101
|
Kelty TJ, Taylor CL, Wieschhaus NE, Thorne PK, Amin AR, Mueller CM, Olver TD, Tharp DL, Emter CA, Caulk AW, Rector RS. Western diet-induced obesity results in brain mitochondrial dysfunction in female Ossabaw swine. Front Mol Neurosci 2023; 16:1320879. [PMID: 38163062 PMCID: PMC10755880 DOI: 10.3389/fnmol.2023.1320879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Diet-induced obesity is implicated in the development of a variety of neurodegenerative disorders. Concurrently, the loss of mitochondrial Complex I protein or function is emerging as a key phenotype across an array of neurodegenerative disorders. Therefore, the objective of this study was to determine if Western diet (WD) feeding in swine [carbohydrate = 40.8% kCal (17.8% of total calories from high fructose corn syrup), protein = 16.2% kcal, fat = 42.9% kCal, and 2% cholesterol] would result in Complex I syndrome pathology. To characterize the effects of WD-induced obesity on brain mitochondria in swine, high resolution respirometry measurements from isolated brain mitochondria, oxidative phosphorylation Complex expression, and indices of oxidative stress and mitochondrial biogenesis were assessed in female Ossabaw swine fed a WD for 6-months. In line with Complex I syndrome, WD feeding severely reduced State 3 Complex I, State 3 Complex I and II, and uncoupled mitochondrial respiration in the hippocampus and prefrontal cortex (PFC). State 3 Complex I mitochondrial respiration in the PFC inversely correlated with serum total cholesterol. WD feeding also significantly reduced protein expression of oxidative phosphorylation Complexes I-V in the PFC. WD feeding significantly increased markers of antioxidant defense and mitochondrial biogenesis in the hippocampi and PFC. These data suggest WD-induced obesity may contribute to Complex I syndrome pathology by increasing oxidative stress, decreasing oxidative phosphorylation Complex protein expression, and reducing brain mitochondrial respiration. Furthermore, these findings provide mechanistic insight into the clinical link between obesity and mitochondrial Complex I related neurodegenerative disorders.
Collapse
Affiliation(s)
- Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Chris L. Taylor
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | | | - Pamela K. Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Amira R. Amin
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Christina M. Mueller
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - T. Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darla L. Tharp
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Craig A. Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | | | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
102
|
Chakkingal Bhaskaran B, Meyermans R, Gorssen W, Maes GE, Buyse J, Janssens S, Buys N. The forgotten variable? Does the euthanasia method and sample storage condition influence an organisms transcriptome - a gene expression analysis on multiple tissues in pigs. BMC Genomics 2023; 24:769. [PMID: 38093185 PMCID: PMC10720124 DOI: 10.1186/s12864-023-09794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Transcriptomic studies often require collection of fresh tissues post euthanasia. The chosen euthanasia method might have the potential to induce variations in gene expressions that are unlinked with the experimental design. The present study compared the suitability of 'nitrogen gas in foam' (ANOXIA) in comparison to a non-barbiturate anaesthetic, T-61® (T61), for euthanizing piglets used in transcriptome research. Further, the effect of common tissue storage conditions, RNAlater™ (RL) and snap freezing in liquid nitrogen (LN2), on gene expression profiles were also analysed. RESULTS On comparison of the 3'mRNA-Seq data generated from pituitary, hypothalamus, liver and lung tissues, no significant differential expression in the protein coding genes were detected between the euthanasia methods. This implies that the nitrogen anoxia method could be a suitable alternative for euthanasia of piglets used in transcriptomic research. However, small nuclear RNAs (snRNAs) that constitute the eukaryotic spliceosomal machinery were found to be significantly higher (log2fold change ≥ 2.0, and adjusted p value ≤ 0.1) in pituitary samples collected using ANOXIA. Non-protein coding genes like snRNAs that play an important role in pre-mRNA splicing can subsequently modify gene expression. Storage in RL was found to be superior in preserving RNA compared to LN2 storage, as evidenced by the significantly higher RIN values in representative samples. However, storage in RL as opposed to LN2, also influenced differential gene expression in multiple tissues, perhaps as a result of its inability to inhibit biological activity during storage. Hence such external sources of variations should be carefully considered before arriving at research conclusions. CONCLUSIONS Source of biological variations like euthanasia method and storage condition can confound research findings. Even if we are unable to prevent the effect of these external factors, it will be useful to identify the impact of these variables on the parameter under observation and thereby prevent misinterpretation of our results.
Collapse
Affiliation(s)
- B Chakkingal Bhaskaran
- Department of Biosystems, Centre for Animal Breeding and Genetics, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium.
| | - R Meyermans
- Department of Biosystems, Centre for Animal Breeding and Genetics, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - W Gorssen
- Department of Biosystems, Centre for Animal Breeding and Genetics, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - G E Maes
- Centre for Human Genetics, Genomics Core, UZ-KU Leuven, Leuven, Belgium
| | - J Buyse
- Department of Biosystems, Laboratory of Livestock Physiology, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - S Janssens
- Department of Biosystems, Centre for Animal Breeding and Genetics, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium
| | - N Buys
- Department of Biosystems, Centre for Animal Breeding and Genetics, KU Leuven, Kasteelpark Arenberg 30, Box 2472, Leuven, 3001, Belgium.
| |
Collapse
|
103
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
104
|
Svetlove A, Ritter CO, Dullin C, Schmid M, Schauer S, Uihlein J, Uecker M, Mietsch M, Stadelmann C, Lotz J, Unterberg-Buchwald C. Evaluation of MR-safe bioptomes for MR-guided endomyocardial biopsy in minipigs: a potential radiation-free clinical approach. Eur Radiol Exp 2023; 7:76. [PMID: 38049615 PMCID: PMC10695907 DOI: 10.1186/s41747-023-00391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Diagnostic accuracy of endomyocardial biopsy could improve if clinically safe magnetic resonance (MR)-compatible bioptomes were available. We explored two novel MR-compatible cardiac bioptomes for performance, safety, and clinical viability, employing in vivo minipig trials and phase-contrast synchrotron radiation computed microtomography (SRµCT). METHODS Analysis of ex vivo obtained pig endomyocardial biopsies was performed using phase-contrast SRµCT and conventional two-dimensional histology. The technical performance was evaluated by measuring volume, inner and outer integrities, compression, and histological diagnostic value in 3 sets (6 per set) of biopsies for each experimental bioptome. The bioptomes were tested in vivo in 3 healthy minipigs per bioptome. The clinical feasibility was evaluated by procedural and cutting success as well as histological diagnostic value. RESULTS The bioptome with the 'grind-grind' design achieved similar values to control in compression (p = 0.822), inner (p = 0.628), and outer (p = 0.507), integrities ex vivo. It showed a better performance in the in vivo real-time MRI setting demonstrating a higher cutting success (91.7%) than the 'grind-anvil' (86.2%) design. In both ex vivo and in vivo evaluations, the 'grind-grind' design displayed sufficient diagnostic value (83% and 95%). The 'grind-anvil' design showed adequate diagnostic value both ex vivo and in vivo (78% and 87.5%) but was not comparable to control according to the three-dimensional (3D) analysis. CONCLUSION A novel MR-compatible bioptome was identified as plausible in a clinical setting. Additionally, SRµCT and subsequent 3D structural analysis could be valuable in the label-free investigation of myocardial tissue at a micrometer level. RELEVANCE STATEMENT Implementation of MR-guided biopsy can improve animal studies on structural myocardial changes at any point in an experimental setup. With further improvements in guiding catheters, MR-guided biopsy, using the new bioptome, has a potential to increase quality and diagnostic accuracy in patients both with structural and inflammatory cardiomyopathies. KEY POINTS • Novel MR-compatible bioptomes show promise for a clinical application. • SRµCT enabled detailed analysis of endomyocardial biopsies. • The bioptomes showed adequate in vivo performance without major complications.
Collapse
Affiliation(s)
- Angelika Svetlove
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
| | - Christian O Ritter
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Christian Dullin
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- TLRC (Translational Lung Research Center), University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Schmid
- EPflex Feinwerktechnik GmbH, Dettingen an der Erms, Germany
| | - Senta Schauer
- EPflex Feinwerktechnik GmbH, Dettingen an der Erms, Germany
| | | | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Matthias Mietsch
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Laboratory Animal Science Unit, Leibniz-Institut Für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
| | | | - Joachim Lotz
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Christina Unterberg-Buchwald
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Department of Cardiology and Pneumology, University Medical Centre, Göttingen, Germany.
| |
Collapse
|
105
|
Christoffersen BØ, Bundgaard CJ, Hjøllund KR, Fels JJ, Boll KK, Lyhne MK, Olsen LH. Influence of general anaesthesia on circulating biomarkers of glucose metabolism in pigs. Lab Anim 2023; 57:650-663. [PMID: 37647768 DOI: 10.1177/00236772231187179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pigs are widely used in metabolic research with procedures often requiring general anaesthesia. The aim was to investigate the effect of four different anaesthetic protocols: 1) isoflurane inhalation, 2) propofol infusion, 3) a mixture of tiletamine, zolazepam, medetomidine, ketamine and butorphanol (TZMKB)) and 4) ketamine combined with midazolam and xylazine (KMX)) on selected biomarkers during basal and glucose stimulated conditions. Eight domestic pigs were included in a cross-over design. Plasma concentrations of glucose, insulin, C-peptide, glucagon, cortisol, triglycerides, total cholesterol, aspartate amino transferase and alanine amino transferase, creatinine, urea, fructosamine, albumin, free fatty acids (FFAs) and glycerol were measured at baseline, during 2 h of anaesthesia and during 1 h of recovery. Intravenous glucose tolerance test (IVGTT, 0.5 g glucose/kg) was performed after 1 h of anaesthesia. Glucose disappearance rate and areas under the insulin, C-peptide and glucagon curves from the IVGTT were calculated. All four anaesthetic protocols affected glucose metabolism parameters significantly compared with un-anaesthetised pigs, which was particularly evident during IVGTT and for TZMKB and KMX anaesthesia. Propofol additionally influenced the plasma concentrations of triglycerides, FFAs and glycerol significantly. The remaining circulating biomarkers were largely unaffected by anaesthesia. These data underline the importance of considering the anaesthetic protocol in porcine studies of circulating metabolic biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Kirstine K Boll
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Mille K Lyhne
- Novo Nordisk A/S, Maaloev, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Lisbeth H Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| |
Collapse
|
106
|
Mazur U, Lepiarczyk E, Janikiewicz P, Łopieńska-Biernat E, Majewski MK, Bossowska A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int J Mol Sci 2023; 24:16647. [PMID: 38068975 PMCID: PMC10706208 DOI: 10.3390/ijms242316647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
107
|
Moreno-Oyervides A, Díaz-Ojeda L, Bonilla-Manrique OE, Bonastre-Juliá J, Largo-Aramburu C, Acedo P, Martín-Mateos P. Design and testing of an optical instrument for skin flap monitoring. Sci Rep 2023; 13:16778. [PMID: 37798449 PMCID: PMC10556086 DOI: 10.1038/s41598-023-44017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Flap procedures are complex surgical tools widely used in reconstructive surgery. Flap ischemia is one of the most dangerous complications, both during the surgical procedure and during the patient's recovery, which can quickly lead to tissue necrosis (flap loss) with serious medical and psychological consequences. Today, bedside clinical assessment remains the gold standard for flap monitoring, but timely detection of flap ischemia is a difficult and challenging task, so auxiliary techniques are needed to support flap monitoring. Here we present a prototype of a new optical diagnostic tool, based on visible light absorption in diffuse reflectance spectroscopy, for non-invasive, continuous, real-time monitoring of flaps. The proposed approach is assessed by monitoring flap ischemic scenarios induced on pig animal models. The results obtained support that the proposed approach has great potential, not only for prompt detection of ischemia (in seconds), but also for clear differentiation between an arterial occlusion and venous occlusion.
Collapse
Affiliation(s)
- Aldo Moreno-Oyervides
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911, Leganes, Madrid, Spain.
| | - Luis Díaz-Ojeda
- Departamento de Cirugía Plástica, Reparadora y Quemados, Hospital Universitario La Paz, 28046, Madrid, Spain
- Departamento de Cirugía Cardiovascular, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
| | - Oscar E Bonilla-Manrique
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911, Leganes, Madrid, Spain
| | - Jorge Bonastre-Juliá
- Departamento de Cirugía Plástica, Reparadora y Quemados, Hospital Universitario La Paz, 28046, Madrid, Spain
| | | | - Pablo Acedo
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911, Leganes, Madrid, Spain
| | - Pedro Martín-Mateos
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911, Leganes, Madrid, Spain
| |
Collapse
|
108
|
Aparicio-López D, Asencio-Pascual JM, Blanco-Fernández G, Cugat-Andorrá E, Gómez-Bravo MÁ, López-Ben S, Martín-Pérez E, Sabater L, Ramia JM, Serradilla-Martín M. Evaluation of the validated intraoperative bleeding scale in liver surgery: study protocol for a multicenter prospective study. Front Surg 2023; 10:1223225. [PMID: 37850041 PMCID: PMC10577188 DOI: 10.3389/fsurg.2023.1223225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Surgical hemostasis has become one of the key principles in the advancement of surgery. Hemostatic agents are commonly administered in many surgical specialties, although the lack of consensus on the definition of intraoperative bleeding or of a standardized system for its classification means that often the most suitable agent is not selected. The recommendations of international organizations highlight the need for a bleeding severity scale, validated in clinical studies, that would allow the selection of the best hemostatic agent in each case. The primary objective of this study is to evaluate the VIBe scale (Validated Intraoperative Bleeding Scale) in humans. Secondary objectives are to evaluate the scale's usefulness in liver surgery; to determine the relationship between the extent of bleeding and the hemostatic agent used; and to assess the relationship between the grade of bleeding and postoperative complications. METHODS Prospective multicenter observational study including 259 liver resections that meet the inclusion criteria: patients scheduled for liver surgery at one of 10 medium-high volume Spanish HPB centers using an open or minimally invasive approach (robotic/laparoscopic/hybrid), regardless of diagnosis, ASA score <4, age ≥18, and who provide signed informed consent during the study period (September 2023 until the required sample size has been recruited). The participating researchers will be responsible for collecting the data and for reporting them to the study coordinators. DISCUSSION This study will allow us to evaluate the VIBe scale for intraoperative bleeding in humans, with a view to its subsequent incorporation in daily clinical practice. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT05369988?term = serradilla&draw = 2&rank = 3, [NCT0536998].
Collapse
Affiliation(s)
| | | | | | - Esteban Cugat-Andorrá
- Department of Surgery, Hospital Universitario Mutua de Terrassa, Terrassa, Spain
- Department of Surgery, Hospital Universitario German Trials I Pujol, Barcelona, Spain
| | | | - Santiago López-Ben
- Department of Surgery, Hospital Universitario Dr. Josep Trueta, Girona, Spain
| | - Elena Martín-Pérez
- Department of Surgery, Hospital Universitario La Princesa, Madrid, Spain
| | - Luis Sabater
- Department of Surgery, Hospital Clínico Universitario, INCLIVA, Valencia, Spain
| | - José Manuel Ramia
- Department of Surgery, Hospital General Universitario Dr. Balmis, ISABIAL, Universidad Miguel Hernández, Alicante, Spain
| | - Mario Serradilla-Martín
- Department of Surgery, Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain
| |
Collapse
|
109
|
Matos FG, Stremel ACA, Lipinski LC, Cirelli JA, Dos Santos FA. Dental implants in large animal models with experimental systemic diseases: A systematic review. Lab Anim 2023; 57:489-503. [PMID: 37021606 DOI: 10.1177/00236772221124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
This systematic review aims to identify and discuss the most used methodologies in pre-clinical studies for the evaluation of the implementation of dental implants in systemically compromised pigs and sheep. This study provides support and guidance for future research, as well as for the prevention of unnecessary animal wastage and sacrifice. Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) was used as a guideline; electronic searches were performed in PubMed, Scopus, Scielo, Web of Science, Embase, Science Direct, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Directory of Open Access Journals, Database of Abstracts of Reviews of Effects, and gray literature until January 2022 (PROSPERO/CRD42021270119). Sixty-eight articles were chosen from the 2439 results. Most studies were conducted in pigs, mainly the Göttinger and Domesticus breeds. Healthy animals with implants installed in the jaws were predominant among the pig studies. Of the studies evaluating the effect of systemic diseases on osseointegration, 42% were performed in osteoporotic sheep, 32% in diabetic sheep, and 26% in diabetic pigs. Osteoporosis was primarily induced by bilateral ovariectomy and mainly assessed by X-ray densitometry. Diabetes was induced predominantly by intravenous streptozotocin and was confirmed by blood glucose analysis. Histological and histomorphometric analyses were the most frequently employed in the evaluation of osseointegration. The animal models presented unique methodologies for each species in the studies that evaluated dental implants in the context of systemic diseases. Understanding the most commonly used techniques will help methodological choices and the performance of future studies in implantology.
Collapse
Affiliation(s)
| | | | | | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of São Paulo (Unesp), Brazil
| | | |
Collapse
|
110
|
Renz M, Müller L, Herbst M, Riedel J, Mohnke K, Ziebart A, Ruemmler R. Analysis of cerebral Interleukin-6 and tumor necrosis factor alpha patterns following different ventilation strategies during cardiac arrest in pigs. PeerJ 2023; 11:e16062. [PMID: 37790622 PMCID: PMC10544304 DOI: 10.7717/peerj.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hypoxia-induced neuroinflammation after cardiac arrest has been shown to be mitigated by different ventilation methods. In this prospective randomized animal trial, 35 landrace pigs were randomly divided into four groups: intermittent positive pressure ventilation (IPPV), synchronized ventilation 20 mbar (SV 20 mbar), chest compression synchronized ventilation 40 mbar (CCSV 40 mbar) and a control group (Sham). After inducing ventricular fibrillation, basic life support (BLS) and advanced life support (ALS) were performed, followed by post-resuscitation monitoring. After 6 hours, the animals were euthanized, and direct postmortem brain tissue samples were taken from the hippocampus (HC) and cortex (Cor) for molecular biological investigation of cytokine mRNA levels of Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα). The data analysis showed that CCSV 40 mbar displayed low TNFα mRNA-levels, especially in the HC, while the highest TNFα mRNA-levels were detected in SV 20 mbar. The results indicate that chest compression synchronized ventilation may have a potential positive impact on the cytokine expression levels post-resuscitation. Further studies are needed to derive potential therapeutic algorithms from these findings.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Lea Müller
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Manuel Herbst
- Institute for Medical Biometry, Epidemiology and Information Technology, University Medical Center of the Johannes Gutenberg Universität, Mainz, Germany
| | - Julian Riedel
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| |
Collapse
|
111
|
Genna VG, Adamo D, Galaverni G, Lepore F, Boraldi F, Quaglino D, Lococo F, Pellegrini G. Validation of airway porcine epithelial cells as an alternative to human in vitro preclinical studies. Sci Rep 2023; 13:16290. [PMID: 37770485 PMCID: PMC10539525 DOI: 10.1038/s41598-023-43284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
Animal models are currently used in several fields of biomedical research as useful alternatives to human-based studies. However, the obtained results do not always effectively translate into clinical applications, due to interspecies anatomical and physiological differences. Detailed comparability studies are therefore required to verify whether the selected animal species could be a representative model for the disease or for cellular process under investigation. This has proven to be fundamental to obtaining reliable data from preclinical studies. Among the different species, swine is deemed an excellent animal model in many fields of biological research, and has been largely used in respiratory medicine, considering the high homology between human and swine airways. In the context of in vitro studies, the validation of porcine airway epithelial cells as an alternative to human epithelial cells is crucial. In this paper, porcine and human tracheal and bronchial epithelial cells are compared in terms of in vivo tissue architecture and in vitro cell behaviour under standard and airlifted conditions, analyzing the regenerative, proliferative and differentiative potentials of these cells. We report multiple analogies between the two species, validating the employment of porcine airway epithelial cells for most in vitro preclinical studies, although with some limitations due to species-related divergences.
Collapse
Affiliation(s)
- Vincenzo Giuseppe Genna
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
- Holostem Terapie Avanzate S.r.l., Modena, Italy.
| | - Davide Adamo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Galaverni
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Lepore
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Lococo
- Thoracic Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
- Holostem Terapie Avanzate S.r.l., Modena, Italy.
| |
Collapse
|
112
|
Zeng D, Tang Z, Wang W, Wang Z, Li J. Experimental investigation of the optimal driving pressure for a larger-volume controllable jet injection system. Med Eng Phys 2023; 119:104033. [PMID: 37634910 DOI: 10.1016/j.medengphy.2023.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Jet injection technology has become the alternative drug delivery method of conventional needle-based injection due to its obvious advantages. In order to meet the demand for larger volume injection, the pneumatic jet injection systems have efficiently administrated vaccine up to 1 mL in human. Our recent study has also demonstrated that controlling the driving pressure enabled the pneumatic jet injection system to deliver larger volumes of drugs to target sites at desired rates and times. This work continues to explore the optimal two-phase driving pressure combination with better injection efficiency for typical larger-volume (1.0 mL) jet injection with controllable pneumatic jet injection system. Under the combination of a first phase driving pressure of 1.00 MPa and a second phase driving pressure ranging from 0.25 to 0.90 MPa, dynamic characteristics, dispersion characteristics and pharmacokinetic characteristics of this controllable jet injection system were quantitatively analyzed. In all experiments, it was confirmed that the optimal driving pressure combination of 1.0 mL ejection volume was close to (1.00-0.50) MPa. That is, the injection velocities of 151.85 m/s and 102.01 m/s for the first and second phase respectively facilitated better injection performance with a controlled release of 1.0 mL ejection volume. This strategy is practical for facilitating the clinical application of large-volume controllable jet injection systems.
Collapse
Affiliation(s)
- Dongping Zeng
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Zheng Tang
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Wei Wang
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zefeng Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiamin Li
- Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
113
|
Arruda BL, Kanefsky RA, Hau S, Janzen GM, Anderson TK, Vincent Baker AL. Mucin 4 is a cellular biomarker of necrotizing bronchiolitis in influenza A virus infection. Microbes Infect 2023; 25:105169. [PMID: 37295769 DOI: 10.1016/j.micinf.2023.105169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Influenza A virus (IAV) in the human and swine host infects epithelial cells lining the respiratory tract causing a necrotizing bronchitis and bronchiolitis. These epithelial surfaces are protected by large glycoproteins called mucins. Mucin 4 (MUC4) is a transmembrane mucin that consists of an alpha subunit responsible for surface protection and intracellular beta subunit involved in signal transduction which repress apoptosis and stimulate epithelial proliferation. This study was designed to determine the expression and potential role of MUC4 during IAV infection. We used immunohistochemistry in combination with machine learning image analysis to quantify differential protein expression of MUC4 subunits in IAV-infected and uninfected lung in a porcine model. MUC4 protein basal expression in control animals varied significantly by litter. MUC4 protein expression was significantly increased in bronchioles with necrotizing bronchiolitis compared to histologically normal bronchioles, likely representing a regenerative response to restore mucosal integrity of conducting airways. Understanding the impact of differential MUC4 expression among healthy individuals and during IAV infection will facilitate control strategies by elucidating mechanisms associated with susceptibility to IAV that can be therapeutically or genetically regulated and may be extended to other respiratory diseases.
Collapse
Affiliation(s)
- Bailey L Arruda
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA.
| | - Rachel A Kanefsky
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA
| | - Samantha Hau
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Garrett M Janzen
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
114
|
Keenan CS, Cooper L, Nuutila K, Chapa J, Christy S, Chan RK, Carlsson AH. Full-thickness skin columns: A method to reduce healing time and donor site morbidity in deep partial-thickness burns. Wound Repair Regen 2023; 31:586-596. [PMID: 37491915 DOI: 10.1111/wrr.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
The current standard of care for the coverage of large wounds often involves split thickness skin grafts (STSGs) which have numerous limitations. One promising technique that has gained traction is fractional autologous skin grafting using full-thickness skin columns (FTSC). Harvesting occurs orthogonally by taking numerous individual skin columns containing the epidermis down through the dermis and transferring them to the wound bed. The purpose of this porcine study was to investigate the efficacy of implanting FTSCs directly into deep partial-thickness burn wounds, as well as examining donor site healing at the maximal harvest density. It was hypothesised that by utilising FTSCs, the rate of healing in deep partial thickness burns can be improved without incurring the donor morbidity seen in other methods of skin grafting. Deep partial-thickness burns were created on the dorsum of female red duroc swine, debrided 3 days later and FTSCs were implanted at varying expansion ratios directly into the burn wounds. At day 14, 1:50 expansion ratio showed significantly faster re-epithelialisation compared to the debrided burn control and 1:200. Donor sites (at 7%-10% harvest density) were 100% re-epithelialised by day 7. Additionally, the maximal harvest density was determined to be 28% in an ex vivo model, which then five donor sites were harvested at 28% density on a red duroc swine and compared to five STSG donor sites. At maximal harvest density, FTSC donor sites were significantly less hypopigmented compared to STSGs, but no significant differences were observed in re-epithelialisation, contraction, blood flow or dermal thickness. In conclusion, implantation directly into deep partial-thickness burns is a viable option for the application of FTSCs, favouring lower expansion ratios like 1:50 or lower. Little difference in donor site morbidity was observed between FTSC at a maximal harvest density of 28% and STSGs, exceeding the optimal harvest density.
Collapse
Affiliation(s)
- Corey S Keenan
- Department of Surgery, William Beaumont Army Medical Center, El Paso, Texas, USA
| | - Laura Cooper
- United States Army Institute for Surgical Research, Houston, Texas, USA
| | - Kristo Nuutila
- United States Army Institute for Surgical Research, Houston, Texas, USA
| | - Javier Chapa
- United States Army Institute for Surgical Research, Houston, Texas, USA
| | | | - Rodney K Chan
- United States Army Institute for Surgical Research, Houston, Texas, USA
| | - Anders H Carlsson
- United States Army Institute for Surgical Research, Houston, Texas, USA
- The Metis Foundation, San Antonio, Texas, USA
| |
Collapse
|
115
|
Okandeji ME, Lijoka AD, Olude MA, Atiba F, Olopade JO. Permanent Tooth Eruption Patterns in Nigerian Local Pigs. J Vet Dent 2023; 40:236-242. [PMID: 36721364 DOI: 10.1177/08987564231152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pigs are diphyodonts with heterodont dentition and have been used in studies involving teeth and jawbone regeneration, and dental implants. Patterns of tooth eruption are used to age animals and determine the effects of environmental and genetic influences on occurrence of variations. As with other species, variations exist in the tooth eruption pattern in pigs. The aim of this study was to determine the permanent teeth eruption patterns of Nigerian local pigs. Twenty-six healthy pigs were observed throughout the study period. Pigs were firmly held in dorsal or lateral recumbency and their mouths gently held open to visually examine all quadrants of the dental arches (right and left maxillary, right and left mandibular). Observations were recorded from 16 weeks of age, until the last permanent tooth erupted. Results obtained from the study showed that males had lower mean values for eruption time (54%) of examined teeth in comparison to females. The mean values of eruption time for the maxillary third incisor, the mandibular and maxillary canines, and the mandibular fourth premolar teeth were statistically significant in the males (P = .0017, P = .0088, P = .0002 and P = .0244, respectively). Sixty-nine percent of the adult pigs did not have eruption of the mandibular first premolar, while polydontia was observed in the maxillary and mandibular incisors. These results show that intra-breed and inter-breed variations exist in the dental eruption pattern in pigs. The data obtained from this study can be used for comparative dental studies and can aid further research on the developmental anatomy of Nigerian local pigs.
Collapse
Affiliation(s)
- Michael Efeturi Okandeji
- Department of Veterinary Anatomy, Federal University of Abeokuta, Abeokuta, Nigeria
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | | | | | - Folusho Atiba
- Department of Anatomy, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
116
|
Kyle AI, Auten JD, Zarow GJ, Natarajan R, Bianchi WD, Speicher MV, Palma J, Gaspary MJ. Determining Intraosseous Needle Placement Using Point-of-Care Ultrasound in a Swine (Sus scrofa) Model. Mil Med 2023; 188:2969-2974. [PMID: 35476019 DOI: 10.1093/milmed/usac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 04/17/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Intraosseous (IO) access is critical in resuscitation, providing rapid access when peripheral vascular attempts fail. Unfortunately, misplacement commonly occurs, leading to possible fluid extravasation and tissue necrosis. Current research exploring the utility of bedside ultrasound in confirming IO line placement is limited by small sample sizes of skeletally immature subjects or geriatric cadaveric models. The objective of this study was to investigate the potential value of ultrasound confirming IO needle placement in a live tissue model with bone densities approximated to the young adult medical or trauma patient. MATERIALS AND METHODS In this randomized, blinded prospective study, IO devices were placed into the bilateral humeri of 36 sedated adult swine (N = 72) with bone densities approximating that of a 20-39-year-old adult. Of the 72 lines, 53 were randomized to the IO space ("correct") and 19 into the subcutaneous tissue ("incorrect"). Four emergency physicians with variable ultrasound experience and blinded to needle location independently assessed correct or incorrect needle placements based on the presence of an intramedullary "flare" on color power Doppler (CPD) during a saline flush. Participants adjusted the ultrasound beam trajectory and recorded assessments up to three times, totaling 204 separate observations. RESULTS Overall, sensitivity for placement confirmation was 72% (95% CI: 64%-79%). Specificity was 79% (95% CI: 66%-89%). First assessment and final assessment results were similar. More experienced sonographers demonstrated greater success in identifying inaccurate placements with a specificity of 86% (95% CI: 63%-96%). CONCLUSION Within the context of this study, point-of-care ultrasound with CPD did not reliably confirm IO line placement. However, more accurate assessments of functional and malpositioned catheters were noted in sonographers with greater than 4 years of experience. Future study into experienced sonographers' use of CPD to confirm IO catheter placement is needed.
Collapse
Affiliation(s)
- Adrianna I Kyle
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Jonathan D Auten
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | | | - Ramesh Natarajan
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - William D Bianchi
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Matthew V Speicher
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - James Palma
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| | - Micah J Gaspary
- Clinical Investigation Department, Combat Trauma Research Group, Naval Medical Center Portsmouth, Portsmouth, VA 23708, USA
| |
Collapse
|
117
|
Endo S, Morikawa Y, Matsunaga T, Hara A, Takasu M. Characterization of a novel porcine carbonyl reductase activated by glutathione: Relationship to carbonyl reductase 1, 3α/β-hydroxysteroid dehydrogenase and prostaglandin 9-ketoreductase. Chem Biol Interact 2023; 381:110572. [PMID: 37247810 DOI: 10.1016/j.cbi.2023.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
A porcine gene, LOC100622246, encodes carbonyl reductase [NADPH] 1 (pCBR-N1), whose function remains unknown. Previously, three porcine carbonyl reductases, carbonyl reductase 1 (pCBR1), 3α/β-hydroxysteroid dehydrogenase (p3α/β-HSD) and prostaglandine-9-keto reductase (pPG-9-KR), were purified from neonatal testis, adult testis and adult kidney, respectively. However, the relationship of pCBR-N1 with the three enzymes is still unknown. Here, we compare the properties of the recombinant pCBR-N1 and pCBR1. The two enzymes reduced various carbonyl compounds including 5α-dihydrotestosterone, which was converted to its 3α- and 3β-hydroxy-metabolites. Compared to pCBR1, pCBR-N1 exhibited higher Km and kcat values for most substrates, but more efficiently reduced prostaglandin E2. pCBR-N1 was inhibited by known inhibitors of p3α/β-HSD (hexestrol and indomethacin), but not by pCBR1 inhibitors. pCBR-N1 was highly expressed than pCBR1 in the several tissues of adult domestic and microminiature pigs. The results, together with partial amino acid sequence match between pCBR-N1 and pPG-9-KR, reveal that pCBR-N1 is identical to p3α/β-HSD and pPG-9-KR. Notably, pCBR-N1, but not pCBR1, reduced S-nitrosoglutathione and glutathione-adducts of alkenals including 4-oxo-2-nonenal with Km of 8.3-32 μM, and its activity toward non-glutathionylated substrates was activated 2- to 9-fold by 1 mM glutathione. Similar activation by glutathione was also observed for human CBR1. Site-directed mutagenesis revealed that the differences in kinetic constants and glutathione-mediated activation between pCBR-N1 and pCBR1 are due to differences in residue 236 and two glutathione-binding residues (at positions 97 and 193), respectively. Thus, pCBR-N1 is a glutathione-activated carbonyl reductase that functions in the metabolism of endogenous and xenobiotic carbonyl compounds.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshiyuki Matsunaga
- Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
118
|
Li C, Zhao X, Zhao G, Xue H, Wang Y, Ren Y, Li J, Wang H, Wang J, Song Q. Comparative Analysis of Structural Composition and Function of Intestinal Microbiota between Chinese Indigenous Laiwu Pigs and Commercial DLY Pigs. Vet Sci 2023; 10:524. [PMID: 37624311 PMCID: PMC10458769 DOI: 10.3390/vetsci10080524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Intestinal microbiota has an important impact on pig phenotypes. Previous studies mainly focused on the microbiota of feces and worldwide farmed commercial pigs, while research on the microbiota of various intestinal sections and indigenous pig breeds is very limited. This study aimed to characterize and compare the biogeography of intestinal microbiota in pigs of one Chinese indigenous breed and one commercial crossbred. In this study, we sequenced the microbiota of six intestinal segments in the grown-up pigs of a Chinese indigenous breed, Laiwu pigs, and the worldwide farmed crossbred Duroc × Landrace × Yorkshire (DLY) pigs by 16S rRNA sequencing, characterized the biogeography of intestinal microbiota, and compared the compositional and functional differences between the two breeds. The results showed that there were obvious differences in microbial structure and abundance between the small and large intestines. Laiwu pigs had higher large intestinal diversity than DLY pigs, while DLY pigs had higher small intestinal diversity than Laiwu pigs. Moreover, some specific bacterial taxa and Kyoto Encyclopedia of Genes and Genomes pathways were found to be related to the high fat deposition and good meat quality of Laiwu pigs and the high growth speed and lean meat rate of DLY pigs. This study provides an insight into the shifts in taxonomic composition, microbial diversity, and functional profile of intestinal microbiota in six intestinal segments of Laiwu and DLY pigs, which would be essential for exploring the potential influence of the host's genetic background on variation in microbiota composition and diversity.
Collapse
Affiliation(s)
- Chao Li
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China;
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Guisheng Zhao
- Jinan Animal Husbandry Technology Promotion Station, Jinan 250100, China
| | - Haipeng Xue
- Jinan Animal Husbandry Technology Promotion Station, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yifan Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Huaizhong Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Qinye Song
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China;
| |
Collapse
|
119
|
Wang S, Guertler CA, Okamoto RJ, Johnson CL, McGarry MDJ, Bayly PV. Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig. Neuroimage 2023; 277:120234. [PMID: 37369255 PMCID: PMC11081136 DOI: 10.1016/j.neuroimage.2023.120234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.
Collapse
Affiliation(s)
- Shuaihu Wang
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States
| | - Charlotte A Guertler
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States
| | - Ruth J Okamoto
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States
| | | | | | - Philip V Bayly
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States; Biomedical Engineering, Washington University in St. Louis, United States.
| |
Collapse
|
120
|
Klösener L, Samolovac S, Barnekow I, König J, Moussavi A, Boretius S, Fuchs D, Haegens A, Hinkel R, Mietsch M. Functional Cardiovascular Characterization of the Common Marmoset ( Callithrix jacchus). BIOLOGY 2023; 12:1123. [PMID: 37627007 PMCID: PMC10452209 DOI: 10.3390/biology12081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Appropriate cardiovascular animal models are urgently needed to investigate genetic, molecular, and therapeutic approaches, yet the translation of results from the currently used species is difficult due to their genetic distance as well as their anatomical or physiological differences. Animal species that are closer to the human situation might help to bridge this translational gap. The common marmoset (Callithrix jacchus) is an interesting candidate to investigate certain heart diseases and cardiovascular comorbidities, yet a basic functional characterization of its hemodynamic system is still missing. Therefore, cardiac functional analyses were performed by utilizing the invasive intracardiac pressure-volume loops (PV loop) system in seven animals, magnetic resonance imaging (MRI) in six animals, and echocardiography in five young adult male common marmosets. For a direct comparison between the three methods, only data from animals for which all three datasets could be acquired were selected. All three modalities were suitable for characterizing cardiac function, though with some systemic variations. In addition, vena cava occlusions were performed to investigate the load-independent parameters collected with the PV loop system, which allowed for a deeper analysis of the cardiac function and for a more sensitive detection of the alterations in a disease state, such as heart failure or certain cardiovascular comorbidities.
Collapse
Affiliation(s)
- Lina Klösener
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Sabine Samolovac
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Ina Barnekow
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jessica König
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amir Moussavi
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Susann Boretius
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg August University, 37077 Göttingen, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics Inc., 1114 AB Amsterdam, The Netherlands
| | | | - Rabea Hinkel
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany (M.M.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
121
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
122
|
Staedtke V, Topilko P, Le LQ, Grimes K, Largaespada DA, Cagan RL, Steensma MR, Stemmer-Rachamimov A, Blakeley JO, Rhodes SD, Ly I, Romo CG, Lee SY, Serra E. Existing and Developing Preclinical Models for Neurofibromatosis Type 1-Related Cutaneous Neurofibromas. J Invest Dermatol 2023; 143:1378-1387. [PMID: 37330719 PMCID: PMC11246562 DOI: 10.1016/j.jid.2023.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused by a nonfunctional copy of the NF1 tumor suppressor gene that predisposes patients to the development of cutaneous neurofibromas (cNFs), the skin tumor that is the hallmark of this condition. Innumerable benign cNFs, each appearing by an independent somatic inactivation of the remaining functional NF1 allele, form in nearly all patients with NF1. One of the limitations in developing a treatment for cNFs is an incomplete understanding of the underlying pathophysiology and limitations in experimental modeling. Recent advances in preclinical in vitro and in vivo modeling have substantially enhanced our understanding of cNF biology and created unprecedented opportunities for therapeutic discovery. We discuss the current state of cNF preclinical in vitro and in vivo model systems, including two- and three-dimensional cell cultures, organoids, genetically engineered mice, patient-derived xenografts, and porcine models. We highlight the models' relationship to human cNFs and how they can be used to gain insight into cNF development and therapeutic discovery.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Piotr Topilko
- Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin Grimes
- SPARK Program in Translational Research, Stanford University School of Medicine, Stanford, California, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA; Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven D Rhodes
- Division of Hematology-Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
123
|
Hilgart DR, Iversen MM, Peters AY, Zabriskie MS, Hoareau GL, Vapniarsky N, Clark GA, Shah LM, Rieke V. Non-invasive central nervous system assessment of a porcine model of neuropathic pain demonstrates increased latency of somatosensory-evoked potentials. J Neurosci Methods 2023; 396:109934. [PMID: 37524248 PMCID: PMC10530261 DOI: 10.1016/j.jneumeth.2023.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/01/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The study of chronic pain and its treatments requires a robust animal model with objective and quantifiable metrics. Porcine neuropathic pain models have been assessed with peripheral pain recordings and behavioral responses, but thus far central nervous system electrophysiology has not been investigated. This work aimed to record non-invasive, somatosensory-evoked potentials (SEPs) via electroencephalography in order to quantitatively assess chronic neuropathic pain induced in a porcine model. NEW METHOD Peripheral neuritis trauma (PNT) was induced unilaterally in the common peroneal nerve of domestic farm pigs, with the contralateral leg serving as the control for each animal. SEPs were generated by stimulation of the peripheral nerves distal to the PNT and were recorded non-invasively using transcranial electroencephalography (EEG). The P30 wave of the SEP was analyzed for latency changes. RESULTS P30 SEPs were successfully recorded with non-invasive EEG. PNT resulted in significantly longer P30 SEP latencies (p < 0.01 [n = 8]) with a median latency increase of 14.3 [IQR 5.0 - 17.5] ms. Histological results confirmed perineural inflammatory response and nerve damage around the PNT nerves. COMPARISON WITH EXISTING METHOD(S) Control P30 SEPs were similar in latency and amplitude to those previously recorded invasively in healthy pigs. Non-invasive recordings have numerous advantages over invasive measures. CONCLUSIONS P30 SEP latency can serve as a quantifiable neurological measure that reflects central nervous system processing in a porcine model of chronic pain. Advancing the development of a porcine chronic pain model will facilitate the translation of experimental therapies into human clinical trials.
Collapse
Affiliation(s)
- David R Hilgart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Marta M Iversen
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Angela Y Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Matthew S Zabriskie
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Guillaume L Hoareau
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Natalia Vapniarsky
- Department of Pathology Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Gregory A Clark
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
124
|
Zadey S, Leraas H, Gupta A, Biswas A, Hollier P, Vissoci JRN, Mugaga J, Ssekitoleko RT, Everitt JI, Loh AHP, Lee YT, Saterbak A, Mueller JL, Fitzgerald TN. KeyLoop retractor for global gasless laparoscopy: evaluation of safety and feasibility in a porcine model. Surg Endosc 2023; 37:5943-5955. [PMID: 37074419 PMCID: PMC10338623 DOI: 10.1007/s00464-023-10054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Many surgeons in low- and middle-income countries have described performing surgery using gasless (lift) laparoscopy due to inaccessibility of carbon dioxide and reliable electricity, but the safety and feasibility of the technique has not been well documented. We describe preclinical testing of the in vivo safety and utility of KeyLoop, a laparoscopic retractor system to enable gasless laparoscopy. METHODS Experienced laparoscopic surgeons completed a series of four laparoscopic tasks in a porcine model: laparoscopic exposure, small bowel resection, intracorporeal suturing with knot tying, and cholecystectomy. For each participating surgeon, the four tasks were completed in a practice animal using KeyLoop. Surgeons then completed these tasks using standard-of-care (SOC) gas laparoscopy and KeyLoop in block randomized order to minimize learning curve effect. Vital signs, task completion time, blood loss and surgical complications were compared between SOC and KeyLoop using paired nonparametric tests. Surgeons completed a survey on use of KeyLoop compared to gas laparoscopy. Abdominal wall tissue was evaluated for injury by a blinded pathologist. RESULTS Five surgeons performed 60 tasks in 15 pigs. There were no significant differences in times to complete the tasks between KeyLoop and SOC. For all tasks, there was a learning curve with task completion times related to learning the porcine model. There were no significant differences in blood loss, vital signs or surgical complications between KeyLoop and SOC. Eleven surgeons from the United States and Singapore felt that KeyLoop could be used to safely perform several common surgical procedures. No abdominal wall tissue injury was observed for either KeyLoop or SOC. CONCLUSIONS Procedure times, blood loss, abdominal wall tissue injury and surgical complications were similar between KeyLoop and SOC gas laparoscopy for basic surgical procedures. This data supports KeyLoop as a useful tool to increase access to laparoscopy in low- and middle-income countries.
Collapse
Affiliation(s)
- Siddhesh Zadey
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Association for Socially Applicable Research (ASAR), Pune, MH, India.
| | - Harold Leraas
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aryaman Gupta
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Arushi Biswas
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Duke Global Health Institute, Durham, NC, USA
| | | | - Joao Ricardo Nickenig Vissoci
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Global Health Institute, Durham, NC, USA
| | - Julius Mugaga
- Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Jeffrey I Everitt
- Department of Pathology, Duke University of School of Medicine, Durham, NC, USA
| | - Amos H P Loh
- Duke-NUS Medical School, SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - York Tien Lee
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ann Saterbak
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Jenna L Mueller
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tamara N Fitzgerald
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Global Health Institute, Durham, NC, USA
| |
Collapse
|
125
|
Sarber KM, O'Connor P, Weitzel EK, Stevens J, Aden JK, Breeze J. Local Effect of Ballistic Fragments Embedded Along the Carotid Sheath of a Porcine Animal Model. Mil Med 2023; 188:e1774-e1780. [PMID: 36173120 DOI: 10.1093/milmed/usac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Energized ballistic fragments from improvised explosive devices were the most common cause of injury to coalition service personnel during conflicts in Iraq and Afghanistan. Surgical excision of retained fragments is not routinely performed unless there is a concern for injury to vital structures. However, no clear guidelines dictate when or if a fragment should be removed, reflecting a lack of objective evidence of their long-term effects. Using a porcine model, we aimed to evaluate changes to the carotid artery produced by retained fragments over time. MATERIALS AND METHODS Institutional Animal Care and Use Committee approval for all experiments was obtained before commencement of the study. Eighteen female swine (mean mass 62.0 ± 3.4 kg) were randomized into three study groups corresponding to the time of survival after implantation of ballistic fragments: 1, 6, and 12 weeks. Two animals from each group were randomly assigned to have one of the three different fragments implanted within the right carotid sheath in zones 1-3 of the neck. The left carotid served as the control. The vascular flow rate and arterial diameter were measured at each level before implantation and again after the survival interval. Baseline and interval angiograms were performed to identify gross vascular changes. RESULTS No abnormalities were identified on baseline or interval angiograms. No significant difference was found when the baseline was compared to interval measurements or when compared to the control side for all gross and physiological measures at 1 and 6 weeks (P = .053-.855). After 12 weeks, the flow and diameter changed significantly (P < .001-.03), but this significant change was found in both the control and affected carotid. CONCLUSIONS The lack of significant gross anatomical and physiological changes at 6 weeks postimplantation lends evidence toward the current policy that early removal of retained ballistic fragments around cervical vessels is not required. Changes were significant after 12 weeks which suggest that surveillance may be required; however, such changes could be explained by physiological animal growth.
Collapse
Affiliation(s)
- Kathleen M Sarber
- Department of Surgery, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Otolaryngology-Head and Neck Surgery, 59th Medical Group, Lackland AFB, TX 78236, USA
| | - Peter O'Connor
- Department of Otolaryngology, Mid Coast Hospital - MaineHealth, Brunswick, ME 04011, USA
| | - Erik K Weitzel
- Department of Surgery, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Operational Medicine, Wilford Hall Ambulatory Surgical Center, Lackland AFB, TX 78236, USA
| | - Jayne Stevens
- Department of Otolaryngology-Head and Neck Surgery, 59th Medical Group, Lackland AFB, TX 78236, USA
| | - James K Aden
- Department of Graduate Medical Education, Brooke Army Medical Center, Ft Sam Houston, TX 78234, USA
| | - John Breeze
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Level 2 Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| |
Collapse
|
126
|
Qi K, Dou Y, Zhang Z, Wei Y, Song C, Qiao R, Li X, Yang F, Wang K, Li X, Han X. Expression Profile and Regulatory Properties of m6A-Modified circRNAs in the Longissimus Dorsi of Queshan Black and Large White Pigs. Animals (Basel) 2023; 13:2190. [PMID: 37443988 DOI: 10.3390/ani13132190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that N6-methyladenosine (m6A) is the most abundant modification in linear RNA molecules, but many circRNA molecules have now been found to have a wide range of m6A modification sites as well. However, there are few relevant studies and information on the expression profile and functional regulatory properties of m6A-modified circRNAs (m6A-circRNAs) in longissimus dorsi. In this study, a total of 12 putative m6A-circRNAs were identified and characterized in the longissimus dorsi of Queshan Black and Large White pigs-8 of them were significantly more expressed in the longissimus dorsi of Queshan Black than in Large White pigs, while the other 4 were the opposite. These 12 putative m6A-circRNAs were also found to act as miRNA sponge molecules to regulate fat deposition by constructing the ceRNA regulatory network. Enrichment analysis also revealed that the 12 m6A-circRNAs parent genes and their adsorbed miRNA target genes were widely involved in fat deposition and cell proliferation and differentiation-related pathways, such as the HIF-1 signaling pathway, the pentose phosphate pathway, the MAPK signaling pathway, the glycosphingolipid biosynthesis-lacto and neolacto series, and the TNF signaling pathway, suggesting that the analyzed m6A-circRNAs may be largely involved in the formation of pork quality. These results provide new information to study the regulatory properties of m6A-circRNAs in the formation of pork quality.
Collapse
Affiliation(s)
- Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
127
|
Conroy TB, Araos J, Kan EC. Systolic Time Interval Extraction in Hypertensive and Hypotensive Pig Models Using Wearable Near-Field Radio-Frequency Sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38082805 DOI: 10.1109/embc40787.2023.10340193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Screening and monitoring for cardiovascular diseases (CVDs) can be enabled by analyzing systolic time intervals (STIs). As CVDs have a strong causal correlation with hypertension, it is important to validate STI sensor accuracy in hypertensive hearts to ensure consistent performance in this prevalent cardiac disease state. This work presents STI extraction using a non-invasive near-field radio-frequency (RF) sensor during normotension, hypertension, and hypotension in a pig model. Waveform features of semilunar and atrioventricular valve dynamics during systole were extracted to derive isovolumic contraction time (ICT) and left ventricular ejection time (LVET), benchmarked by a phonocardiogram and aortic catheterization. Study-wide mean relative ICT and LVET errors were -4.4ms and -3.6ms, respectively, demonstrating high accuracy during both normal and abnormal systemic pressures.Clinical relevance- This work demonstrates accurate STI extraction with relative error less than 5 ms from a non-invasive near-field RF sensor during normotensive, hypotensive, and hypertensive systemic pressures, validating the sensor's accuracy as a screening tool during this disease state.
Collapse
|
128
|
Abram J, Martini J, Spraider P, Putzer G, Ranalter M, Wagner J, Glodny B, Hell T, Barnes T, Enk D. Individualised flow-controlled versus pressure-controlled ventilation in a porcine oleic acid-induced acute respiratory distress syndrome model. Eur J Anaesthesiol 2023; 40:511-520. [PMID: 36749046 PMCID: PMC10256303 DOI: 10.1097/eja.0000000000001807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND A continuous gas flow provided by flow-controlled ventilation (FCV) facilitates accurate dynamic compliance measurement and allows the clinician to individually optimise positive end-expiratory and peak pressure settings accordingly. OBJECTIVE The aim of this study was to compare the efficiency of gas exchange and impact on haemodynamics between individualised FCV and pressure-controlled ventilation (PCV) in a porcine model of oleic acid-induced acute respiratory distress syndrome (ARDS). DESIGN Randomised controlled interventional trial conducted on 16 pigs. SETTING Animal operating facility at the Medical University Innsbruck. INTERVENTIONS ARDS was induced in lung healthy pigs by intravenous infusion of oleic acid until moderate-to-severe ARDS at a stable Horowitz quotient (PaO 2 FiO 2-1 ) of 80 to 120 over a period of 30 min was obtained. Ventilation was then either performed with individualised FCV ( n = 8) established by compliance-guided pressure titration or PCV ( n = 8) with compliance-guided titration of the positive end-expiratory pressure and peak pressure set to achieve a tidal volume of 6 ml kg -1 over a period of 2 h. MAIN OUTCOME MEASURES Gas exchange parameters were assessed by the PaO 2 FiO 2-1 quotient and CO 2 removal by the PaCO 2 value in relation to required respiratory minute volume. Required catecholamine support for haemodynamic stabilisation was measured. RESULTS The FCV group showed significantly improved oxygenation [149.2 vs. 110.4, median difference (MD) 38.7 (8.0 to 69.5) PaO 2 FiO 2-1 ; P = 0.027] and CO 2 removal [PaCO 2 7.25 vs. 9.05, MD -1.8 (-2.87 to -0.72) kPa; P = 0.006] at a significantly lower respiratory minute volume [8.4 vs. 11.9, MD -3.6 (-5.6 to -1.5) l min -1 ; P = 0.005] compared with PCV. In addition, in FCV-pigs, haemodynamic stabilisation occurred with a significant reduction of required catecholamine support [norepinephrine 0.26 vs. 0.86, MD -0.61 (-1.12 to -0.09) μg kg -1 min -1 ; P = 0.037] during 2 ventilation hours. CONCLUSION In this oleic acid-induced porcine ARDS model, individualised FCV significantly improved gas exchange and haemodynamic stability compared with PCV. TRIAL REGISTRATION Protocol no.: BMBWF-66.011/0105-V/3b/2019).
Collapse
Affiliation(s)
- Julia Abram
- From the Department of Anaesthesia and Intensive Care Medicine (JA, JM, PS, GP, MR, JW), Department of Radiology, Medical University of Innsbruck (BG), Department of Mathematics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Innsbruck, Austria (TH), University of Greenwich, London, UK (TB), Faculty of Medicine, University of Münster, Münster, Germany (DE)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Franzoni G, Mecocci S, De Ciucis CG, Mura L, Dell’Anno F, Zinellu S, Fruscione F, De Paolis L, Carta T, Anfossi AG, Dei Guidici S, Chiaradia E, Pascucci L, Oggiano A, Cappelli K, Razzuoli E. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro. Front Immunol 2023; 14:1209898. [PMID: 37469517 PMCID: PMC10352104 DOI: 10.3389/fimmu.2023.1209898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Filippo Dell’Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Tania Carta
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio G. Anfossi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Silvia Dei Guidici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| |
Collapse
|
130
|
Beyers KCL, Rbeihat MNM, S Vasconcelos D, Pasmans D, Verwulgen S, Vankerckhoven VVJ. Preclinical evaluation of performance, safety and usability of VAX-ID®, a novel intradermal injection device. Vaccine 2023:S0264-410X(23)00692-8. [PMID: 37330370 PMCID: PMC10267844 DOI: 10.1016/j.vaccine.2023.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
The recent SARS-Cov2 pandemic and mpox health emergency have led to renewed interest in intradermal vaccination due to its dose sparing potential. Indeed, intradermal vaccination is particularly of interest for use in mass vaccination campaigns, pandemic preparedness programs, and/or for vaccines that are expensive or in short supply. Moreover, the rich immune network in the skin makes it an attractive target not only for prophylactic vaccination, but also for therapeutic vaccination, like immunotherapy and (dendritic) cell-based therapies. The aim of the current paper was to provide an overview of preclinical data generated with VAX-ID®, a novel intradermal drug delivery device, to allow assessing it performance, safety and usability. The device can overcome challenges seen with the Mantoux technique whereby the needle needs to be inserted under a shallow angle. Various parameters of VAX-ID® were evaluated, including dead-space volume, dose accuracy, penetration depth & liquid deposit in piglets, as well as usability by healthcare professionals. The device has shown to have a low dead volume and a high dose accuracy. Importantly, the device performed successful injections at a predefined depth into the dermis with a high safety profile as confirmed by visual and histological evaluation in piglets. Moreover, the device was rated as easy to use by healthcare professionals. The combined preclinical performance and usability findings indicate that VAX-ID® can provide reliable, standardized and accurate drug delivery in the dermal layer of the skin with a high ease of use. The device offers a solution for injection of various prophylactic as well as therapeutic vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Stijn Verwulgen
- Idevax BV, Wijnegem, Belgium; Center for evaluation of vaccination, University of Antwerp, Belgium
| | - Vanessa V J Vankerckhoven
- Idevax BV, Wijnegem, Belgium; Faculty of Design Sciences, Department of Product Development, University of Antwerp, Belgium
| |
Collapse
|
131
|
Raposo L, Cerqueira RJ, Leite S, Moreira-Costa L, Laundos TL, Miranda JO, Mendes-Ferreira P, Coelho JA, Gomes RN, Pinto-do-Ó P, Nascimento DS, Lourenço AP, Cardim N, Leite-Moreira A. Human-umbilical cord matrix mesenchymal cells improved left ventricular contractility independently of infarct size in swine myocardial infarction with reperfusion. Front Cardiovasc Med 2023; 10:1186574. [PMID: 37342444 PMCID: PMC10277821 DOI: 10.3389/fcvm.2023.1186574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Background Human umbilical cord matrix-mesenchymal stromal cells (hUCM-MSC) have demonstrated beneficial effects in experimental acute myocardial infarction (AMI). Reperfusion injury hampers myocardial recovery in a clinical setting and its management is an unmet need. We investigated the efficacy of intracoronary (IC) delivery of xenogeneic hUCM-MSC as reperfusion-adjuvant therapy in a translational model of AMI in swine. Methods In a placebo-controlled trial, pot-belied pigs were randomly assigned to a sham-control group (vehicle-injection; n = 8), AMI + vehicle (n = 12) or AMI + IC-injection (n = 11) of 5 × 105 hUCM-MSC/Kg, within 30 min of reperfusion. AMI was created percutaneously by balloon occlusion of the mid-LAD. Left-ventricular function was blindly evaluated at 8-weeks by invasive pressure-volume loop analysis (primary endpoint). Mechanistic readouts included histology, strength-length relationship in skinned cardiomyocytes and gene expression analysis by RNA-sequencing. Results As compared to vehicle, hUCM-MSC enhanced systolic function as shown by higher ejection fraction (65 ± 6% vs. 43 ± 4%; p = 0.0048), cardiac index (4.1 ± 0.4 vs. 3.1 ± 0.2 L/min/m2; p = 0.0378), preload recruitable stroke work (75 ± 13 vs. 36 ± 4 mmHg; p = 0.0256) and end-systolic elastance (2.8 ± 0.7 vs. 2.1 ± 0.4 mmHg*m2/ml; p = 0.0663). Infarct size was non-significantly lower in cell-treated animals (13.7 ± 2.2% vs. 15.9 ± 2.7%; Δ = -2.2%; p = 0.23), as was interstitial fibrosis and cardiomyocyte hypertrophy in the remote myocardium. Sarcomere active tension improved, and genes related to extracellular matrix remodelling (including MMP9, TIMP1 and PAI1), collagen fibril organization and glycosaminoglycan biosynthesis were downregulated in animals treated with hUCM-MSC. Conclusion Intracoronary transfer of xenogeneic hUCM-MSC shortly after reperfusion improved left-ventricular systolic function, which could not be explained by the observed extent of infarct size reduction alone. Combined contributions of favourable modification of myocardial interstitial fibrosis, matrix remodelling and enhanced cardiomyocyte contractility in the remote myocardium may provide mechanistic insight for the biological effect.
Collapse
Affiliation(s)
- Luís Raposo
- Cardiology Department, Hospital de Santa Cruz - Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Centro Cardiovascular, Hospital da Luz – Lisboa, Luz Saúde, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital Universitário de São João, Porto, Portugal
| | - Sara Leite
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Anta Family Health Unit, Espinho/Gaia Healthcare Centre, Espinho, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Moreira-Costa
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Tiago L. Laundos
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Joana O. Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
| | - João Almeida Coelho
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rita N. Gomes
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Diana S. Nascimento
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - André P. Lourenço
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Anesthesiology, Hospital Universitário de São João, Porto, Portugal
| | - Nuno Cardim
- Centro Cardiovascular, Hospital da Luz – Lisboa, Luz Saúde, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital Universitário de São João, Porto, Portugal
| |
Collapse
|
132
|
Kumthekar RN, Opfermann JD, Mass P, Contento JM, Berul CI. Percutaneous epicardial pacing in infants using direct visualization: A feasibility animal study. J Cardiovasc Electrophysiol 2023; 34:1452-1458. [PMID: 37172303 DOI: 10.1111/jce.15926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Pacemaker implantation in infants and small children is limited to epicardial lead placement via open chest surgery. We propose a minimally invasive solution using a novel percutaneous access kit. OBJECTIVE To evaluate the acute safety and feasibility of a novel percutaneous pericardial access tool kit to implant pacemaker leads on the epicardium under direct visualization. METHODS A custom sheath with optical fiber lining the inside wall was built to provide intrathoracic illumination. A Veress needle inside the illumination sheath was inserted through a skin nick just to the left of the xiphoid process and angled toward the thorax. A needle containing a fiberscope within the lumen was inserted through the sheath and used to access the pericardium under direct visualization. A custom dilator and peel-away sheath with pre-tunneled fiberscope was passed over a guidewire into the pericardial space via modified Seldinger technique. A side-biting multipolar pacemaker lead was inserted through the sheath and affixed against the epicardium. RESULTS Six piglets (weight 3.7-4.0 kg) had successful lead implantation. The pericardial space could be visualized and entered in all animals. Median time from skin nick to sheath access of the pericardium was 9.5 (interquartile range [IQR] 8-11) min. Median total procedure time was 16 (IQR 14-19) min. Median R wave sensing was 5.4 (IQR 4.0-7.3) mV. Median capture threshold was 2.1 (IQR 1.7-2.4) V at 0.4 ms and 1.3 (IQR 1.2-2.0) V at 1.0 ms. There were no complications. CONCLUSION Percutaneous epicardial lead implantation under direct visualization was successful in six piglets of neonatal size and weight with clinically acceptable acute pacing parameters.
Collapse
Affiliation(s)
- Rohan N Kumthekar
- Division of Cardiology, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Justin D Opfermann
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paige Mass
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, District of Columbia, USA
- Division of Cardiology, Children's National Hospital, Washington, District of Columbia, USA
| | - Jacqueline M Contento
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, District of Columbia, USA
- Division of Cardiology, Children's National Hospital, Washington, District of Columbia, USA
| | - Charles I Berul
- Division of Cardiology, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
133
|
Song S, Fallegger F, Trouillet A, Kim K, Lacour SP. Deployment of an electrocorticography system with a soft robotic actuator. Sci Robot 2023; 8:eadd1002. [PMID: 37163609 DOI: 10.1126/scirobotics.add1002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrocorticography (ECoG) is a minimally invasive approach frequently used clinically to map epileptogenic regions of the brain and facilitate lesion resection surgery and increasingly explored in brain-machine interface applications. Current devices display limitations that require trade-offs among cortical surface coverage, spatial electrode resolution, aesthetic, and risk consequences and often limit the use of the mapping technology to the operating room. In this work, we report on a scalable technique for the fabrication of large-area soft robotic electrode arrays and their deployment on the cortex through a square-centimeter burr hole using a pressure-driven actuation mechanism called eversion. The deployable system consists of up to six prefolded soft legs, and it is placed subdurally on the cortex using an aqueous pressurized solution and secured to the pedestal on the rim of the small craniotomy. Each leg contains soft, microfabricated electrodes and strain sensors for real-time deployment monitoring. In a proof-of-concept acute surgery, a soft robotic electrode array was successfully deployed on the cortex of a minipig to record sensory cortical activity. This soft robotic neurotechnology opens promising avenues for minimally invasive cortical surgery and applications related to neurological disorders such as motor and sensory deficits.
Collapse
Affiliation(s)
- Sukho Song
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Laboratory of Sustainability Robotics, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Kyungjin Kim
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| |
Collapse
|
134
|
Digranes N, Haga HA, Nordgreen J. High and Hyper: Fentanyl Induces Psychomotor Side-Effects in Healthy Pigs. Animals (Basel) 2023; 13:ani13101671. [PMID: 37238100 DOI: 10.3390/ani13101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Analgesic effects of fentanyl have been investigated using behavior. The behavioral effects of fentanyl and possible serotonergic influence are largely unknown. We therefore investigated behavioral effects of fentanyl, with or without the serotonin antagonist ketanserin, in pigs. Fourteen mixed-breed pigs, weighing 17-25 kg were included in a randomised blinded prospective, balanced three-group study. Ten pigs received first 5 and then 10 µg/kg of fentanyl intravenously. Ketanserin at 1 mg/kg or saline was given intravenously as a third injection. Four control pigs received three injections of saline. Behavior was video-recorded. The distance moved was automatically measured by commercially available software, and behaviors manually scored in retrospect. Fentanyl inhibited resting and playing, and induced different repetitive behaviors. The mean (SD) distance moved in the control group and fentanyl group was 21.3 (13.0) and 57.8 (20.8) metres respectively (p < 0.05 for pairwise comparison). A stiff gait pattern was seen after fentanyl injection for median (range) 4.2 (2.8-5.1) minutes per 10 min, which was reduced to 0 (0-4) s after ketanserin administration. Conclusion: fentanyl-induced motor and behavioral effects, and serotonergic transmission may be involved in some of them. The psychomotor side effects of fentanyl could potentially interfere with post-operative pain evaluation in pigs.
Collapse
Affiliation(s)
- Nora Digranes
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Henning Andreas Haga
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway
| |
Collapse
|
135
|
Yang M, Li C, Yang W, Chen C, Chung CH, Tanna N, Zheng Z. Accurate gingival segmentation from 3D images with artificial intelligence: an animal pilot study. Prog Orthod 2023; 24:14. [PMID: 37121951 PMCID: PMC10149545 DOI: 10.1186/s40510-023-00465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Gingival phenotype plays an important role in dental diagnosis and treatment planning. Traditionally, determining the gingival phenotype is done by manual probing of the gingival soft tissues, an invasive and time-consuming procedure. This study aims to evaluate the feasibility and accuracy of an alternatively novel, non-invasive technology based on the precise 3-dimension (3D) soft tissue reconstruction from intraoral scanning and cone beam computed tomography (CBCT) to predict the gingival biotype. METHODS As a proof-of-concept, Yorkshire pig mandibles were scanned, and the CBCT data were fed into a deep-learning model to reconstruct the teeth and surrounding bone structure in 3D. By overlaying the CBCT scan with the intraoral scans, an accurate superposition was created and used for virtual measurements of the soft tissue thickness. Meanwhile, gingival thicknesses were also measured by a periodontal probe and digital caliper on the buccal and lingual sides at 3 mm apical to the gingival margin of the posterior teeth and compared with the virtual assessment at the same location. The data obtained from virtual and clinical measurements were compared by Wilcoxon matched-pairs signed-rank analysis, while their correlation was determined by Pearson's r value. The Mann-Whitney U test was used for intergroup comparisons of the amount of difference. RESULTS Among 108 investigated locations, the clinical and virtual measurements are strongly positively correlated (r = 0.9656, P < 0.0001), and only clinically insignificant differences (0.066 ± 0.223 mm) were observed between the two assessments. There is no difference in the agreement between the virtual and clinical measurements on sexually matured samples (0.087 ± 0.240 mm) and pre-pubertal samples (0.033 ± 0.195 mm). Noticeably, there is a greater agreement between the virtual and clinical measurements at the buccal sites (0.019 ± 0.233 mm) than at the lingual sites (0.116 ± 0.215 mm). CONCLUSION In summary, the artificial intelligence-based virtual measurement proposed in this work provides an innovative technique potentially for accurately measuring soft tissue thickness using clinical routine 3D imaging systems, which will aid clinicians in generating a more comprehensive diagnosis with less invasive procedures and, in turn, optimize the treatment plans with more predictable outcomes.
Collapse
Affiliation(s)
- Min Yang
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40Th St., Philadelphia, PA, 19104, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40Th St., Philadelphia, PA, 19104, USA.
| | - Wen Yang
- The Webb Schools, Claremont, CA, 91711, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40Th St., Philadelphia, PA, 19104, USA
| | - Nipul Tanna
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40Th St., Philadelphia, PA, 19104, USA
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, 675 Charles E. Young Drive, South, MRL 2641A, Los Angeles, CA, 90095, USA.
- School of Dentistry, University of California, Los Angeles, 675 Charles E. Young Drive, South, MRL 2641A, Los Angeles, CA, 90095, USA.
| |
Collapse
|
136
|
Donnenfield JI, Proffen BL, Fleming BC, Murray MM. Responding to ACL Injury and its Treatments: Comparative Gene Expression between Articular Cartilage and Synovium. Bioengineering (Basel) 2023; 10:527. [PMID: 37237597 PMCID: PMC10215325 DOI: 10.3390/bioengineering10050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between cartilage and synovium is a rapidly growing area of osteoarthritis research. However, to the best of our knowledge, the relationships in gene expression between these two tissues have not been explored in mid-stage disease development. The current study compared the transcriptomes of these two tissues in a large animal model one year following posttraumatic osteoarthritis induction and multiple surgical treatment modalities. Thirty-six Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair augmented with an extracellular matrix (ECM) scaffold, followed by RNA sequencing of the articular cartilage and synovium at 52 weeks after harvest. Twelve intact contralateral knees served as controls. Across all treatment modalities, the primary difference in the transcriptomes was that the articular cartilage had greater upregulation of genes related to immune activation compared to the synovium-once baseline differences between cartilage and synovium were adjusted for. Oppositely, synovium featured greater upregulation of genes related to Wnt signaling compared to articular cartilage. After adjusting for expression differences between cartilage and synovium seen following ligament reconstruction, ligament repair with an ECM scaffold upregulated pathways related to ion homeostasis, tissue remodeling, and collagen catabolism in cartilage relative to synovium. These findings implicate inflammatory pathways within cartilage in the mid-stage development of posttraumatic osteoarthritis, independent of surgical treatment. Moreover, use of an ECM scaffold may exert a chondroprotective effect over gold-standard reconstruction through preferentially activating ion homeostatic and tissue remodeling pathways within cartilage.
Collapse
Affiliation(s)
- Jonah I. Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benedikt L. Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Martha M. Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
137
|
Martin V, Knecht C, Duerlinger S, Richter B, Ladinig A. A Pig Model to Assess Skin Lesions after Apomorphine Application. Biomedicines 2023; 11:biomedicines11051244. [PMID: 37238915 DOI: 10.3390/biomedicines11051244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023] Open
Abstract
Owing to their similarities, pigs are often used as experimental models for humans. In particular, the similarity of the skin allows them to be a good dermatological model. The aim of the study was to develop an animal model in conventional domestic pigs to evaluate skin lesions macroscopically and histologically after a continuous subcutaneous apomorphine application. A total of 16 pigs from two different age groups were injected with four different apomorphine formulations for 12 h daily over a period of 28 days into the subcutis, which was then evaluated macroscopically for nodules and erythema, as well as histologically. Differences in skin lesions between the formulations were found, with formulation 1 leading to the fewest nodules, least skin lesions, no lymph follicles, least necrosis, and best skin tolerance. Older pigs were easier to handle and, because of the thicker skin and subcutis of these animals, drug application with the appropriate needle length was safer. The experimental setup worked well and an animal model to assess skin lesions after a continuous subcutaneous application of drugs could be successfully established.
Collapse
Affiliation(s)
- Vera Martin
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sophie Duerlinger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara Richter
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
138
|
Warnung L, Sattler S, Haiden E, Schober S, Pahr D, Reisinger A. A mechanically validated open-source silicone model for the training of gastric perforation sewing. BMC MEDICAL EDUCATION 2023; 23:261. [PMID: 37076839 PMCID: PMC10116820 DOI: 10.1186/s12909-023-04174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Gastrointestinal perforation is commonly seen in emergency departments. The perforation of the stomach is an emergency situation that requires immediate surgical treatment. The necessary surgical skills require regular practical training. Owing to patient`s safety, in vivo training opportunities in medicine are restricted. Animal tissue especially porcine tissue, is commonly used for surgical training. Due to its limiting factors, artificial training models are often to be preferred. Many artificial models are on the market but to our knowledge, none that mimic the haptic- and sewing properties of a stomach wall at the same time. In this study, an open source silicone model of a gastric perforation for training of gastric sewing was developed that attempts to provide realistic haptic- and sewing behaviour. METHODS To simulate the layered structure of the human stomach, different silicone materials were used to produce three different model layups. The production process was kept as simple as possible to make it easily reproducible. A needle penetration setup as well as a systematic haptic evaluation were developed to compare these silicone models to a real porcine stomach in order to identify the most realistic model. RESULTS A silicone model consisting of three layers was identified as being the most promising and was tested by clinical surgeons. CONCLUSIONS The presented model simulates the sewing characteristics of a human stomach wall, is easily reproducible at low-costs and can be used for practicing gastric suturing techniques. TRIAL REGISTRATIONS Not applicable.
Collapse
Affiliation(s)
- Lukas Warnung
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria.
- Division of Radiotherapy-Radiation Oncology, University Hospital Krems, Mitterweg 10, Krems, 3500, Austria.
| | - Stefan Sattler
- Department of Surgery, University Hospital Tulln, Alter Ziegelweg 10, Tulln, 3430, Austria
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Elmar Haiden
- Department of Surgery, University Hospital Tulln, Alter Ziegelweg 10, Tulln, 3430, Austria
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Sophie Schober
- Medical Science and Human Medicine study programme, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Dieter Pahr
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
- Institute for Lightweight Design and Structural Biomechanics, University of Technology Vienna, Getreidemarkt 9, Wien, 1060, Austria
| | - Andreas Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
- Institute for Lightweight Design and Structural Biomechanics, University of Technology Vienna, Getreidemarkt 9, Wien, 1060, Austria
| |
Collapse
|
139
|
Eskildsen MPR, Kalliokoski O, Boennelycke M, Lundquist R, Settnes A, Loekkegaard E. An autologous blood-derived patch as a hemostatic agent: evidence from thromboelastography experiments and a porcine liver punch biopsy model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:20. [PMID: 37074487 PMCID: PMC10115690 DOI: 10.1007/s10856-023-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Perioperative bleeding is a common complication in surgeries that increases morbidity, risk of mortality, and leads to increased socioeconomic costs. In this study we investigated a blood-derived autologous combined leukocyte, platelet, and fibrin patch as a new means of activating coagulation and maintaining hemostasis in a surgical setting. We evaluated the effects of an extract derived from the patch on the clotting of human blood in vitro, using thromboelastography (TEG). The autologous blood-derived patch activated hemostasis, seen as a reduced mean activation time compared to both non-activated controls, kaolin-activated samples, and fibrinogen/thrombin-patch-activated samples. The accelerated clotting was reproducible and did not compromise the quality or stability of the resulting blood clot. We also evaluated the patch in vivo in a porcine liver punch biopsy model. In this surgical model we saw 100% effective hemostasis and a significant reduction of the time-to-hemostasis, when compared to controls. These results were comparable to the hemostatic properties of a commercially available, xenogeneic fibrinogen/thrombin patch. Our findings suggest clinical potential for the autologous blood-derived patch as a hemostatic agent.
Collapse
Affiliation(s)
- Morten P R Eskildsen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Otto Kalliokoski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marie Boennelycke
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Annette Settnes
- Department of Obstetrics and Gynecology, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Loekkegaard
- Department of Obstetrics and Gynecology, Copenhagen University Hospital - North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
140
|
Christoffersen BØ, Kristensen CA, Lindgaard R, Kirk RK, Viuff BM, Kvist PH, Pedersen HD, Ludvigsen TP, Skovgaard T, Fels JJ, Martinussen T, Christiansen LB, Cirera S, Olsen LH. Functional and morphological renal changes in a Göttingen Minipig model of obesity-related and diabetic nephropathy. Sci Rep 2023; 13:6017. [PMID: 37045950 PMCID: PMC10097698 DOI: 10.1038/s41598-023-32674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Obesity-related glomerulopathy and diabetic nephropathy (DN) are serious complications to metabolic syndrome and diabetes. The purpose was to study effects of a fat, fructose and cholesterol-rich (FFC) diet with and without salt in order to induce hypertension on kidney function and morphology in Göttingen Minipigs with and without diabetes. Male Göttingen Minipigs were divided into 4 groups: SD (standard diet, n = 8), FFC (FFC diet, n = 16), FFC-DIA (FFC diet + diabetes, n = 14), FFC-DIA + S (FFC diet with extra salt + diabetes, n = 14). Blood and urine biomarkers, glomerular filtration rate (GFR), blood pressure (BP) and resistive index (RI) were evaluated after 6-7 months (T1) and 12-13 months (T2). Histology, electron microscopy and gene expression (excluding FFC-DIA + S) were evaluated at T2. All groups fed FFC-diet displayed obesity, increased GFR and RI, glomerulomegaly, mesangial expansion (ME) and glomerular basement membrane (GBM) thickening. Diabetes on top of FFC diet led to increased plasma glucose and urea and proteinuria and tended to exacerbate the glomerulomegaly, ME and GBM thickening. Four genes (CDKN1A, NPHS2, ACE, SLC2A1) were significantly deregulated in FFC and/or FFC-DIA compared to SD. No effects on BP were observed. Göttingen Minipigs fed FFC diet displayed some of the renal early changes seen in human obesity. Presence of diabetes on top of FFC diet exacerbated the findings and lead to changes resembling the early phases of human DN.
Collapse
Affiliation(s)
| | - Camilla Aarup Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- AJ Vaccines A/S, Copenhagen S, Denmark
| | - Rikke Lindgaard
- Novo Nordisk A/S, Måløv, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- AniCura ApS, Herlev, Denmark
| | | | | | | | | | | | - Tine Skovgaard
- Novo Nordisk A/S, Måløv, Denmark
- Unilabs, Copenhagen, Denmark
| | | | - Torben Martinussen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Bruun Christiansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
141
|
Sridharan D, Pracha N, Rana SJ, Ahmed S, Dewani AJ, Alvi SB, Mergaye M, Ahmed U, Khan M. Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of hiPSC-Derived Cardiomyocytes. Cells 2023; 12:cells12071090. [PMID: 37048163 PMCID: PMC10093073 DOI: 10.3390/cells12071090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses, or transplants are beneficial but with many limitations, and may decrease the overall life expectancy due to related complications. In recent years, with the advent of human induced pluripotent stem cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising candidates, their translatability for clinical applications has been hindered due to poor preclinical reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates, have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive literature review was essential to elucidate the factors affecting the reproducibility and translatability of large animal models. In this review article, we have discussed different animal models available for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly translatable porcine MI model.
Collapse
Affiliation(s)
- Divya Sridharan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nooruddin Pracha
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Schaza Javed Rana
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA 30501, USA
| | - Salmman Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA 16509, USA
| | - Anam J Dewani
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Syed Baseeruddin Alvi
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Uzair Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
142
|
Fakhouri FS, Joseph M, Ballinger M, Shukla V, Weimar D, Novak C, Ghadiali S, Kolipaka A. Magnetic Resonance Elastography (MRE) of Bleomycin-Induced Pulmonary Fibrosis in an Animal Model. Invest Radiol 2023; 58:299-306. [PMID: 36730906 PMCID: PMC10023269 DOI: 10.1097/rli.0000000000000935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is responsible for 40,000 deaths annually in the United States. A hallmark of idiopathic pulmonary fibrosis is elevated collagen deposition, which alters lung stiffness. Clinically relevant ways to measure changes in lung stiffness during pulmonary fibrosis are not available, and new noninvasive imaging methods are needed to measure changes in lung mechanical properties. OBJECTIVES Magnetic resonance elastography (MRE) is an in vivo magnetic resonance imaging technique proven to detect changes in shear stiffness in different organs. This study used MRE, histology, and bronchoalveolar lavage (BAL) to study changes in the mechanical and structural properties of the lungs after bleomycin-induced pulmonary fibrosis in pigs. MATERIALS AND METHODS Pulmonary fibrosis was induced in 9 Yorkshire pigs by intratracheal instillation of 2 doses of bleomycin into the right lung only. Magnetic resonance elastography scans were performed at baseline and week 4 and week 8 postsurgery in a 1.5 T magnetic resonance imaging scanner using a spin-echo echo planar imaging sequence to measure changes in lung shear stiffness. At the time of each scan, a BAL was performed. After the final scan, whole lung tissue was removed and analyzed for histological changes. RESULTS Mean MRE-derived stiffness measurements at baseline, week 4, and week 8 for the control (left) lungs were 1.02 ± 0.27 kPa, 0.86 ± 0.29 kPa, and 0.68 ± 0.20 kPa, respectively. The ratio of the shear stiffness in the injured (right) lung to the uninjured control (left) lung at baseline, week 4, and week 8 was 0.98 ± 0.23, 1.52 ± 0.41, and 1.64 ± 0.40, respectively. High-dose animals showed increased protein in BAL fluid, elevated inflammation observed by the presence of patchy filtrates, and enhanced collagen and α-smooth muscle actin staining on histological sections. Low-dose animals and the control (left) lungs of high-dose animals did not show significant histopathological changes. CONCLUSION This study demonstrated that MRE can be used to detect changes in lung stiffness in pigs after bleomycin challenge.
Collapse
Affiliation(s)
- Faisal S. Fakhouri
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Technology, King Saud University, Riyadh, 12372, KSA
| | - Matthew Joseph
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Megan Ballinger
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Vasudha Shukla
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - David Weimar
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Caymen Novak
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
143
|
Zhang H, Yan X, Lin A, Xia P, Jia M, Su Y. Effect of feeding regimen on circadian activity rhythms of food anticipatory by ghrelin hormone in a pig model. Nutr Neurosci 2023; 26:313-331. [PMID: 35249475 DOI: 10.1080/1028415x.2022.2047436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increasingly diverse meal patterns affect the internal body clock. Ghrelin secretion is closely associated with the anticipation of a regularly scheduled mealtime, leading ghrelin to be a putative candidate for food-related entraining signals that drive activity rhythms. Here, growing pigs with different meal frequencies were used to construct an irregular eating pattern model. We found that irregular eating patterns changed central ghrelin levels of pigs, affected the circadian entrainment and circadian rhythm pathways in hypothalamus tissue, and altered the daily behavior and food anticipatory activity (FAA). To determine whether ghrelin exerts an effect, growing pigs were intravenously injected with ghrelin antagonist [D-Lys3]-GHRP-6 for 7 days. We showed here that [D-Lys3]-GHRP-6 administration decreased locomotor activity of growing pigs in the 4-h window preceding onset of food availability. In addition, we also confirmed that the direct role of ghrelin in molecular mechanism of regulating clock genes expression via calcium mobilization through intracellular PKC/PLC and AC/PKA pathways in vitro. Collectively, irregular eating patterns affect the central circadian system by ghrelin, supporting ghrelin as a temporal messenger of food-entrainment in hypothalamic circadian functions.
Collapse
Affiliation(s)
- He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaoxi Yan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ailian Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Pengke Xia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Menglan Jia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
144
|
A porcine model of early-onset scoliosis combined with thoracic insufficiency syndrome: Construction and transcriptome analysis. Gene 2023; 858:147202. [PMID: 36646188 DOI: 10.1016/j.gene.2023.147202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Early-onset scoliosis (EOS) is a scoliosis deformity caused by various reasons before the age of 10 years and is often combined with thoracic insufficiency syndrome (TIS) causing patients with difficulty in securing lung growth in the thoracic cage. Currently, there is a shortage of effective large animal models for evaluating EOS + TIS in therapeutic studies. Consequently, we propose to construct a porcine EOS + TIS model and evaluate its transcriptome changes by RNA sequencing. METHODS Piglets were constructed using unilateral posterior spine-tethering and ipsilateral rib-tethering in the EOS + TIS model, and X-ray and computed tomography (CT) were performed to assess growth changes in the spine, thoracic cage and lungs. The H&E and Masson staining was performed for pathological analysis of lung tissue. After RNA sequencing of lung tissues, data were analyzed for differential expression of mRNA, functional enrichment analysis (GO, KEGG and GSEA) and protein-protein interaction (PPI) network construction, and differential expression of hub gene was verified by RT-qPCR. RESULTS In the model group, growth (body weight and length) of piglets was significantly delayed; fusion of ribs occurred and cobb angle changes in the coronal and sagittal planes were significantly enlarged; total lung volume (TLV) was significantly reduced, especially at the T7-T10 level. Pathological analysis revealed that, in the model lung tissue, the alveolar wall of was poorly perfused, the alveolar space was enlarged, the number and size of alveoli were significantly reduced, and it was accompanied by collagen fiber deposition. Moreover, a total of 432 differentially expressed mRNAs (DE-mRNAs) were identified in model lung tissues, which contained 262 down-regulated and 170 up-regulated DE-mRNAs, and they were mainly involved in the regulation of immunity, inflammation, cell cycle and extracellular matrix. A PPI network containing 71 nodes and 158 edges was constructed based on all DE-mRNAs, and JUN, CCL2, EGR1, ATF3, BTG2, DUSP1 and THBS1 etc. were hub gene. CONCLUSIONS Overall, we constructed a porcine model that was capable of replicating the common clinical features of EOS + TIS such as rib fusion, asymmetric thoracic cage, increased cobb angle, decreased TLV, and pulmonary hypoplasia. Also, we revealed transcriptomic changes in the EOS + TIS model that may cause pulmonary hypoplasia.
Collapse
|
145
|
Itoh M, Itou J, Imai S, Okazaki K, Iwasaki K. A survey on the usage of decellularized tissues in orthopaedic clinical trials. Bone Joint Res 2023; 12:179-188. [PMID: 37051813 PMCID: PMC10032226 DOI: 10.1302/2046-3758.123.bjr-2022-0383.r1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers' websites. We initially identified 4,402 clinical trials, 27 of which were eligible for inclusion and analysis, including nine shoulder surgery trials, eight knee surgery trials, two ankle surgery trials, two hand surgery trials, and six peripheral nerve graft trials. Nine of the trials were completed. We identified only one product that will be commercially available for use in knee surgery with significant mechanical load resistance. Peracetic acid and gamma irradiation were frequently used for sterilization. Despite the demand for decellularized tissue, few decellularized tissue products are currently commercially available, particularly for the knee joint. To be viable in orthopaedic surgery, decellularized tissue must exhibit biocompatibility and mechanical strength, and these requirements are challenging for the clinical application of decellularized tissue. However, the variety of available decellularized products has recently increased. Therefore, decellularized grafts may become a promising option in orthopaedic surgery.
Collapse
Affiliation(s)
- Masafumi Itoh
- Department of Orthopaedic Surgery, Tokyo Women’s Medical University, Tokyo, Japan
- Institute for Medical Regulatory Science, Comprehensive Research Organization, Waseda University, Tokyo, Japan
- Tokyo Women's Medical University - Waseda University Joint Graduate School, Waseda University, Tokyo, Japan
| | - Junya Itou
- Department of Orthopaedic Surgery, Tokyo Women’s Medical University, Tokyo, Japan
- Tokyo Women's Medical University - Waseda University Joint Graduate School, Waseda University, Tokyo, Japan
| | - Shinya Imai
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Institute for Medical Regulatory Science, Comprehensive Research Organization, Waseda University, Tokyo, Japan
- Tokyo Women's Medical University - Waseda University Joint Graduate School, Waseda University, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Mordern Mechanical Engineering, School of Creative Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
146
|
Cimini C, Ramal-Sanchez M, Taraschi A, Della Pelle F, Scroccarello A, Belda-Perez R, Valbonetti L, Lanuti P, Marchisio M, D’Atri M, Ortolani C, Papa S, Capacchietti G, Bernabò N, Compagnone D, Barboni B. Catechin versus MoS 2 Nanoflakes Functionalized with Catechin: Improving the Sperm Fertilizing Ability-An In Vitro Study in a Swine Model. Int J Mol Sci 2023; 24:ijms24054788. [PMID: 36902221 PMCID: PMC10003105 DOI: 10.3390/ijms24054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nowadays, the adoption of In Vitro Fertilization (IVF) techniques is undergoing an impressive increase. In light of this, one of the most promising strategies is the novel use of non-physiological materials and naturally derived compounds for advanced sperm preparation methods. Here, sperm cells were exposed during capacitation to MoS2/Catechin nanoflakes and catechin (CT), a flavonoid with antioxidant properties, at concentrations of 10, 1, 0.1 ppm. The results showed no significant differences in terms of sperm membrane modifications or biochemical pathways among the groups, allowing the hypothesis that MoS2/CT nanoflakes do not induce any negative effect on the parameters evaluated related to sperm capacitation. Moreover, the addition of CT alone at a specific concentration (0.1 ppm) increased the spermatozoa fertilizing ability in an IVF assay by increasing the number of fertilized oocytes with respect to the control group. Our findings open interesting new perspectives regarding the use of catechins and new materials obtained using natural or bio compounds, which could be used to implement the current strategies for sperm capacitation.
Collapse
Affiliation(s)
- Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Taraschi
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annalisa Scroccarello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario D’Atri
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
- Sharp Solutions Software di D’Atri Mario, Via Udine, 2, Buttrio, 33042 Udine, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giulia Capacchietti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
147
|
Jaiswal S, Hannineh R, Nadimpalli S, Lieber S, Chester SA. Characterization and modeling of the in-plane collagen fiber distribution in the porcine dermis. Med Eng Phys 2023; 115:103973. [PMID: 37120170 DOI: 10.1016/j.medengphy.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The structural arrangement of collagen fibers in the plane of the dermis layer plays a critical role in accurately predicting the mechanical behavior of skin tissues. This paper combines a histological analysis with statistical modeling to characterize and model the in-plane collagen fiber distribution in the porcine dermis. The histology data reveals that the fiber distribution in the plane of the porcine dermis is non-symmetric. The histology data forms the basis of our model, which employs a combination of two π-periodic von-Mises distribution density functions to create a non-symmetric distribution. We demonstrate that a non-symmetric in-plane fiber distribution is a significant improvement over a symmetric distribution.
Collapse
|
148
|
Femi-Akinlosotu O, Olopade FE, Mustapha O, Adekanmbi A, Olopade JO. Morphometric analysis of the spinal cord of the Sus scrofa (large white and landrace crossbreed). Anat Histol Embryol 2023; 52:289-299. [PMID: 36345666 DOI: 10.1111/ahe.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
The incidence of spinal cord (SC) injury in developed and undeveloped countries is alarming. The pig (Sus scrofa) has been recommended as a suitable research model for translational studies because of its morphophysiological similarities of organ systems with humans. There is a dearth of information on the SC anatomy of the large white and landrace crossbreed (LW-LC) pigs. We therefore aim to describe the gross morphology and morphometry of its SC. Twelve juvenile LW-LC pigs (six males and six females) were used. The skin and epaxial muscles were dissected to expose the vertebral column. The SC was carefully harvested by laminectomy, and 13 gross SC morphometric parameters were evaluated. Thirty-three spinal nerves were seen emanating from either side of the SC by means of dorsal and ventral spinal roots. The overall average of SC length and weight was 36.23 ± 1.01 cm and 16.60 ± 0.58 g, respectively. However, the mean SC length and weight were higher in females compared with males, with SC weight being statistically significant. A positive relationship between SC length and weight was significant for males (p = 0.0435) but not for females (p = 0.42). Likewise, the strength of the relationship between SC length and weight was significant in males (r = 0.82) but not significant in females (r = 0.41). Baseline data for the morphometric features of the spinal cord in the LW-LC pigs were generated, which will contribute to the knowledge of this species anatomy and useful information on regional anaesthesia that should further strengthen the drive in adopting the pig as a suitable research model for biomedical research.
Collapse
Affiliation(s)
| | | | - Oluwaseun Mustapha
- Vertebrate Morphology and Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adejoke Adekanmbi
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
149
|
Sharma S, Ramadi KB, Poole NH, Srinivasan SS, Ishida K, Kuosmanen J, Jenkins J, Aghlmand F, Swift MB, Shapiro MG, Traverso G, Emami A. Location-aware ingestible microdevices for wireless monitoring of gastrointestinal dynamics. NATURE ELECTRONICS 2023; 6:242-256. [PMID: 37745833 PMCID: PMC10516531 DOI: 10.1038/s41928-023-00916-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2023] [Indexed: 09/26/2023]
Abstract
Localization and tracking of ingestible microdevices in the gastrointestinal (GI) tract is valuable for the diagnosis and treatment of GI disorders. Such systems require a large field-of-view of tracking, high spatiotemporal resolution, wirelessly operated microdevices and a non-obstructive field generator that is safe to use in practical settings. However, the capabilities of current systems remain limited. Here, we report three dimensional (3D) localization and tracking of wireless ingestible microdevices in the GI tract of large animals in real time and with millimetre-scale resolution. This is achieved by generating 3D magnetic field gradients in the GI field-of-view using high-efficiency planar electromagnetic coils that encode each spatial point with a distinct magnetic field magnitude. The field magnitude is measured and transmitted by the miniaturized, low-power and wireless microdevices to decode their location as they travel through the GI tract. This system could be useful for quantitative assessment of the GI transit-time, precision targeting of therapeutic interventions and minimally invasive procedures.
Collapse
Affiliation(s)
- Saransh Sharma
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- These authors contributed equally: Saransh Sharma, Khalil B. Ramadi
| | - Khalil B. Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
- These authors contributed equally: Saransh Sharma, Khalil B. Ramadi
| | - Nikhil H. Poole
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shriya S. Srinivasan
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keiko Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fatemeh Aghlmand
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret B. Swift
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G. Shapiro
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
- These authors jointly supervised this work: Mikhail G. Shapiro, Giovanni Traverso, Azita Emami
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- These authors jointly supervised this work: Mikhail G. Shapiro, Giovanni Traverso, Azita Emami
| | - Azita Emami
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
- These authors jointly supervised this work: Mikhail G. Shapiro, Giovanni Traverso, Azita Emami
| |
Collapse
|
150
|
Heterogeneity of Phenotypic and Functional Changes to Porcine Monocyte-Derived Macrophages Triggered by Diverse Polarizing Factors In Vitro. Int J Mol Sci 2023; 24:ijms24054671. [PMID: 36902099 PMCID: PMC10003195 DOI: 10.3390/ijms24054671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Swine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone. IFN-γ and LPS polarized moMΦ toward a proinflammatory phenotype, although a significant IL-1Ra response was observed. Exposure to IL-4, IL-10, TGF-β, and dexamethasone gave rise to four distinct phenotypes, all antithetic to IFN-γ and LPS. Some peculiarities were observed: IL-4 and IL-10 both enhanced expression of IL-18, and none of the "M2-related" stimuli induced IL-10 expression. Exposures to TGF-β and dexamethasone were characterized by enhanced levels of TGF-β2, whereas stimulation with dexamethasone, but not TGF-β2, triggered CD163 upregulation and induction of CCL23. Macrophages stimulated with IL-10, TGF-β, or dexamethasone presented decreased abilities to release proinflammatory cytokines in response to TLR2 or TLR3 ligands: IL-10 showed a powerful inhibitory activity for CXCL8 and TNF release, whereas TGF-β provided a strong inhibitory signal for IL-6 production. While our results emphasized porcine macrophage plasticity broadly comparable to human and murine macrophages, they also highlighted some peculiarities in this species.
Collapse
|