101
|
Arroyo JP, Lagnaz D, Ronzaud C, Vázquez N, Ko BS, Moddes L, Ruffieux-Daidié D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 2011; 22:1707-19. [PMID: 21852580 DOI: 10.1681/asn.2011020132] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda) 2011; 26:115-23. [PMID: 21487030 DOI: 10.1152/physiol.00049.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms through which aldosterone promotes apparently opposite effects like salt reabsorption and K(+) secretion remain poorly understood. The identification, localization, and physiological analysis of ion transport systems in distal nephron have revealed an intricate network of interactions between several players, revealing the complex mechanism behind the aldosterone paradox. We review the mechanisms involved in differential regulation of ion transport that allow the fine tuning of salt and K(+) balance.
Collapse
Affiliation(s)
- Juan Pablo Arroyo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
103
|
Rossi E, Farnetti E, Nicoli D, Sazzini M, Perazzoli F, Regolisti G, Grasselli C, Santi R, Negro A, Mazzeo V, Mantero F, Luiselli D, Casali B. A clinical phenotype mimicking essential hypertension in a newly discovered family with Liddle's syndrome. Am J Hypertens 2011; 24:930-5. [PMID: 21525970 DOI: 10.1038/ajh.2011.76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Liddle's syndrome (LS) is a monogenic form of hypertension simulating a mineralocorticoid excess, and is currently suspected in young hypokalemic hypertensives. The aims of the study were: (i) to evaluate the clinical phenotype of LS in a newly identified Italian family of Sicilian origin carrying a gain-of-function mutation of the β subunit of the epithelial sodium channel (ENaC) (P617L) previously reported by our group in an apparently unrelated Sicilian patient presenting the typical phenotype of LS including hypokalemia; (ii) to determine whether an unknown biological relationship exists between the newly identified family and the family of the proband previously reported. METHODS Genetic analysis was performed in the present family, in the individual in which the βP617L mutation was first observed, and in his relatives. RESULTS βP617L mutation was identified in the proband and in three maternal relatives. None of them showed hypokalemia. Mild to severe early onset hypertension and left ventricular hypertrophy were present in all of them. Analysis of mitochondrial DNA (mtDNA) and Y chromosome profiles in the present family and in the proband's family previously reported showed the absence of a relationship between them. The availability of only one carrier of the mutation in one of the two families meant that a genetic analysis able to assess a founder effect was not feasible. CONCLUSIONS LS should be considered in all cases of early onset hypertension, independently of the plasma potassium concentration. The incidence of LS may be greater than is currently thought, because hypokalemia is not invariably present.
Collapse
|
104
|
Persaud A, Alberts P, Hayes M, Guettler S, Clarke I, Sicheri F, Dirks P, Ciruna B, Rotin D. Nedd4-1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function. EMBO J 2011; 30:3259-73. [PMID: 21765395 DOI: 10.1038/emboj.2011.234] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/20/2011] [Indexed: 01/23/2023] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) has critical roles in cellular proliferation and differentiation during animal development and adult homeostasis. Here, we show that human Nedd4 (Nedd4-1), an E3 ubiquitin ligase comprised of a C2 domain, 4 WW domains, and a Hect domain, regulates endocytosis and signalling of FGFR1. Nedd4-1 binds directly to and ubiquitylates activated FGFR1, by interacting primarily via its WW3 domain with a novel non-canonical sequence (non-PY motif) on FGFR1. Deletion of this recognition motif (FGFR1-Δ6) abolishes Nedd4-1 binding and receptor ubiquitylation, and impairs endocytosis of activated receptor, as also observed upon Nedd4-1 knockdown. Accordingly, FGFR1-Δ6, or Nedd4-1 knockdown, exhibits sustained FGF-dependent receptor Tyr phosphorylation and downstream signalling (activation of FRS2α, Akt, Erk1/2, and PLCγ). Expression of FGFR1-Δ6 in human embryonic neural stem cells strongly promotes FGF2-dependent neuronal differentiation. Furthermore, expression of this FGFR1-Δ6 mutant in zebrafish embryos disrupts anterior neuronal patterning (head development), consistent with excessive FGFR1 signalling. These results identify Nedd4-1 as a key regulator of FGFR1 endocytosis and signalling during neuronal differentiation and embryonic development.
Collapse
Affiliation(s)
- Avinash Persaud
- Programs in Cell Biology and Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Albesa M, Grilo LS, Gavillet B, Abriel H. Nedd4-2-dependent ubiquitylation and regulation of the cardiac potassium channel hERG1. J Mol Cell Cardiol 2011; 51:90-8. [DOI: 10.1016/j.yjmcc.2011.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/18/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
|
106
|
Abstract
The epithelial sodium channel (ENaC) is a heteromeric channel composed of three similar but distinct subunits, α, β and γ. This channel is an end-effector in the rennin-angiotensin-aldosterone system and resides in the apical plasma membrane of the renal cortical collecting ducts, where reabsorption of Na(+) through ENaC is the final renal adjustment step for Na(+) balance. Because of its regulation and function, the ENaC plays a critical role in modulating the homeostasis of Na(+) and thus chronic blood pressure. The development of most forms of hypertension requires an increase in Na(+) and water retention. The role of ENaC in developing high blood pressure is exemplified in the gain-of-function mutations in ENaC that cause Liddle's syndrome, a severe but rare form of inheritable hypertension. The evidence obtained from studies using animal models and in human patients indicates that improper Na(+) retention by the kidney elevates blood pressure and induces salt-sensitive hypertension.
Collapse
|
107
|
Lee IH, Song SH, Campbell CR, Kumar S, Cook DI, Dinudom A. Regulation of the epithelial Na+ channel by the RH domain of G protein-coupled receptor kinase, GRK2, and Galphaq/11. J Biol Chem 2011; 286:19259-69. [PMID: 21464134 DOI: 10.1074/jbc.m111.239772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na(+) absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant ((K220R)GRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 ((D110A)GRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.
Collapse
Affiliation(s)
- Il-Ha Lee
- Discipline of Physiology, The Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
108
|
Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis-like disease. Proc Natl Acad Sci U S A 2011; 108:3216-21. [PMID: 21300902 DOI: 10.1073/pnas.1010334108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cystic fibrosis is caused by impaired ion transport due to mutated cystic fibrosis transmembrane conductance regulator, accompanied by elevated activity of the amiloride-sensitive epithelial Na(+) channel (ENaC). Here we show that knockout of the ubiquitin ligase Nedd4L (Nedd4-2) specifically in lung epithelia (surfactant protein C-expressing type II and Clara cells) causes cystic fibrosis-like lung disease, with airway mucus obstruction, goblet cell hyperplasia, massive inflammation, fibrosis, and death by three weeks of age. These effects of Nedd4L loss are likely caused by enhanced ENaC function, as reflected by increased ENaC protein levels, increased lung dryness at birth, amiloride-sensitive dehydration of lung explants, and elevated ENaC currents in primary alveolar type II cells analyzed by patch clamp recordings. Moreover, the lung defects were rescued with administration of amiloride into the lungs of young knockout pups via nasal instillation. Our results therefore suggest that the ubiquitin ligase Nedd4L can suppress the onset of cystic fibrosis symptoms by inhibiting ENaC in lung epithelia.
Collapse
|
109
|
Amiloride-sensitive sodium channels and pulmonary edema. Pulm Med 2010; 2011:830320. [PMID: 21637371 PMCID: PMC3100597 DOI: 10.1155/2011/830320] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/01/2010] [Indexed: 01/11/2023] Open
Abstract
The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.
Collapse
|
110
|
Schild L. The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1159-65. [PMID: 20600867 DOI: 10.1016/j.bbadis.2010.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 12/30/2022]
|
111
|
Role of the ubiquitin system in regulating ion transport. Pflugers Arch 2010; 461:1-21. [PMID: 20972579 DOI: 10.1007/s00424-010-0893-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022]
Abstract
Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.
Collapse
|
112
|
Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11). Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1005-12. [DOI: 10.1016/j.bbalip.2010.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/26/2010] [Accepted: 04/06/2010] [Indexed: 11/18/2022]
|
113
|
Renauld S, Tremblay K, Ait-Benichou S, Simoneau-Roy M, Garneau H, Staub O, Chraïbi A. Stimulation of ENaC Activity by Rosiglitazone is PPARγ-Dependent and Correlates with SGK1 Expression Increase. J Membr Biol 2010; 236:259-70. [DOI: 10.1007/s00232-010-9297-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/10/2010] [Indexed: 02/02/2023]
|
114
|
Tapolyai M, Uysal A, Dossabhoy NR, Zsom L, Szarvas T, Lengvárszky Z, Fülöp T. High Prevalence of Liddle Syndrome Phenotype Among Hypertensive US Veterans in Northwest Louisiana. J Clin Hypertens (Greenwich) 2010; 12:856-60. [DOI: 10.1111/j.1751-7176.2010.00359.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
115
|
Mall MA, Button B, Johannesson B, Zhou Z, Livraghi A, Caldwell RA, Schubert SC, Schultz C, O'Neal WK, Pradervand S, Hummler E, Rossier BC, Grubb BR, Boucher RC. Airway surface liquid volume regulation determines different airway phenotypes in liddle compared with betaENaC-overexpressing mice. J Biol Chem 2010; 285:26945-26955. [PMID: 20566636 DOI: 10.1074/jbc.m110.151803] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.
| | - Brian Button
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Bjarki Johannesson
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Zhe Zhou
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Alessandra Livraghi
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Ray A Caldwell
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Susanne C Schubert
- Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Wanda K O'Neal
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Sylvain Pradervand
- Department of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Barbara R Grubb
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| | - Richard C Boucher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland
| |
Collapse
|
116
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
117
|
Hallows KR, Bhalla V, Oyster NM, Wijngaarden MA, Lee JK, Li H, Chandran S, Xia X, Huang Z, Chalkley RJ, Burlingame AL, Pearce D. Phosphopeptide screen uncovers novel phosphorylation sites of Nedd4-2 that potentiate its inhibition of the epithelial Na+ channel. J Biol Chem 2010; 285:21671-8. [PMID: 20466724 DOI: 10.1074/jbc.m109.084731] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E3 ubiquitin ligase Nedd4-2 regulates several ion transport proteins, including the epithelial Na(+) channel (ENaC). Nedd4-2 decreases apical membrane expression and activity of ENaC. Although it is subject to tight hormonal control, the mechanistic basis of Nedd4-2 regulation remains poorly understood. To characterize regulatory inputs to Nedd4-2 function, we screened for novel sites of Nedd4-2 phosphorylation using tandem mass spectrometry. Three of seven identified Xenopus Nedd4-2 Ser/Thr phosphorylation sites corresponded to previously identified target sites for SGK1, whereas four were novel, including Ser-293, which matched the consensus for a MAPK target sequence. Further in vitro and in vivo phosphorylation experiments revealed that Nedd4-2 serves as a target of JNK1, but not of p38 MAPK or ERK1/2. Additional rounds of tandem mass spectrometry identified two other phosphorylated residues within Nedd4-2, including Thr-899, which is present within the catalytic domain. Nedd4-2 with mutations at these sites had markedly inhibited JNK1-dependent phosphorylation, virtually no ENaC inhibitory activity, and significantly reduced ubiquitin ligase activity. These data identify phosphorylatable residues that activate Nedd4-2 and may work together with residues targeted by inhibitory kinases (e.g. SGK1 and protein kinase A) to govern Nedd4-2 regulation of epithelial ion transport.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Rickheit G, Wartosch L, Schaffer S, Stobrawa SM, Novarino G, Weinert S, Jentsch TJ. Role of ClC-5 in renal endocytosis is unique among ClC exchangers and does not require PY-motif-dependent ubiquitylation. J Biol Chem 2010; 285:17595-603. [PMID: 20351103 DOI: 10.1074/jbc.m110.115600] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the mainly endosomal 2Cl(-)/H(+)-exchanger ClC-5 severely impairs endocytosis in renal proximal tubules and underlies the human kidney stone disorder Dent's disease. In heterologous expression systems, interaction of the E3 ubiquitin ligases WWP2 and Nedd4-2 with a "PY-motif" in the cytoplasmic C terminus of ClC-5 stimulates its internalization from the plasma membrane and may influence receptor-mediated endocytosis. We asked whether this interaction is relevant in vivo and generated mice in which the PY-motif was destroyed by a point mutation. Unlike ClC-5 knock-out mice, these knock-in mice displayed neither low molecular weight proteinuria nor hyperphosphaturia, and both receptor-mediated and fluid-phase endocytosis were normal. The abundances and localizations of the endocytic receptor megalin and of the Na(+)-coupled phosphate transporter NaPi-2a (Npt2) were not changed, either. To explore whether the discrepancy in results from heterologous expression studies might be due to heteromerization of ClC-5 with ClC-3 or ClC-4 in vivo, we studied knock-in mice additionally deleted for those related transporters. Disruption of neither ClC-3 nor ClC-4 led to proteinuria or impaired proximal tubular endocytosis by itself, nor in combination with the PY-mutant of ClC-5. Endocytosis of cells lacking ClC-5 was not impaired further when ClC-3 or ClC-4 was additionally deleted. We conclude that ClC-5 is unique among CLC proteins in being crucial for proximal tubular endocytosis and that PY-motif-dependent ubiquitylation of ClC-5 is dispensable for this role.
Collapse
Affiliation(s)
- Gesa Rickheit
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
119
|
Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1166-77. [PMID: 20347969 DOI: 10.1016/j.bbadis.2010.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/20/2010] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
120
|
Eaton DC, Malik B, Bao HF, Yu L, Jain L. Regulation of epithelial sodium channel trafficking by ubiquitination. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2010; 7:54-64. [PMID: 20160149 PMCID: PMC3137150 DOI: 10.1513/pats.200909-096js] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/02/2009] [Indexed: 01/13/2023]
Abstract
Amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC) play a crucial role in Na(+) transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na(+) transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends upon a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits, alpha, beta, and gamma. The C-terminal domain of all three subunits is intracellular and contains a proline rich motif (PPxY). Mutations or deletion of this PPxY motif in the beta and gamma subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein (Nedd4-2) to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when MDCK cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected epithelial cells (A6) expressing endogenous ENaC, ENaC appears to be degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by the rate of Nedd4-2-mediated ENaC ubiquitination. Controlling the rate of degradation is apparently important enough to have multiple, redundant pathways to control Nedd4-2 and ENaC ubiquitination.
Collapse
Affiliation(s)
- Douglas C Eaton
- Department of Physiology, Whitehead Biomedical Research Building, 615 Micheal Street, Suite 601, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
121
|
Shi S, Notenboom S, Dumont ME, Ballatori N. Identification of human gene products containing Pro-Pro-x-Tyr (PY) motifs that enhance glutathione and endocytotic marker uptake in yeast. Cell Physiol Biochem 2010; 25:293-306. [PMID: 20110690 DOI: 10.1159/000276570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 11/19/2022] Open
Abstract
In an attempt to identify genes involved in glutathione (GSH) transport, a human mammary gland cDNA library was screened for clones capable of complementing a defect in GSH uptake in yeast cells that lack Hgt1p, the primary yeast GSH uptake transporter. Five genes capable of rescuing growth on sulfur-deficient GSH-containing medium were identified: prostate transmembrane protein, androgen induced 1 (PMEPA1); lysosomal-associated protein transmembrane 4 alpha (LAPTM4alpha); solute carrier family 25, member 1 (SLC25A1); lipopolysaccharide-induced TNF factor (LITAF); and cysteine/tyrosine-rich-1 (CYYR1). All of these genes encode small integral membrane proteins of unknown function, although none appear to encode prototypical GSH transporters. Nevertheless, they all increased both intracellular glutathione levels and [(3)H]GSH uptake rates. [(3)H]GSH uptake was uniformly inhibited by high concentrations of unlabeled GSH, GSSG, and ophthalmic acid. Interestingly, each protein is predicted to contain Pro-Pro-x-Tyr (PY) motifs, which are thought to be important for regulating protein cell surface expression. Uptake of the endocytotic markers lucifer yellow and FM4-64 was also enhanced by each of the five genes. Mutations of the PY motifs in LITAF largely abolished all of its effects. In summary, although the results do not reveal novel GSH transporters, they identify five PY-containing human gene products that may influence plasma membrane transport activity.
Collapse
Affiliation(s)
- Shujie Shi
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | |
Collapse
|
122
|
Fouladkou F, Lu C, Jiang C, Zhou L, She Y, Walls JR, Kawabe H, Brose N, Henkelman RM, Huang A, Bruneau BG, Rotin D. The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1. J Biol Chem 2009; 285:6770-80. [PMID: 20026598 DOI: 10.1074/jbc.m109.082347] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nedd4 (Nedd4-1) is a Hect domain E3 ubiquitin ligase that also contains a C2 domain and three WW domains. Despite numerous in vitro studies, its biological function in vivo is not well understood. Here we show that disruption of Nedd4-1 in mice (leaving Nedd4-2 intact) caused embryonic lethality at mid gestation, with pronounced heart defects (double-outlet right ventricle and atrioventricular cushion defects) and vasculature abnormalities. Quantitative mass spectrometry and immunoblot analyses of lysates from the wild type and knock-out mouse embryonic fibroblasts to identify Nedd4-1 in vivo targets revealed dramatically increased amounts of thrombospondin-1 (Tsp-1) in the knock-out mouse embryonic fibroblasts and embryos. Tsp-1 is an inhibitor of angiogenesis, and its elevated level was mediated primarily by enhanced transcription. Interestingly, the administration of aspirin (an inhibitor of Tsp-1) to the pregnant heterozygote mothers led to a reduction in Tsp-1 levels and a substantial rescue of the embryonic lethality. These results suggest that Nedd4-1 is a suppressor of Tsp1 and that increased levels of Tsp-1 in the Nedd4-1 knock-out mice may have contributed to the developmental defect observed in the embryos.
Collapse
Affiliation(s)
- Fatemeh Fouladkou
- Program in Cell Biology and the Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol 2009; 5:333. [PMID: 19953087 PMCID: PMC2824488 DOI: 10.1038/msb.2009.85] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/06/2009] [Indexed: 12/18/2022] Open
Abstract
Target recognition by the ubiquitin system is mediated by E3 ubiquitin ligases. Nedd4 family members are E3 ligases comprised of a C2 domain, 2–4 WW domains that bind PY motifs (L/PPxY) and a ubiquitin ligase HECT domain. The nine Nedd4 family proteins in mammals include two close relatives: Nedd4 (Nedd4-1) and Nedd4L (Nedd4-2), but their global substrate recognition or differences in substrate specificity are unknown. We performed in vitro ubiquitylation and binding assays of human Nedd4-1 and Nedd4-2, and rat-Nedd4-1, using protein microarrays spotted with ∼8200 human proteins. Top hits (substrates) for the ubiquitylation and binding assays mostly contain PY motifs. Although several substrates were recognized by both Nedd4-1 and Nedd4-2, others were specific to only one, with several Tyr kinases preferred by Nedd4-1 and some ion channels by Nedd4-2; this was subsequently validated in vivo. Accordingly, Nedd4-1 knockdown or knockout in cells led to sustained signalling via some of its substrate Tyr kinases (e.g. FGFR), suggesting Nedd4-1 suppresses their signalling. These results demonstrate the feasibility of identifying substrates and deciphering substrate specificity of mammalian E3 ligases.
Collapse
|
124
|
Edwin F, Anderson K, Patel TB. HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem 2009; 285:255-64. [PMID: 19864419 DOI: 10.1074/jbc.m109.030882] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser(112) and Ser(121), on Spry2. The phospho-Ser(112/121) region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys(48) on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
125
|
Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J 2009; 23:3829-42. [PMID: 19596899 DOI: 10.1096/fj.09-135590] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mechanisms by which replicating influenza viruses decrease the expression and function of amiloride-sensitive epithelial sodium channels (ENaCs) have not been elucidated. We show that expression of M2, a transmembrane influenza protein, decreases ENaC membrane levels and amiloride-sensitive currents in both Xenopus oocytes, injected with human alpha-, beta-, and gamma-ENaCs, and human airway cells (H441 and A549), which express native ENaCs. Deletion of a 10-aa region within the M2 C terminus prevented 70% of this effect. The M2 ENaC down-regulation occurred at normal pH and was prevented by MG-132, a proteasome and lysosome inhibitor. M2 had no effect on Liddle ENaCs, which have decreased affinity for Nedd4-2. H441 and A549 cells transfected with M2 showed higher levels of reactive oxygen species, as shown by the activation of redox-sensitive dyes. Pretreatment with glutathione ester, which increases intracellular reduced thiol concentrations, or protein kinase C (PKC) inhibitors prevented the deleterious effects of M2 on ENaCs. The data suggest that M2 protein increases steady-state concentrations of reactive oxygen intermediates that simulate PKC and decrease ENaCs by enhancing endocytosis and its subsequent destruction by the proteasome. These novel findings suggest a mechanism for the influenza-induced rhinorrhea and life-threatening alveolar edema in humans.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, Schools of Medicine and Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
126
|
Lee YJ, Kwon TH. Ubiquitination of aquaporin-2 in the kidney. Electrolyte Blood Press 2009; 7:1-4. [PMID: 21468177 PMCID: PMC3041480 DOI: 10.5049/ebp.2009.7.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/29/2009] [Indexed: 12/24/2022] Open
Abstract
Ubiquitination is known to be important for endocytosis and lysosomal degradation of aquaporin-2 (AQP2). Ubiquitin (Ub) is covalently attached to the lysine residue of the substrate proteins and activation and attachment of Ub to a target protein is mediated by the action of three enzymes (i.e., E1, E2, and E3). In particular, E3 Ub-protein ligases are known to have substrate specificity. This minireview will discuss the ubiquitination of AQP2 and identification of potential E3 Ub-protein ligases for 1-deamino-8-D-arginine vasopressin (dDAVP)-dependent AQP2 regulation.
Collapse
Affiliation(s)
- Yu-Jung Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | | |
Collapse
|
127
|
Garrone NF, Blazer-Yost BL, Weiss RB, Lalouel JM, Rohrwasser A. A human polymorphism affects NEDD4L subcellular targeting by leading to two isoforms that contain or lack a C2 domain. BMC Cell Biol 2009; 10:26. [PMID: 19364400 PMCID: PMC2678989 DOI: 10.1186/1471-2121-10-26] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 04/13/2009] [Indexed: 11/17/2022] Open
Abstract
Background Ubiquitination serves multiple cellular functions, including proteasomal degradation and the control of stability, function, and intracellular localization of a wide variety of proteins. NEDD4L is a member of the HECT class of E3 ubiquitin ligases. A defining feature of NEDD4L protein isoforms is the presence or absence of an amino-terminal C2 domain, a class of subcellular, calcium-dependent targeting domains. We previously identified a common variant in human NEDD4L that generates isoforms that contain or lack a C2 domain. Results To address the potential functional significance of the NEDD4L common variant on NEDD4L subcellular localization, NEDD4L isoforms that either contained or lacked a C2 domain were tagged with enhanced green fluorescent protein, transfected into Xenopus laevis kidney epithelial cells, and imaged by performing confocal microscopy on live cells. We report that the presence or absence of this C2 domain exerts differential effects on the subcellular distribution of NEDD4L, the ability of C2 containing and lacking NEDD4L isoforms to mobilize in response to a calcium stimulus, and the intracellular transport of subunits of the NEDD4L substrate, ENaC. Furthermore, the ability of the C2-containing isoform to influence β-ENaC mobilization from intracellular pools involves the NEDD4L active site for ubiquitination. We propose a model to account for the potential impact of this common genetic variant on protein function at the cellular level. Conclusion NEDD4L isoforms that contain or lack a C2 domain target different intracellular locations. Additionally, whereas the C2-containing NEDD4L isoform is capable of shuttling between the plasma membrane and intracellular compartments in response to calcium stimulus the C2-lacking isoform can not. The C2-containing isoform differentially affects the mobilization of ENaC subunits from intracellular pools and this trafficking step requires NEDD4L ubiquitin ligase activity. This observation suggests a new mechanism for the requirement for the PY motif in cAMP-mediated exocytosis of ENaC. We have elucidated how a common genetic variant can underlie significant functional diversity in NEDD4L at the cellular level. We propose a model that describes how that functional variation may influence blood pressure. Moreover, our observations regarding differential function of the NEDD4L isoforms may impact other aspects of physiology that involve this ubiquitin ligase.
Collapse
Affiliation(s)
- Nicholas F Garrone
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, USA.
| | | | | | | | | |
Collapse
|
128
|
Mund T, Pelham HRB. Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins. EMBO Rep 2009; 10:501-7. [PMID: 19343052 DOI: 10.1038/embor.2009.30] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 01/01/2023] Open
Abstract
HECT domain E3 ubiquitin ligases of the NEDD4 family control many cellular processes, but their regulation is poorly understood. They contain multiple WW domains that recognize PY elements. Here, we show that the small PY-containing membrane proteins, NDFIP1 and NDFIP2 (NEDD4 family-interacting proteins), activate the catalytic activity of ITCH and of several other HECT ligases by binding to them. This releases them from an autoinhibitory intramolecular interaction, which seems to be characteristic of these enzymes. Activation of ITCH requires multiple PY-WW interactions, but little else. Binding of NDFIP proteins is highly dynamic, potentially allowing activated ligases to access other PY-containing substrates. In agreement with this, NDFIP proteins promote ubiquitination in vivo both of Jun proteins, which have a PY motif, and of endophilin, which does not.
Collapse
Affiliation(s)
- Thomas Mund
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
129
|
Liu Y, Oppenheim RW, Sugiura Y, Lin W. Abnormal development of the neuromuscular junction in Nedd4-deficient mice. Dev Biol 2009; 330:153-66. [PMID: 19345204 DOI: 10.1016/j.ydbio.2009.03.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/28/2022]
Abstract
Nedd4 (neural precursor cell expressed developmentally down-regulated gene 4) is an E3 ubiquitin ligase highly conserved from yeast to humans. The expression of Nedd4 is developmentally down-regulated in the mammalian nervous system, but the role of Nedd4 in mammalian neural development remains poorly understood. Here we show that a null mutation of Nedd4 in mice leads to perinatal lethality: mutant mice were stillborn and many of them died in utero before birth (between E15.5-E18.5). In Nedd4 mutant embryos, skeletal muscle fiber sizes and motoneuron numbers are significantly reduced. Surviving motoneurons project axons to their target muscles on schedule, but motor nerves defasciculate upon reaching the muscle surface, suggesting that Nedd4 plays a critical role in fine-tuning the interaction between the nerve and the muscle. Electrophysiological analyses of the neuromuscular junction (NMJ) demonstrate an increased spontaneous miniature endplate potential (mEPP) frequency in Nedd4 mutants. However, the mutant neuromuscular synapses are less responsive to membrane depolarization, compared to the wildtypes. Ultrastructural analyses further reveal that the pre-synaptic nerve terminal branches at the NMJs of Nedd4 mutants are increased in number, but decreased in diameter compared to the wildtypes. These ultrastructural changes are consistent with functional alternation of the NMJs in Nedd4 mutants. Unexpectedly, Nedd4 is not expressed in motoneurons, but is highly expressed in skeletal muscles and Schwann cells. Together, these results demonstrate that Nedd4 is involved in regulating the formation and function of the NMJs through non-cell autonomous mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | | | | | |
Collapse
|
130
|
Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 2009; 458:111-35. [PMID: 19277701 DOI: 10.1007/s00424-009-0656-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/18/2009] [Accepted: 02/22/2009] [Indexed: 12/29/2022]
Abstract
The aldosterone-sensitive distal nephron (ASDN) includes the late distal convoluted tubule 2, the connecting tubule (CNT) and the collecting duct. The appropriate regulation of sodium (Na(+)) absorption in the ASDN is essential to precisely match urinary Na(+) excretion to dietary Na(+) intake whilst taking extra-renal Na(+) losses into account. There is increasing evidence that Na(+) transport in the CNT is of particular importance for the maintenance of body Na(+) balance and for the long-term control of extra-cellular fluid volume and arterial blood pressure. Na(+) transport in the CNT critically depends on the activity and abundance of the amiloride-sensitive epithelial sodium channel (ENaC) in the luminal membrane of the CNT cells. As a rate-limiting step for transepithelial Na(+) transport, ENaC is the main target of hormones (e.g. aldosterone, angiotensin II, vasopressin and insulin/insulin-like growth factor 1) to adjust transepithelial Na(+) transport in this tubular segment. In this review, we highlight the structural and functional properties of the CNT that contribute to the high Na(+) transport capacity of this segment. Moreover, we discuss some aspects of the complex pathways and molecular mechanisms involved in ENaC regulation by hormones, kinases, proteases and associated proteins that control its function. Whilst cultured cells and heterologous expression systems have greatly advanced our knowledge about some of these regulatory mechanisms, future studies will have to determine the relative importance of the various pathways in the native tubule and in particular in the CNT.
Collapse
|
131
|
Edinger RS, Lebowitz J, Li H, Alzamora R, Wang H, Johnson JP, Hallows KR. Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2. J Biol Chem 2009; 284:150-157. [PMID: 18981174 PMCID: PMC2610498 DOI: 10.1074/jbc.m807358200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/28/2008] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that IkappaB kinase-beta (IKKbeta) interacts with the epithelial Na+ channel (ENaC) beta-subunit and enhances ENaC activity by increasing its surface expression in Xenopus oocytes. Here, we show that the IKKbeta-ENaC interaction is physiologically relevant in mouse polarized kidney cortical collecting duct (mpkCCDc14) cells, as RNA interference-mediated knockdown of endogenous IKKbeta in these cells by approximately 50% resulted in a similar reduction in transepithelial ENaC-dependent equivalent short circuit current. Although IKKbeta binds to ENaC, there was no detectable phosphorylation of ENaC subunits by IKKbeta in vitro. Because IKKbeta stimulation of ENaC activity occurs through enhanced channel surface expression and the ubiquitin-protein ligase Nedd4-2 has emerged as a central locus for ENaC regulation at the plasma membrane, we tested the role of Nedd4-2 in this regulation. IKKbeta-dependent phosphorylation of Xenopus Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for regulation of Nedd4-2 and thus ENaC activity. 32P labeling studies utilizing wild-type or mutant forms of Xenopus Nedd4-2 demonstrated that Ser-444, a key SGK1 and protein kinase A-phosphorylated residue, is also an important IKKbeta phosphorylation target. ENaC stimulation by IKKbeta was preserved in oocytes expressing wild-type Nedd4-2 but blocked in oocytes expressing either a dominant-negative (C938S) or phospho-deficient (S444A) Nedd4-2 mutant, suggesting that Nedd4-2 function and phosphorylation by IKKbeta are required for IKKbeta regulation of ENaC. In summary, these results suggest a novel mode of ENaC regulation that occurs through IKKbeta-dependent Nedd4-2 phosphorylation at a recognized SGK1 and protein kinase A target site.
Collapse
Affiliation(s)
- Robert S Edinger
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathan Lebowitz
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Hui Li
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Rodrigo Alzamora
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Huamin Wang
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - John P Johnson
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kenneth R Hallows
- Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; Renal-Electrolyte Division, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
132
|
Abstract
Hypertension is a serious medical problem affecting a large population worldwide. Liddle syndrome is a hereditary form of early onset hypertension caused by mutations in the epithelial Na+ channel (ENaC). The mutated region, called the PY (Pro-Pro-x-Tyr) motif, serves as a binding site for Nedd4-2, an E3 ubiquitin ligase from the HECT family. Nedd4-2 binds the ENaC PY motif via its WW domains, normally leading to ENaC ubiquitylation and endocytosis, reducing the number of active channels at the plasma membrane. In Liddle syndrome, this endocytosis is impaired due to the inability of the mutated PY motif in ENaC to properly bind Nedd4-2. This leads to accumulation of active channels at the cell surface and increased Na+ (and fluid) absorption in the distal nephron, resulting in elevated blood volume and blood pressure. Small molecules/compounds that destabilize cell surface ENaC, or enhance Nedd4-2 activity in the kidney, could potentially serve to alleviate hypertension. Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Ontario, M5G 1X8, Canada.
| |
Collapse
|
133
|
Boulkroun S, Ruffieux-Daidié D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O. Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am J Physiol Renal Physiol 2008; 295:F889-900. [DOI: 10.1152/ajprenal.00001.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adjustment of Na+balance in extracellular fluids is achieved by regulated Na+transport involving the amiloride-sensitive epithelial Na+channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of α- and γ-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCDcl1cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC.
Collapse
|
134
|
Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem J 2008; 415:155-63. [DOI: 10.1042/bj20071708] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein–protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse–chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain–HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.
Collapse
|
135
|
Ruffieux-Daidié D, Poirot O, Boulkroun S, Verrey F, Kellenberger S, Staub O. Deubiquitylation regulates activation and proteolytic cleavage of ENaC. J Am Soc Nephrol 2008; 19:2170-80. [PMID: 18701608 DOI: 10.1681/asn.2007101130] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively.
Collapse
Affiliation(s)
- Dorothée Ruffieux-Daidié
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
136
|
Bugaj V, Pochynyuk O, Mironova E, Vandewalle A, Medina JL, Stockand JD. Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct. Am J Physiol Renal Physiol 2008; 295:F1063-70. [PMID: 18667482 DOI: 10.1152/ajprenal.90321.2008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We used patch-clamp electrophysiology to investigate regulation of the epithelial Na+ channel (ENaC) by endothelin-1 (ET-1) in isolated, split-open rat collecting ducts. ET-1 significantly decreases ENaC open probability by about threefold within 5 min. ET-1 decreases ENaC activity through basolateral membrane ETB but not ETA receptors. In rat collecting duct, we find no role for phospholipase C or protein kinase C in the rapid response of ENaC to ET-1. ET-1, although, does activate src family tyrosine kinases and their downstream MAPK1/2 effector cascade in renal principal cells. Both src kinases and MAPK1/2 signaling are necessary for ET-1-dependent decreases in ENaC open probability in the split-open collecting duct. We conclude that ET-1 in a physiologically relevant manner rapidly suppresses ENaC activity in native, mammalian principal cells. These findings may provide a potential mechanism for the natriuresis observed in vivo in response to ET-1, as well as a potential cause for the salt-sensitive hypertension found in animals with impaired endothelin signaling.
Collapse
Affiliation(s)
- Vladislav Bugaj
- Department of Physiology 7756, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
137
|
Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 2008; 296:F10-24. [PMID: 18508877 DOI: 10.1152/ajprenal.90248.2008] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle's syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in states as diverse as salt-sensitive hypertension, nephrosis, and pulmonary edema. ENaC activity in epithelial cells is highly regulated both by open probability and number of channels. Open probability is regulated by a number of factors, including proteolytic processing, while ENaC number is regulated by cellular trafficking. This review discusses current understanding of apical membrane delivery, cell surface stability, endocytosis, retrieval, and recycling of ENaC and the molecular partners that have so far been shown to participate in these processes. We review known sites and mechanisms of hormonal regulation of trafficking by aldosterone, vasopressin, and insulin. While many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Dept. of Cell Biology and Physiology, Univ. of Pittsburgh, S375 BST, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
138
|
Liddle's syndrome caused by a novel missense mutation (P617L) of the epithelial sodium channel β subunit. J Hypertens 2008; 26:921-7. [DOI: 10.1097/hjh.0b013e3282f85dfe] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
139
|
Epithelial sodium channels in the adult lung--important modulators of pulmonary health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 618:127-40. [PMID: 18269193 PMCID: PMC7122934 DOI: 10.1007/978-0-387-75434-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Absorption of excess fluid from the airways and alveolar lumen requires active vectorial transepithelial transport of sodium ions (Na+) by alveolar type II and possibly type I cells. The rate-limiting step in this process is the activity of the heterotrimeric apical membrane epithelial Na+ channel (ENaC). Pharmacologic inhibitors and genetic manipulations that disrupt Na+ transport result in fluid accumulation within the lung and failure of gas exchange. The importance of Na+ transport in the lung is also demonstrated in conditions such as ARDS, where abnormal absorption of Na+ contributes to the pathophysiology of pulmonary disease. ENaC expression and function is influenced by diverse factors, such as oxygen tension, glucocorticoids, and cytoskeletal proteins. In addition, ENaC dysfunction has been shown to be induced by purinergic nucleotide activation of P2Y receptors (in paramyxoviral bronchiolitis) and reactive species (in acute lung injury). Finally, beta-adrenergic agonists have been shown experimentally to reverse defects in ENaC function, and improve hypoxemia and pulmonary edema, and may provide a novel therapeutic modality for ARDS, although some viral lung pathogens appear to induce insensitivity to their actions.
Collapse
|
140
|
Song W, Lazrak A, Wei S, McArdle P, Matalon S. Chapter 3 Modulation of Lung Epithelial Sodium Channel Function by Nitric Oxide. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
141
|
Abstract
Aldosterone increases sodium reabsorption across kidney target tubules already before it increases the number of transport proteins, indicating that the early functional response to aldosterone depends on the activation of preexisting channels and pumps. A central mediator of this action is the early aldosterone-induced kinase Sgk1 that de-represses the surface expression and activity of the epithelial sodium channel (ENaC). A main mechanism by which Sgk1 exerts this de-repression is the phosphorylation of the ubiquitin ligase Nedd4-2 that is thereby prevented from ubiquitylating ENaC. Among a series of new early aldosterone-induced gene products recently identified in kidney target tubules, an additional regulator of ENaC ubiquitylation, the deubiquitylating enzyme Usp2-45, was identified. Coexpression of Usp2-45 was shown to increase ENaC surface expression and activity, and to decrease its ubiquitylation in expression systems, whereas other Usps such as the splice variant Usp2-69 had no effect. Since both Sgk1 and Usp2-45 are similarly induced in distal colon as well, in contrast to other gene products strongly induced in kidney that are not regulated in colon, we suggest that (de)ubiquitylation is the major ENaC regulatory mechanism targeted by aldosterone in the short-term via transcriptional regulation.
Collapse
|
142
|
Li X, Su V, Kurata WE, Jin C, Lau AF. A novel connexin43-interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin43. J Biol Chem 2007; 283:5748-59. [PMID: 18079109 DOI: 10.1074/jbc.m709288200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degradation of connexin43 (Cx43) has been reported to involve both lysosomal and proteasomal degradation pathways; however, very little is known about the mechanisms regulating these Cx43 degradation pathways. Using yeast two-hybrid, glutathione S-transferase pull-down, and co-immunoprecipitation approaches, we have identified a novel Cx43-interacting protein of approximately 75 kDa, CIP75. Laser confocal microscopy showed that CIP75 is located primarily at the endoplasmic reticulum, as indicated by the calnexin marker, with Cx43 co-localization in this perinuclear region. CIP75 belongs to the UbL (ubiquitin-like)-UBA (ubiquitin-associated) domain-containing protein family with a N-terminal UbL domain and a C-terminal UBA domain. The UBA domain of CIP75 is the main element mediating the interaction with Cx43, whereas the CIP75-interacting region in Cx43 resides in the PY motif and multiphosphorylation sites located between Lys 264 and Asn 302. Interestingly, the UbL domain interacts with the S2/RPN1 and S5a/RPN10 protein subunits of the regulatory 19 S proteasome cap subunit of the 26 S proteasome complex. Overexpression experiments suggested that CIP75 is involved in the turnover of Cx43 as measured by a significant stimulation of Cx43 degradation and reduction in its half-life with the opposite effects on Cx43 degradation observed in small interference RNA knockdown experiments.
Collapse
Affiliation(s)
- Xinli Li
- Natural Products and Cancer Biology Program, Cancer Research Center of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
143
|
Abstract
In a simplified view, members of the HECT E3 family have a modular structure consisting of the C-terminal HECT domain, which is catalytically involved in the attachment of ubiquitin to substrate proteins, and N-terminal extensions of variable length and sequence that mediate the substrate specificity of the respective HECT E3. Although the physiologically relevant substrates of most HECT E3s have remained elusive, it is becoming increasingly clear that HECT E3s play an important role in sporadic and hereditary human diseases including cancer, cardiovascular (Liddle's syndrome) and neurological (Angelman syndrome) disorders, and/or in disease-relevant processes including bone homeostasis, immune response and retroviral budding. Thus, molecular approaches to target the activity of distinct HECT E3s, regulators thereof, and/or of HECT E3 substrates could prove valuable in the treatment of the respective diseases. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Martin Scheffner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | |
Collapse
|
144
|
Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. ACTA ACUST UNITED AC 2007; 130:399-413. [PMID: 17893193 PMCID: PMC2151653 DOI: 10.1085/jgp.200709800] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na+ channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P3 and PI(4,5)P2 to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in β- and γ- but not α-ENaC as necessary for PI(3,4,5)P2 but not PI(4,5)P2 modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in β- and γ-ENaC are critical to PI(3,4,5)P3 augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of β- and γ-ENaC were identified as being critical to down-regulation of ENaC activity and Po in response to depletion of membrane PI(4,5)P2. These regions of the channel played no identifiable role in a PI(3,4,5)P3 response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P2 to increase open probability. We conclude that β and γ subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P3 and PI(4,5)P2. This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- University of Texas Health Science Center, Department of Physiology, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Wiemuth D, Ke Y, Rohlfs M, Mc Donald F. Epithelial sodium channel (ENaC) is multi-ubiquitinated at the cell surface. Biochem J 2007; 405:147-55. [PMID: 17381423 PMCID: PMC1925249 DOI: 10.1042/bj20060747] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human ENaC (epithelial sodium channel), a complex of three subunits, provides the rate-limiting step for sodium uptake in the distal nephron, and therefore plays a key role in salt homoeostasis and in regulating blood pressure. The number of active sodium channel complexes present at the plasma membrane appears to be tightly controlled. In Liddle's syndrome, a form of hypertension caused by an increase in the number of active sodium channels at the cell membrane, the betaENaC or gammaENaC subunit gene contains a mutation that disrupts the binding site for the Nedd4 (neuronal precursor cell expressed developmentally down-regulated gene 4) family of ubiquitin-protein ligases. Therefore ubiquitination of channel subunits may be involved in altering cell surface ENaC. Here, we provide evidence that the ENaC subunits located at the cell surface are modified with multiple mono-ubiquitins (multi-ubiquitination) and that Nedd4-2 modulates this ubiquitination. We confirm that ENaC is associated with the mu2 subunit of the AP-2 (adaptor protein 2) clathrin adaptor. Since mono- or multi-ubiquitination of other membrane proteins is a signal for their internalization by clathrin-mediated endocytosis and subsequent trafficking, our results support a model whereby ubiquitin and clathrin adaptor binding sites act in concert to remove ENaC from the cell surface.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Department of Physiology, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Ying Ke
- Department of Physiology, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Meino Rohlfs
- Department of Physiology, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Fiona J. Mc Donald
- Department of Physiology, University of Otago, PO Box 913, Dunedin 9054, New Zealand
- To whom correspondence should be addressed (email )
| |
Collapse
|
146
|
Lu C, Pribanic S, Debonneville A, Jiang C, Rotin D. The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 2007; 8:1246-64. [PMID: 17605762 DOI: 10.1111/j.1600-0854.2007.00602.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The epithelial-Na(+)-channel (alphabetagammaENaC) regulates kidney salt-transport and blood pressure. Each ENaC subunit contains a PY motif (PPxY) and its mutation in beta/gammaENaC causes Liddle syndrome, a hereditary hypertension. These (extended) PY motifs (PP(616)xY(618)xxL(621)) serve as binding sites for the ubiquitin ligase Nedd4-2, which decreases cell-surface expression of ENaC by unknown route(s). Using polarized kidney epithelia [Madin-Darby canine kidney I (MDCK-I)] cells stably expressing extracellularly myc-tagged wild type (WT) or PY-motif mutants of betaENaC (P616A, Y618A or L621A, with WT-alphagammaENaC), and live-imaging plus enzyme-linked immunosorbent assay (ELISA)-type assays to analyze routes/rates of ENaC internalization/recycling, we show here that cell-surface half-life of all PY mutants was fourfold longer than WT-ENaC (approximately 120 versus 30 minutes), reflecting primarily reduced channel internalization but also attenuated replenishment of cell-surface ENaC from a large subapical pool. The Y618A mutant revealed more severe internalization and replenishment defects than the other PY mutants. Internalized WT-ENaC was detected in sorting/recycling and late endosomes/lysosomes, while the Y618A mutant accumulated in the former. Nedd4-2 ubiquitinated ENaC at the apical membrane causing channel internalization and degradation. Cyclic AMP (cAMP) accelerated mobilization of subapical ENaC to the cell surface and long-term ENaC recycling, but only mobilization, not recycling, was inhibited in the PY mutants. These results suggest that the ENaC PY motifs (and Nedd4-2) primarily regulate channel internalization but also affect cAMP-dependent replenishment, providing important insight into the Liddle syndrome defects.
Collapse
Affiliation(s)
- Chen Lu
- Program in Cell Biology, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada, M5G 1X8
| | | | | | | | | |
Collapse
|
147
|
Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 2007; 3:116. [PMID: 17551511 PMCID: PMC1911201 DOI: 10.1038/msb4100159] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/24/2007] [Indexed: 01/25/2023] Open
Abstract
Ubiquitin-protein ligases (E3s) are responsible for target recognition and regulate stability, localization or function of their substrates. However, the substrates of most E3 enzymes remain unknown. Here, we describe the development of a novel proteomic in vitro ubiquitination screen using a protein microarray platform that can be utilized for the discovery of substrates for E3 ligases on a global scale. Using the yeast E3 Rsp5 as a test system to identify its substrates on a yeast protein microarray that covers most of the yeast (Saccharomyces cerevisiae) proteome, we identified numerous known and novel ubiquitinated substrates of this E3 ligase. Our enzymatic approach was complemented by a parallel protein microarray protein interaction study. Examination of the substrates identified in the analysis combined with phage display screening allowed exploration of binding mechanisms and substrate specificity of Rsp5. The development of a platform for global discovery of E3 substrates is invaluable for understanding the cellular pathways in which they participate, and could be utilized for the identification of drug targets.
Collapse
Affiliation(s)
- Ronish Gupta
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bart Kus
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Fladd
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - James Wasmuth
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raffi Tonikian
- Banting & Best Department of Medical Research, University of Toronto, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev Sidhu
- Department of Protein Engineering, Genentech, South San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA, USA
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Tel.: +1 416-813-5098; Fax: +1 416-813-8456;
| |
Collapse
|
148
|
Ishigami T, Umemura M, Araki N, Hirawa N, Tamura K, Uchino K, Umemura S, Rohrwasser A, Lalouel JM. NEDD4L protein truncating variant (v13[G/A]: rs4149601) is associated with essential hypertension in a sample of the Japanese population. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00382.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
149
|
Randrianarison N, Escoubet B, Ferreira C, Fontayne A, Fowler-Jaeger N, Clerici C, Hummler E, Rossier BC, Planès C. beta-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice. J Physiol 2007; 582:777-88. [PMID: 17430990 PMCID: PMC2075313 DOI: 10.1113/jphysiol.2007.131078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transepithelial sodium transport via alveolar epithelial Na(+) channels and Na(+),K(+)-ATPase constitutes the driving force for removal of alveolar oedema fluid. Decreased activity of the amiloride-sensitive epithelial Na(+) channel (ENaC) in the apical membrane of alveolar epithelial cells impairs sodium-driven alveolar fluid clearance (AFC) and predisposes to pulmonary oedema. We hypothesized that hyperactivity of ENaC in the distal lung could improve AFC and facilitate the resolution of pulmonary oedema. AFC and lung fluid balance were studied at baseline and under conditions of hydrostatic pulmonary oedema in the beta-Liddle (L) mouse strain harbouring a gain-of-function mutation (R(566)(stop)) within the Scnn1b gene. As compared with wild-type (+/+), baseline AFC was increased by 2- and 3-fold in heterozygous (+/L) and homozygous mutated (L/L) mice, respectively, mainly due to increased amiloride-sensitive AFC. The beta(2)-agonist terbutaline stimulated AFC in +/+ and +/L mice, but not in L/L mice. Acute volume overload induced by saline infusion (40% of body weight over 2 h) significantly increased extravascular (i.e. interstitial and alveolar) lung water as assessed by the bloodless wet-to-dry lung weight ratio in +/+ and L/L mice, as compared with baseline. However, the increase was significantly larger in +/+ than in L/L groups (P=0.01). Volume overload also increased the volume of the alveolar epithelial lining fluid in +/+ mice, indicating the presence of alveolar oedema, but not in L/L mice. Cardiac function as evaluated by echocardiography was comparable in both groups. These data show that constitutive ENaC activation improved sodium-driven AFC in the mouse lung, and attenuated the severity of hydrostatic pulmonary oedema.
Collapse
|
150
|
Sjakste T, Poudziunas I, Ninio E, Perret C, Pirags V, Nicaud V, Lazdins M, Evans A, Morrison C, Cambien F, Sjakste N. SNPs of the PSMA6 gene: Investigation of possible association with myocardial infarction and type 2 diabetes mellitus. RUSS J GENET+ 2007. [DOI: 10.1134/s102279540704014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|