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFbeta signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFbeta tumor suppression. In mouse models of "triple-negative" or basal-like breast cancer, treatment with TGFbeta neutralizing antibodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFbeta antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFbeta target genes upregulation in human breast cancers suggest that TGFbeta may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFbeta appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFbeta because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFbeta, while antiestrogens act by upregulating TGFbeta. This model predicts that inhibiting TGFbeta signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFbeta antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These predictions need to be addressed prospectively in clinical trials and should inform the selection of patient populations most likely to benefit from this novel anti-metastatic therapeutic approach.
Collapse
Affiliation(s)
- Antoinette R Tan
- Division of Medical Oncology, Department of Internal Medicine, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
146
|
Multiple forms of BRMS1 are differentially expressed in the MCF10 isogenic breast cancer progression model. Clin Exp Metastasis 2008; 26:89-96. [PMID: 18841483 DOI: 10.1007/s10585-008-9216-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/24/2008] [Indexed: 01/10/2023]
Abstract
Clinical studies evaluating the mRNA expression level of the BRMS1 metastasis suppressor in the progression of breast cancer have not been consistent. The purpose of this study was to characterize endogenous BRMS1 mRNA and protein in a model of the progression of breast cancer. BRMS1 protein expression was evaluated in the genetically related MCF10 cell lines representing 'normal' breast epithelial cells (MCF10A), pre-malignant breast disease (MCF10AT), comedo ductal carcinoma in situ (MCF10DCIS.com), and metastatic carcinoma (MCF10CAa.1 and MCF10CAd.1alpha) with two antibodies that recognize distinct epitopes in the BRMS1 protein. Nuclear expression of the characteristic *35 kDa BRMS1 protein was detected in all cell lines. Because BRMS1 was expressed in the metastatic MCF10 variants, the BRMS1 exons were sequenced to scan for possible genetic mutations. BRMS1 was wild-type with the exception of a synonymous T/C transition in exon 7. However, alternatively spliced variants were detected by RT-PCR. Two variants, BRMS1.v2 and BRMS1.v4 were only detected in the MCF10A and AT cell lines, while BRMS1 and BRMS1.v3 were detected in all lines. These results demonstrate that expression of the characteristic *35 kDa BRMS1 protein is not sufficient to prevent metastasis. The differential expression of alternative splice variants suggests caution should be taken when evaluating BRMS1 mRNA in clinical samples.
Collapse
|
147
|
TGF-beta1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival. Br J Cancer 2008; 99:1357-63. [PMID: 18827819 PMCID: PMC2570529 DOI: 10.1038/sj.bjc.6604689] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta)-mediated signals play complicated roles in the development and progression of breast tumour. The purposes of this study were to analyse the genotype of TGF-beta1 at T29C and TGF-beta1 phenotype in breast tumours, and to evaluate their associations with IGFs and clinical characteristics of breast cancer. Fresh tumour samples were collected from 348 breast cancer patients. TGF-beta1 genotype and phenotype were analysed with TaqMan and ELISA, respectively. Members of the IGF family in tumour tissue were measured with ELISA. Cox proportional hazards regression analysis was performed to assess the association of TGF-beta1 and disease outcomes. Patients with the T/T (29%) genotype at T29C had the highest TGF-beta1, 707.9 pg mg(-1), followed by the T/C (49%), 657.8 pg mg(-1), and C/C (22%) genotypes, 640.8 pg mg(-1), (P=0.210, T/T vs C/C and C/T). TGF-beta1 concentrations were positively correlated with levels of oestrogen receptor, IGF-I, IGF-II and IGFBP-3. Survival analysis showed TGF-beta1 associated with disease progression, but the association differed by disease stage. For early-stage disease, patients with the T/T genotype or high TGF-beta1 had shorter overall survival compared to those without T/T or with low TGF-beta1; the hazard ratios (HR) were 3.54 (95% CI: 1.21-10.40) for genotype and 2.54 (95% CI: 1.10-5.89) for phenotype after adjusting for age, grade, histotype and receptor status. For late-stage disease, however, the association was different. The T/T genotype was associated with lower risk of disease recurrence (HR=0.13, 95% CI: 0.02-1.00), whereas no association was found between TGF-beta1 phenotype and survival outcomes. The study suggests a complex role of TGF-beta1 in breast cancer progression, which supports the finding of in vitro studies that TGF-beta1 has conflicting effects on tumour growth and metastasis.
Collapse
|
148
|
Do TV, Kubba LA, Du H, Sturgis CD, Woodruff TK. Transforming growth factor-beta1, transforming growth factor-beta2, and transforming growth factor-beta3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol Cancer Res 2008; 6:695-705. [PMID: 18505915 DOI: 10.1158/1541-7786.mcr-07-0294] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is thought to play a role in the pathobiological progression of ovarian cancer because this peptide hormone is overexpressed in cancer tissue, plasma, and peritoneal fluid. In the current study, we investigated the role of the TGF-beta/Smad3 pathway in ovarian cancer metastasis by regulation of an epithelial-to-mesenchymal transition. When cancer cells were cultured on plastic, TGF-beta1, TGF-beta2, and TGF-beta3 induced pro-matrix metalloproteinase (MMP) secretion, loss of cell-cell junctions, down-regulation of E-cadherin, up-regulation of N-cadherin, and acquisition of a fibroblastoid phenotype, consistent with an epithelial-to-mesenchymal transition. Furthermore, Smad3 small interfering RNA transfection inhibited TGF-beta-mediated changes to a fibroblastic morphology, but not MMP secretion. When cancer cells were cultured on a three-dimensional collagen matrix, TGF-beta1, TGF-beta2, and TGF-beta3 stimulated both pro-MMP and active MMP secretion and invasion. Smad3 small interfering RNA transfection of cells cultured on a collagen matrix abrogated TGF-beta-stimulated invasion and MMP secretion. Analysis of Smad3 nuclear expression in microarrays of serous benign tumors, borderline tumors, and cystadenocarcinoma revealed that Smad3 expression could be used to distinguish benign and borderline tumors from carcinoma (P = 0.006). Higher Smad3 expression also correlated with poor survival (P = 0.031). Furthermore, a direct relationship exists between Smad3 nuclear expression and expression of the mesenchymal marker N-cadherin in cancer patients (P = 0.0057). Collectively, these results implicate an important role for the TGF-beta/Smad3 pathway in mediating ovarian oncogenesis by enhancing metastatic potential.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Northwestern University, 2205 Tech Drive, Hogan 4-150, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
149
|
Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S, Berzofsky JA, Wakefield LM. Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res 2008; 68:3915-23. [PMID: 18483277 DOI: 10.1158/0008-5472.can-08-0206] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Overexpression of the immunosuppressive cytokine transforming growth factor beta (TGF-beta) is one strategy that tumors have developed to evade effective immunesurveillance. Using transplantable models of breast and colon cancer, we made the unexpected finding that CD8+ cells in tumor-bearing animals can directly promote tumorigenesis, by a mechanism that is dependent on TGF-beta. We showed that CD8+ splenocytes from tumor-bearing mice expressed elevated interleukin (IL)-17 when compared with naive mice, and that CD8+ T cells could be induced to make IL-17 on addition of TGF-beta and IL-6 in vitro. Treatment of mice with anti-TGF-beta antibodies in vivo reduced IL-17 expression both in the tumor and the locoregional lymph nodes. Although IL-17 has not previously been shown to act as a survival factor for epithelial cells, we found that IL-17 suppressed apoptosis of several tumor cell lines in vitro, suggesting that this altered T-cell polarization has the potential to promote tumorigenesis directly, rather than indirectly through inflammatory sequelae. Consistent with this hypothesis, knockdown of the IL-17 receptor in 4T1 mouse mammary cancer cells enhanced apoptosis and decreased tumor growth in vivo. Thus, in addition to suppressing immune surveillance, tumor-induced TGF-beta may actively subvert the CD8+ arm of the immune system into directly promoting tumor growth by an IL-17-dependent mechanism.
Collapse
Affiliation(s)
- Jeong-Seok Nam
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Neil JR, Schiemann WP. Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res 2008; 68:1462-70. [PMID: 18316610 DOI: 10.1158/0008-5472.can-07-3094] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The conversion of transforming growth factor beta (TGF-beta) from a tumor suppressor to a tumor promoter occurs frequently during mammary tumorigenesis, yet the molecular mechanisms underlying this phenomenon remain undefined. We show herein that TGF-beta repressed nuclear factor-kappaB (NF-kappaB) activity in normal NMuMG cells, but activated this transcription factor in their malignant counterparts, 4T1 cells, by inducing assembly of TGF-beta-activated kinase 1 (TAK1)-binding protein 1 (TAB1):I kappaB kinase beta (IKK beta) complexes, which led to the stimulation of a TAK1:IKK beta:p65 pathway. TAB1:IKK beta complexes could only be detected in NMuMG cells following their induction of epithelial-mesenchymal transition (EMT), which, on TGF-beta treatment, activated NF-kappaB. Expression of a truncated TAB1 mutant [i.e., TAB1(411)] reduced basal and TGF-beta-mediated NF-kappaB activation in NMuMG cells driven to undergo EMT by TGF-beta and in 4T1 cells stimulated by TGF-beta. TAB1(411) expression also inhibited TGF-beta-stimulated tumor necrosis factor-alpha and cyclooxygenase-2 expression in 4T1 cells. Additionally, the ability of human MCF10A-CA1a breast cancer cells to undergo invasion in response to TGF-beta absolutely required the activities of TAK1 and NF-kappaB. Moreover, small interfering RNA-mediated TAK1 deficiency restored the cytostatic activity of TGF-beta in MCF10A-CA1a cells. Finally, expression of truncated TAB1(411) dramatically reduced the growth of 4T1 breast cancers in syngeneic BALB/c, as well as in nude mice, suggesting a potentially important role of NF-kappaB in regulating innate immunity by TGF-beta. Collectively, our findings have defined a novel TAB1:TAK1:IKK beta:NF-kappaB signaling axis that forms aberrantly in breast cancer cells and, consequently, enables oncogenic signaling by TGF-beta.
Collapse
Affiliation(s)
- Jason R Neil
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|