101
|
Pathway correlation profile of gene-gene co-expression for identifying pathway perturbation. PLoS One 2012; 7:e52127. [PMID: 23284898 PMCID: PMC3527387 DOI: 10.1371/journal.pone.0052127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/14/2012] [Indexed: 11/29/2022] Open
Abstract
Identifying perturbed or dysregulated pathways is critical to understanding the biological processes that change within an experiment. Previous methods identified important pathways that are significantly enriched among differentially expressed genes; however, these methods cannot account for small, coordinated changes in gene expression that amass across a whole pathway. In order to overcome this limitation, we use microarray gene expression data to identify pathway perturbation based on pathway correlation profiles. By identifying the distribution of gene-gene pair correlations within a pathway, we can rank the pathways based on the level of perturbation and dysregulation. We have shown this successfully for differences between two experimental conditions in Escherichia coli and changes within time series data in Saccharomyces cerevisiae, as well as two estrogen receptor response classes of breast cancer. Overall, our method made significant predictions as to the pathway perturbations that are involved in the experimental conditions.
Collapse
|
102
|
Abstract
Abstract
Acute lymphoblastic leukemia (ALL) is the most common and one of the most treatable cancers in children. Although the majority of children with ALL are now cured, 10%-20% of patients are predicted to relapse and outcomes with salvage therapy have been disappointing, with approximately only one-third of children surviving long-term after disease recurrence. Several prognostic factors have been identified, with timing of recurrence relative to diagnosis and site of relapse emerging as the most important variables. Despite heterogeneity in the elements of salvage therapy that are delivered in trials conducted internationally, outcomes have been remarkably similar and have remained static. Because most intensive salvage regimens have reached the limit of tolerability, current strategies are focusing on identifying new agents tailored to the unique biology of relapsed disease and identifying methods to develop these agents efficiently for clinical use. Recently, high-resolution genomic analyses of matched pairs of diagnostic and relapse bone marrow samples are emerging as a promising tool for identifying pathways that impart chemoresistance.
Collapse
|
103
|
Loh ML, Mullighan CG. Advances in the genetics of high-risk childhood B-progenitor acute lymphoblastic leukemia and juvenile myelomonocytic leukemia: implications for therapy. Clin Cancer Res 2012; 18:2754-67. [PMID: 22589484 DOI: 10.1158/1078-0432.ccr-11-1936] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hematologic malignancies of childhood comprise the most common childhood cancers. These neoplasms derive from the pathologic clonal expansion of an abnormal cancer-initiating cell and span a diverse spectrum of phenotypes, including acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), myeloproliferative neoplasms (MPN), and myelodysplastic syndromes (MDS). Expansion of immature lymphoid or myeloid blasts with suppression of normal hematopoiesis is the hallmark of ALL and AML, whereas MPN is associated with proliferation of 1 or more lineages that retain the ability to differentiate, and MDS is characterized by abnormal hematopoiesis and cytopenias. The outcomes for children with the most common childhood cancer, B-progenitor ALL (B-ALL), in general, is quite favorable, in contrast to children affected by myeloid malignancies. The advent of highly sensitive genomic technologies reveals the remarkable genetic complexity of multiple subsets of high-risk B-progenitor ALL, in contrast to a somewhat simpler model of myeloid neoplasms, although a number of recently discovered alterations displayed by both types of malignancies may lead to common therapeutic approaches. This review outlines recent advances in our understanding of the genetic underpinnings of high-risk B-ALL and juvenile myelomonocytic leukemia, an overlap MPN/MDS found exclusively in children, and we also discuss novel therapeutic approaches that are currently being tested in clinical trials. Recent insights into the clonal heterogeneity of leukemic samples and the implications for diagnostic and therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Mignon L Loh
- Department of Pediatrics and the Helen Diller Comprehensive Cancer Center, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
104
|
Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 2012; 122:3407-15. [PMID: 23023711 DOI: 10.1172/jci61203] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
B-precursor acute lymphoblastic leukemia (B-ALL) is the most common childhood tumor and the leading cause of cancer-related death in children and young adults. The majority of B-ALL cases are aneuploid or harbor recurring structural chromosomal rearrangements that are important initiating events in leukemogenesis but are insufficient to explain the biology and heterogeneity of disease. Recent studies have used microarrays and sequencing to comprehensively identify all somatic genetic alterations in acute lymphoblastic leukemia (ALL). These studies have identified cryptic or submicroscopic genetic alterations that define new ALL subtypes, cooperate with known chromosomal rearrangements, and influence prognosis. This article reviews these advances, discusses results from ongoing second-generation sequencing studies of ALL, and highlights challenges and opportunities for future genetic profiling approaches.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
105
|
Köchling J, Rott Y, Arndt S, Marschke C, Schmidt M, Wittig B, Kalies K, Westermann J, Henze G. Prevention and synergistic control of Ph+ ALL by a DNA vaccine and 6-mercaptopurine. Vaccine 2012; 30:5949-55. [DOI: 10.1016/j.vaccine.2012.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
|
106
|
Abstract
The most common cause of treatment failure in childhood acute lymphoblastic leukemia (ALL) remains relapse, occurring in ~ 15%-20% of patients. Survival of relapsed patients can be predicted by site of relapse, length of first complete remission, and immunophenotype of relapsed ALL. BM and early relapse (< 30 months from diagnosis), as well as T-ALL, are associated with worse prognosis than isolated extramedullary or late relapse (> 30 months from diagnosis). In addition, persistence of minimal residual disease (MRD) at the end of induction or consolidation therapy predicts poor outcome because children with detectable MRD are more likely to relapse than those in molecular remission, even after allogeneic hematopoietic stem cell transplantation. We offer hematopoietic stem cell transplantation to any child with high-risk features because these patients are virtually incurable with chemotherapy alone. By contrast, we treat children with first late BM relapse of B-cell precursor ALL and good clearance of MRD with a chemotherapy approach. We use both systemic and local treatment for extramedullary relapse, mainly represented by radiotherapy and, in case of testicular involvement, by orchiectomy. Innovative approaches, including new agents or strategies of immunotherapy, are under investigation in trials enrolling patients with resistant or more advanced disease.
Collapse
|
107
|
Krentz S, Hof J, Mendioroz A, Vaggopoulou R, Dörge P, Lottaz C, Engelmann JC, Groeneveld TWL, Körner G, Seeger K, Hagemeier C, Henze G, Eckert C, von Stackelberg A, Kirschner-Schwabe R. Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia 2012; 27:295-304. [DOI: 10.1038/leu.2012.155] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
108
|
Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev 2012; 26:123-35. [DOI: 10.1016/j.blre.2012.01.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
109
|
Abstract
In large part, cancer results from the accumulation of multiple mutations in a single cell lineage that are sequentially acquired and subject to an evolutionary process where selection drives the expansion of more fit subclones. Owing to the technical challenge of distinguishing and isolating distinct cancer subclones, many aspects of this clonal evolution are poorly understood, including the diversity of different subclones in an individual cancer, the nature of the subclones contributing to relapse, and the identity of pre-cancerous mutations. These issues are not just important to our understanding of cancer biology, but are also clinically important given the need to understand the nature of subclones responsible for the refractory and relapsed disease that cause significant morbidity and mortality in patients. Recently, advanced genomic techniques have been used to investigate clonal diversity and evolution in acute leukemia. Studies of pediatric acute lymphoblastic leukemia (ALL) demonstrated that in individual patients there are multiple genetic subclones of leukemia-initiating cells, with a complex clonal architecture. Separate studies also investigating pediatric ALL determined that the clonal basis of relapse was variable and complex, with relapse often evolving from a clone ancestral to the predominant de novo leukemia clone. Additional studies in both ALL and acute myeloid leukemia have identified pre-leukemic mutations in some individual cases. This review will highlight these recent reports investigating the clonal evolution of acute leukemia genomes and discuss the implications for clinical therapy.
Collapse
|
110
|
Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr 2012; 160:10-8. [PMID: 21920540 DOI: 10.1016/j.jpeds.2011.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 02/02/2023]
|
111
|
Pediatric Acute Leukemia Therapies Informed by Molecular Analysis of High-Risk Disease. Hematology 2011; 2011:366-73. [DOI: 10.1182/asheducation-2011.1.366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
The acute leukemias are the most common cancer of children, adolescents, and young adults. These diseases are characterized by a tremendous variability in clinical course, prompting a continuing search for accurate predictors of outcome. Using algorithms based on clinical features at presentation, response to therapy, and several molecular analyses, some patients are diagnosed with features of high-risk disease and comparatively greater risk for relapse. Molecular analyses of patients with high-risk acute leukemias have resulted in an improved understanding of how dysregulated cellular signaling can affect resistance to conventional therapy. Whereas exciting discoveries continue to be made in the identification of relevant molecular biomarkers and targeted therapies, the challenges and opportunities associated with these findings remain to be clearly defined in future clinical trials.
Collapse
|
112
|
Mullighan CG. Genomic profiling of B-progenitor acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2011; 24:489-503. [PMID: 22127311 DOI: 10.1016/j.beha.2011.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Childhood acute lymphoblastic leukemia (ALL) is comprised of multiple subtypes defined by recurring chromosomal alterations that are important events in leukemogenesis and are widely used in diagnosis and risk stratification, yet fail to fully explain the biology of this disease. In the last 5 years, genome-wide profiling of gene expression, structural DNA alterations and sequence variations has yielded important insights into the nature of submicroscopic genetic alterations that define novel subgroups of acute lymphoblastic leukemia and cooperate with known cytogenetic alterations in leukemogenesis. Importantly, several of these alterations are important determinants of risk of relapse and are potential targets for therapeutic intervention. Here, these advances and future directions in the genomic analysis of ALL are discussed.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
113
|
Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 2011; 118:5218-26. [PMID: 21921043 DOI: 10.1182/blood-2011-04-345595] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite an increase in survival for children with acute lymphoblastic leukemia (ALL), the outcome after relapse is poor. To understand the genetic events that contribute to relapse and chemoresistance and identify novel targets of therapy, 3 high-throughput assays were used to identify genetic and epigenetic changes at relapse. Using matched diagnosis/relapse bone marrow samples from children with relapsed B-precursor ALL, we evaluated gene expression, copy number abnormalities (CNAs), and DNA methylation. Gene expression analysis revealed a signature of differentially expressed genes from diagnosis to relapse that is different for early (< 36 months) and late (≥ 36 months) relapse. CNA analysis discovered CNAs that were shared at diagnosis and relapse and others that were new lesions acquired at relapse. DNA methylation analysis found increased promoter methylation at relapse. There were many genetic alterations that evolved from diagnosis to relapse, and in some cases these genes had previously been associated with chemoresistance. Integration of the results from all 3 platforms identified genes of potential interest, including CDKN2A, COL6A2, PTPRO, and CSMD1. Although our results indicate that a diversity of genetic changes are seen at relapse, integration of gene expression, CNA, and methylation data suggest a possible convergence on the WNT and mitogen-activated protein kinase pathways.
Collapse
|
114
|
van der Veken LT, Buijs A. Array CGH in human leukemia: from somatics to genetics. Cytogenet Genome Res 2011; 135:260-70. [PMID: 21893961 DOI: 10.1159/000330629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the past decade, array CGH has been applied to study copy number alterations in the genome in human leukemia in relation to prediction of prognosis or responsiveness to therapy. In the first segment of this review, we will focus on the identification of acquired mutations by array CGH, followed by studies on the pathogenesis of leukemia associated with germline genetic variants, phenotypic presentation and response to treatment. In the last section, we will discuss constitutional genomic aberrations causally related to myeloid leukemogenesis.
Collapse
Affiliation(s)
- L T van der Veken
- Section of Genome Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
115
|
Vestergaard TR, Juul A, Lausten-Thomsen U, Lausen B, Hjalgrim H, Kvist TK, Andersen EW, Schmiegelow K. Duration of adrenal insufficiency during treatment for childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2011; 33:442-9. [PMID: 21792040 DOI: 10.1097/mph.0b013e3182260cbe] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Children with acute lymphoblastic leukemia (ALL) recive high doses of glucocorticosteroid as part of their treatment. This may lead to suppression of the hypothalamic-pituitary-adrenal axis, acute adrenal insufficiency, and ultimately to life-threatening conditions. This study explores the adrenal function in 96 children with ALL treated according to common protocols. After cessation of induction glucocorticosteroid therapy, they received hydrocortisone substitution therapy (10 mg/m/24 h) until an adrenocorticotropic hormone test (250 μg tetracosatide) showed a sufficient adrenal response [plasma (p)-cortisol ≥500 nM]. At the first adrenocorticotropic hormone test, 67% of the patients had adrenal insufficiency. When including these patients in a multivariate model, not adjusting for risk factors, the mean elapsed time between end of induction therapy and adrenal sufficiency was 8.5 months (95% confidence interval: 6.3;10.7). Low 0-minute p-cortisol (P=0.02) and low rise in p-cortisol (P<0.0001) at first test caused a longer time of adrenal insufficiency. In addition, patients with B-cell precursor leukemia reached adrenal sufficiency later than those with T-cell leukemia (P=0.067). As adrenal insufficiency is frequent in children treated for ALL and as they often experience infections and other stressors, the adrenal response should be determined and hydrocortisone substitution therapy should be considered during such episodes in patients with adrenal insufficiency.
Collapse
|
116
|
Hérault Y, Duchon A, Maréchal D, Raveau M, Pereira PL, Dalloneau E, Brault V. Controlled somatic and germline copy number variation in the mouse model. Curr Genomics 2011; 11:470-80. [PMID: 21358991 PMCID: PMC3018727 DOI: 10.2174/138920210793176038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022] Open
Abstract
Changes in the number of chromosomes, but also variations in the copy number of chromosomal regions have been described in various pathological conditions, such as cancer and aneuploidy, but also in normal physiological condition. Our classical view of DNA replication and mitotic preservation of the chromosomal integrity is now challenged as new technologies allow us to observe such mosaic somatic changes in copy number affecting regions of chromosomes with various sizes. In order to go further in the understanding of copy number influence in normal condition we could take advantage of the novel strategy called Targeted Asymmetric Sister Chromatin Event of Recombination (TASCER) to induce recombination during the G2 phase so that we can generate deletions and duplications of regions of interest prior to mitosis. Using this approach in the mouse we could address the effects of copy number variation and segmental aneuploidy in daughter cells and allow us to explore somatic mosaics for large region of interest in the mouse.
Collapse
Affiliation(s)
- Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
117
|
Hunger SP, Raetz EA, Loh ML, Mullighan CG. Improving outcomes for high-risk ALL: translating new discoveries into clinical care. Pediatr Blood Cancer 2011; 56:984-93. [PMID: 21370430 DOI: 10.1002/pbc.22996] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/01/2010] [Indexed: 12/22/2022]
Abstract
High-risk (HR) acute lymphoblastic leukemia (ALL) remains one of the greatest challenges in pediatric oncology. Relapsed ALL is a leading cause of death in young people, and further improvements in outcome will required the development of therapeutic approaches directed against rational therapeutic targets, as escalation of the intensity of existing therapies is limited by toxicity. This review summarizes advances in the biology and treatment of HR and relapsed ALL presented at a symposium at the 2010 American Society for Pediatric Hematology and Oncology Annual Meeting. Analysis of large patient cohorts has identified several factors associated with HR of relapse including older age, T-lineage disease, and persisting minimal residual disease (MRD) early in therapy. As the results of salvage therapy remain poor, new treatment approaches are needed. BCR-ABL1-positive (Ph+) ALL has historically had a very poor outcome, but recent studies have demonstrated the impressive improvements in treatment outcome with the use of tyrosine kinase inhibitors (TKIs). High-resolution genomic profiling of genetic alterations and gene expression has revolutionized our understanding of the genetic basis of ALL, and has identified several alterations associated with poor outcome, including mutations of the lymphoid transcription factor gene IKZF1 (IKAROS), activating mutations of Janus kinases, and rearrangement of the lymphoid cytokine receptor gene CRLF2. These data indicated that the genetic basis of HR-ALL is multifactorial, and have also provided a new potential therapeutic option directed at JAK inhibition.
Collapse
Affiliation(s)
- Stephen P Hunger
- Center for Cancer and Blood Disorders, The Children's Hospital and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
118
|
Mullighan CG, Willman CL. Advances in the Biology of Acute Lymphoblastic Leukemia-From Genomics to the Clinic. J Adolesc Young Adult Oncol 2011; 1:77-86. [PMID: 23610732 DOI: 10.1089/jayao.2011.0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite impressive advances in cure rates for childhood acute lymphoblastic leukemia (ALL), ALL remains the leading cause of disease-related death in young people and new therapeutic approaches directed against rational therapeutic targets are urgently required to improve treatment outcomes. This is particularly true for ALL in older children, adolescents, and adults, in whom treatment outcomes are markedly inferior to those of young children. A major goal of current leukemia research is to use comprehensive genomic analysis of the leukemic cell genome, transcriptome, and epigenome to identify critical new genomic alterations that drive leukemogenesis and influence responsiveness to therapy. Genomic analyses in childhood ALL have been remarkably informative and have identified a number of new structural genetic alterations that play important roles in the establishment of the leukemic clone and determine risk of relapse. Notably, many high-risk ALL cases harbor loss-of-function and dominant mutations of genes that encode transcriptional regulators of lymphoid development coupled with mutations that result in activation of cytokine receptor and kinase signaling pathways. These advances have resulted in new diagnostic approaches and therapeutic trials in ALL. This review will discuss these advances and outline challenges for future studies, including the potential role of genome-wide sequencing approaches and the need for detailed studies of the genetics of ALL in the adolescent and young adult population.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | |
Collapse
|
119
|
Mullighan C, Petersdorf E, Davies SM, DiPersio J. From trees to the forest: genes to genomics. Biol Blood Marrow Transplant 2011; 17:S52-7. [PMID: 21195310 DOI: 10.1016/j.bbmt.2010.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crick, Watson, and colleagues revealed the genetic code in 1953, and since that time, remarkable progress has been made in understanding what makes each of us who we are. Identification of single genes important in disease, and the development of a mechanistic understanding of genetic elements that regulate gene function, have cast light on the pathophysiology of many heritable and acquired disorders. In 1990, the human genome project commenced, with the goal of sequencing the entire human genome, and a "first draft" was published with astonishing speed in 2001. The first draft, although an extraordinary achievement, reported essentially an imaginary haploid mix of alleles rather than a true diploid genome. In the years since 2001, technology has further improved, and efforts have been focused on filling in the gaps in the initial genome and starting the huge task of looking at normal variation in the human genome. This work is the beginning of understanding human genetics in the context of the structure of the genome as a complete entity, and as more than simply the sum of a series of genes. We present 3 studies in this review that apply genomic approaches to leukemia and to transplantation to improve and extend therapies.
Collapse
Affiliation(s)
- Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
120
|
Signaling proteins and transcription factors in normal and malignant early B cell development. BONE MARROW RESEARCH 2011; 2011:502751. [PMID: 22046564 PMCID: PMC3200079 DOI: 10.1155/2011/502751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
Abstract
B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.
Collapse
|
121
|
Eckert C, Flohr T, Koehler R, Hagedorn N, Moericke A, Stanulla M, Kirschner-Schwabe R, Cario G, Stackelberg A, Bartram CR, Henze G, Schrappe M, Schrauder A. Very early/early relapses of acute lymphoblastic leukemia show unexpected changes of clonal markers and high heterogeneity in response to initial and relapse treatment. Leukemia 2011; 25:1305-13. [DOI: 10.1038/leu.2011.89] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
122
|
Piwkham D, Gelfond JA, Rerkamnuaychoke B, Pakakasama S, Rebel VI, Pollock BH, Winick NJ, Collier AB, Tomlinson GE, Beuten J. Multilocus Association of Genetic Variants in MLL, CREBBP, EP300, and TOP2A with Childhood Acute Lymphoblastic Leukemia in Hispanics from Texas. Cancer Epidemiol Biomarkers Prev 2011; 20:1204-12. [DOI: 10.1158/1055-9965.epi-11-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
123
|
Abstract
B-cell precursor childhood acute lymphoblastic leukemia with ETV6-RUNX1 (TEL-AML1) fusion has an overall good prognosis, but relapses occur, usually after cessation of treatment and occasionally many years later. We have investigated the clonal origins of relapse by comparing the profiles of genomewide copy number alterations at presentation in 21 patients with those in matched relapse (12-119 months). We identified, in total, 159 copy number alterations at presentation and 231 at relapse (excluding Ig/TCR). Deletions of CDKN2A/B or CCNC (6q16.2-3) or both increased from 38% at presentation to 76% in relapse, suggesting that cell-cycle deregulation contributed to emergence of relapse. A novel observation was recurrent gain of chromosome 16 (2 patients at presentation, 4 at relapse) and deletion of plasmocytoma variant translocation 1 in 3 patients. The data indicate that, irrespective of time to relapse, the relapse clone was derived from either a major or minor clone at presentation. Backtracking analysis by FISH identified a minor subclone at diagnosis whose genotype matched that observed in relapse ∼ 10 years later. These data indicate subclonal diversity at diagnosis, providing a variable basis for intraclonal origins of relapse and extended periods (years) of dormancy, possibly by quiescence, for stem cells in ETV6-RUNX1(+) acute lymphoblastic leukemia.
Collapse
|
124
|
Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L, Ballerini P, Baruchel A, Pflumio F, Soulier J. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. ACTA ACUST UNITED AC 2011; 208:653-61. [PMID: 21464223 PMCID: PMC3135355 DOI: 10.1084/jem.20110105] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA-mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle- and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse.
Collapse
Affiliation(s)
- Emmanuelle Clappier
- Laboratoire de Recherche sur les Cellules Souches Hématopoïétiques et Leucémiques, Institut de Radiobiologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, Heatley SL, Holmfeldt L, Collins-Underwood JR, Ma J, Buetow KH, Pui CH, Baker SD, Brindle PK, Downing JR. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011; 471:235-9. [PMID: 21390130 DOI: 10.1038/nature09727] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022]
Abstract
Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biological determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse. However, DNA sequence mutations in ALL have not been analysed in detail. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CREBBP, also known as CBP). The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the histone acetyltransferase domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Copy Number Alterations and Methylation in Ewing's Sarcoma. Sarcoma 2011; 2011:362173. [PMID: 21437220 PMCID: PMC3061291 DOI: 10.1155/2011/362173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/03/2011] [Indexed: 12/31/2022] Open
Abstract
Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs) and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease.
Collapse
|
127
|
ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood 2011; 117:2658-67. [DOI: 10.1182/blood-2010-03-275347] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Approximately 25% of childhood acute lymphoblastic leukemias carry the ETV6/RUNX1 fusion gene. Despite their excellent initial treatment response, up to 20% of patients relapse. To gain insight into the relapse mechanisms, we analyzed single nucleotide polymorphism arrays for DNA copy number aberrations (CNAs) in 18 matched diagnosis and relapse leukemias. CNAs were more abundant at relapse than at diagnosis (mean 12.5 vs 7.5 per case; P = .01) with 5.3 shared on average. Their patterns revealed a direct clonal relationship with exclusively new aberrations at relapse in only 21.4%, whereas 78.6% shared a common ancestor and subsequently acquired distinct CNA. Moreover, we identified recurrent, mainly nonoverlapping deletions associated with glucocorticoid-mediated apoptosis targeting the Bcl2 modifying factor (BMF) (n = 3), glucocorticoid receptor NR3C1 (n = 4), and components of the mismatch repair pathways (n = 3). Fluorescence in situ hybridization screening of additional 24 relapsed and 72 nonrelapsed ETV6/RUNX1-positive cases demonstrated that BMF deletions were significantly more common in relapse cases (16.6% vs 2.8%; P = .02). Unlike BMF deletions, which were always already present at diagnosis, NR3C1 and mismatch repair aberrations prevailed at relapse. They were all associated with leukemias, which poorly responded to treatment. These findings implicate glucocorticoid-associated drug resistance in ETV6/RUNX1-positive relapse pathogenesis and therefore might help to guide future therapies.
Collapse
|
128
|
How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia. Curr Opin Pediatr 2011; 23:34-40. [PMID: 21169835 DOI: 10.1097/mop.0b013e3283426260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review describes the recent advances in genomic profiling that have provided critical new insights into the biology of acute leukemia in children. RECENT FINDINGS Acute leukemia genomes commonly harbor submicroscopic gains and deletions of DNA which target key cellular pathways that influence leukemogenesis and the likelihood of treatment failure, particularly in acute lymphoblastic leukemia (ALL). Notably, genetic alterations targeting transcriptional regulators of lymphoid development are a hallmark of B-progenitor ALL, and alteration of specific genes in this pathway, such as IKZF1 (encoding IKAROS), are associated with high-risk ALL. Integrated genomic profiling has identified potential therapeutic targets in ALL, including aberrant cytokine receptor signaling mediated by rearrangements and mutation of CRLF2 and JAK2. Genome-wide association studies are also providing important insights into the role of inherited genetic variation and susceptibility to ALL. In contrast, genomic profiling of acute myeloid leukemia (AML) has thus far yielded fewer insights, but ongoing resequencing of leukemia genomes is uncovering novel mutations in both ALL and AML. SUMMARY Genomic profiling has identified important new genetic lesions that contribute to leukemogenesis. These findings will have important implications for the development of new diagnostic tests and treatment approaches in high-risk leukemia. Future studies will be increasingly reliant on comprehensive genomic sequencing to reveal the spectrum of genetic alterations in this disease, with the ultimate aim of improving the treatment outcome for leukemia patients.
Collapse
|
129
|
Szczepanek J, Styczyński J, Haus O, Tretyn A, Wysocki M. Relapse of acute lymphoblastic leukemia in children in the context of microarray analyses. Arch Immunol Ther Exp (Warsz) 2011; 59:61-8. [PMID: 21246408 DOI: 10.1007/s00005-010-0110-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/19/2010] [Indexed: 10/18/2022]
Abstract
Over the last four decades the treatment of patients with newly diagnosed childhood acute lymphoblastic leukemia (ALL) has improved remarkably. However, still about 20% of children with ALL relapse despite risk-adapted polychemotherapy. The prognosis of relapsed ALL is relatively poor, even with modern aggressive chemotherapy. Identification of the biological and genetic mechanisms contributing to recurrence in patients with ALL is critical for the development of effective therapeutic strategies to treat refractory leukemic patients. Allogeneic hematopoietic stem-cell transplantation is the treatment of choice for many children with relapsed ALL. The gene expression profile obtained by microarray technology could provide important determinants of the drug response and clinical outcome in childhood ALL. Incorporation of the data on expression levels of newly identified genes into existing strategies of risk stratification might improve clinical management. Current microarray data show correlation of in vitro drug resistance with significant patterns of gene expression and explain clinical differences between early and late relapse. Genes involved in cell proliferation, self-renewal and differentiation, protein biosynthesis, carbohydrate metabolism, and DNA replication and repair are usually among those highly expressed in relapsed lymphoblasts. Current status and future perspectives of microarray data on gene expression and drug resistance profile in relapsed pediatric ALL are discussed in this review.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094, Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
130
|
Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29:551-65. [PMID: 21220611 DOI: 10.1200/jco.2010.30.7405] [Citation(s) in RCA: 623] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE We review recent advances in the biologic understanding and treatment of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), identify therapeutically challenging subgroups, and suggest future directions of research. METHODS A review of English literature on childhood acute leukemias from the past 5 years was performed. RESULTS Contemporary treatments have resulted in 5-year event-free survival rates of approximately 80% for childhood ALL and almost 60% for pediatric AML. The advent of high-resolution genome-wide analyses has provided new insights into leukemogenesis and identified many novel subtypes of leukemia. Virtually all ALL and the vast majority of AML cases can be classified according to specific genetic abnormalities. Cooperative mutations involved in cell differentiation, cell cycle regulation, tumor suppression, drug responsiveness, and apoptosis have also been identified in many cases. The development of new formulations of existing drugs, molecularly targeted therapy, and immunotherapies promises to further advance the cure rates and improve quality of life of patients. CONCLUSION The application of new high-throughput sequencing techniques to define the complete DNA sequence of leukemia and host normal cells and the development of new agents targeted to leukemogenic pathways promise to further improve outcome in the coming decade.
Collapse
Affiliation(s)
- Ching-Hon Pui
- St Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| | | | | | | |
Collapse
|
131
|
Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 2011; 109:777-87. [PMID: 21126650 DOI: 10.1016/s0929-6646(10)60123-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 01/26/2023] Open
Abstract
Recent progress in risk-adapted treatment for childhood acute lymphoblastic leukemia has secured 5-year event-free survival rates of approximately 80% and 5-year survival rates approaching 90%. With improved systemic and intrathecal chemotherapy, it is now feasible to omit safely in all patients prophylactic cranial irradiation, which was once a standard treatment. As high-resolution, genome-wide analyses of leukemic and normal host cells continue to identify novel subtypes of lymphoblastic leukemia and provide new insights into leukemogenesis, we can look forward to the time when all cases of this disease will be classified according to specific genetic abnormalities, some of which will yield "druggable" targets for more effective and less toxic treatments. Meanwhile, it is sobering to consider that a significant fraction of leukemia survivors will develop serious health problems within 30 years of their initial diagnosis. This underlines the need to introduce early countermeasures to reduce late therapy-related effects. The ultimate challenge is to gain a clear understanding of the factors that give rise to childhood leukemia in the first place, and enable preventive strategies to be devised and implemented.
Collapse
|
132
|
Yang JJ, Mehta PA, Relling MV, Davies SM. Pharmacogenetic and Pharmacogenomic Considerations in the Biology and Treatment of Childhood Leukemia. CHILDHOOD LEUKEMIA 2011. [DOI: 10.1007/978-3-642-13781-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
133
|
Postrelapse survival in childhood acute lymphoblastic leukemia is independent of initial treatment intensity: a report from the Children's Oncology Group. Blood 2010; 117:3010-5. [PMID: 21193696 DOI: 10.1182/blood-2010-07-294678] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While intensification of therapy has improved event-free survival (EFS) and survival in newly diagnosed children with acute lymphoblastic leukemia (ALL), postrelapse outcomes remain poor. It might be expected that patients relapsing after inferior initial therapy would have a higher retrieval rate than after superior therapy. In the Children's Oncology Group Study CCG-1961, significantly superior EFS and survival were achieved with an augmented (stronger) versus standard intensity regimen of postinduction intensification (PII) for children with newly diagnosed high-risk ALL and rapid day 7 marrow response (EFS/survival 81.2%/88.7% vs 71.7%/83.4%, respectively). This provided an opportunity to evaluate postrelapse survival (PRS) in 272 relapsed patients who had received randomly allocated initial treatment with augmented or standard intensity PII. As expected, PRS was worse for early versus late relapse, marrow versus extramedullary site, adolescent versus younger age and T versus B lineage. However, no difference in 3-year PRS was detected for having received augmented versus standard intensity PII (36.4% ± 5.7% vs 39.2% ± 4.1%; log rank P = .72). Similar findings were noted within subanalyses by timing and site of relapse, age, and immunophenotype. These findings provide insight into mechanisms of relapse in ALL, and are consistent with emergence of a resistant subclone that has acquired spontaneous mutations largely independent of initial therapy. This study is registered at www.clinicaltrials.gov as NCT00002812.
Collapse
|
134
|
Shand JC, Jansson J, Hsu YC, Campbell A, Mullen CA. Differential gene expression in acute lymphoblastic leukemia cells surviving allogeneic transplant. Cancer Immunol Immunother 2010; 59:1633-44. [PMID: 20602231 PMCID: PMC11030998 DOI: 10.1007/s00262-010-0889-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/18/2010] [Indexed: 12/11/2022]
Abstract
The effectiveness of allogeneic graft-versus-leukemia (GVL) activity in control of acute lymphoblastic leukemia is generally regarded as poor. One possible factor is dynamic adaptation of the leukemia cell to the allogeneic environment. This work tested the hypothesis that the pattern of gene expression in acute lymphoblastic leukemia cells in an allogeneic environment would differ from that in a non-allogeneic environment. Expression microarray studies were performed in murine B lineage acute lymphoblastic leukemia cells recovered from mice that had undergone allogeneic MHC-matched but minor histocompatibility antigen mismatched transplants. A limited number of genes were found to be differentially expressed in ALL cells surviving in the allogeneic environment. Functional analysis demonstrated that genes related to immune processes, antigen presentation, ubiquitination and GTPase function were significantly enriched. Several genes with known immune activities potentially relevant to leukemia survival (Ly6a/Sca-1, TRAIL and H2-T23) were examined in independent validation experiments. Increased expression in vivo in allogeneic hosts was observed, and could be mimicked in vitro with soluble supernatants of mixed lymphocyte reactions or interferon-gamma. The changes in gene expression were reversible when the leukemia cells were removed from the allogeneic environment. These findings suggest that acute lymphoblastic leukemia cells respond to cytokines present after allogeneic transplantation and that these changes may reduce the effectiveness of GVL activity.
Collapse
Affiliation(s)
- Jessica C. Shand
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Johan Jansson
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
- School of Pure and Applied Natural Sciences, University of Kalmar, 391 82 Kalmar, Sweden
| | - Yu-Chiao Hsu
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Andrew Campbell
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| | - Craig A. Mullen
- Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 777, Rochester, NY 14642 USA
| |
Collapse
|
135
|
Zandi S, Bryder D, Sigvardsson M. Load and lock: the molecular mechanisms of B-lymphocyte commitment. Immunol Rev 2010; 238:47-62. [DOI: 10.1111/j.1600-065x.2010.00950.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
136
|
Collins-Underwood JR, Mullighan CG. Genomic profiling of high-risk acute lymphoblastic leukemia. Leukemia 2010; 24:1676-85. [PMID: 20739952 DOI: 10.1038/leu.2010.177] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous disease comprising multiple subtypes with different genetic alterations and responses to therapy. Recent genome-wide profiling studies of ALL have identified a number of novel genetic alterations that target key cellular pathways in lymphoid growth and differentiation and are associated with treatment outcome. Notably, genetic alteration of the lymphoid transcription factor gene IKZF1 is a hallmark of multiple subtypes of ALL with poor prognosis, including BCR-ABL1-positive lymphoid leukemia and a subset of 'BCR-ABL1-like' ALL cases that, in addition to IKZF1 alteration, harbor genetic mutations resulting in aberrant lymphoid cytokine receptor signaling, including activating mutations of Janus kinases and rearrangement of cytokine receptor-like factor 2 (CRLF2). Recent insights from genome-wide profiling studies of B-progenitor ALL and the potential for new therapeutic approaches in high-risk disease are discussed.
Collapse
Affiliation(s)
- J R Collins-Underwood
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
137
|
Huang RS, Dolan ME. Approaches to the discovery of pharmacogenomic markers in oncology: 2000-2010-2020. Pharmacogenomics 2010; 11:471-4. [PMID: 20350124 DOI: 10.2217/pgs.10.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenomics is emerging as an important component both in facilitating new drug development and in improving the utility of existing chemotherapeutic agents. Both candidate gene and genome-wide approaches have been used to identify genetic markers associated with chemotherapeutic response and/or toxicity. New molecular targeted agents have been designed based on a sophisticated understanding of the molecular alterations defining cancers. Over the next decade, the translation of these findings into clinical practice, as well as functional studies of genetic variants, is likely to take center stage. More comprehensive evaluation of the human genome, including the examination of rare SNPs, copy number variations, tandem repeats and epigenetic effects, will further improve our understanding of the relationship between genetics and drug response.
Collapse
|
138
|
Kuiper RP, Waanders E, van der Velden VHJ, van Reijmersdal SV, Venkatachalam R, Scheijen B, Sonneveld E, van Dongen JJM, Veerman AJP, van Leeuwen FN, Geurts van Kessel A, Hoogerbrugge PM. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010; 24:1258-64. [DOI: 10.1038/leu.2010.87] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
139
|
Meeker ND, Yang JJ, Schiffman JD. Pharmacogenomics of pediatric acute lymphoblastic leukemia. Expert Opin Pharmacother 2010; 11:1621-32. [DOI: 10.1517/14656566.2010.484019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
140
|
Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia 2010; 24:924-31. [PMID: 20237506 DOI: 10.1038/leu.2010.39] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although childhood high hyperdiploid acute lymphoblastic leukemia is associated with a favorable outcome, 20% of patients still relapse. It is important to identify these patients already at diagnosis to ensure proper risk stratification. We have investigated 11 paired diagnostic and relapse samples with single nucleotide polymorphism array and mutation analyses of FLT3, KRAS, NRAS and PTPN11 in order to identify changes associated with relapse and to ascertain the genetic evolution patterns. Structural changes, mainly cryptic hemizygous deletions, were significantly more common at relapse (P<0.05). No single aberration was linked to relapse, but four deletions, involving IKZF1, PAX5, CDKN2A/B or AK3, were recurrent. On the basis of the genetic relationship between the paired samples, three groups were delineated: (1) identical genetic changes at diagnosis and relapse (2 of 11 cases), (2) clonal evolution with all changes at diagnosis being present at relapse (2 of 11) and (3) clonal evolution with some changes conserved, lost or gained (7 of 11), suggesting the presence of a preleukemic clone. This ancestral clone was characterized by numerical changes only, with structural changes and RTK-RAS mutations being secondary to the high hyperdiploid pattern.
Collapse
|
141
|
Best A, Matheson E, Minto L, Hall AG, Irving JAE. Mismatch repair and the downstream target genes, PAX5 and Ikaros, in childhood acute lymphoblastic leukemia. Leuk Res 2010; 34:1098-102. [PMID: 20233627 DOI: 10.1016/j.leukres.2010.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/08/2010] [Accepted: 02/13/2010] [Indexed: 12/16/2022]
Abstract
The mismatch repair (MMR) pathway is a post-replicative DNA repair process and MMR deficiency is a common feature of ALL cell lines. In this study we have investigated MMR deficiency in a large cohort of primary relapsed ALL (n=40) and investigated coding microsatellites (MS) of the lymphoid transcription factors, PAX5 and IKZF1 as downstream target genes. Only one patient showed MMR deficiency, as evidenced by microsatellite instability, which was acquired at relapse and was associated with reduced expression of both MLH1 and MSH2. Coding MS in candidate target genes including PAX5, IKZF1, BAX and TGFBRII were all wild type in this patient but the MMR-deficient cell line REH, was confirmed to have a coding MS in both PAX5 and TGFBRII. Whilst MMR deficiency is not highly prevalent in primary ALL, optimisation of the drug regimen to omit/replace thioguanines should be considered for children with MMR deficiency and/or reduced expression of key pathway components.
Collapse
MESH Headings
- Adolescent
- Blotting, Western
- Child
- Child, Preschool
- Cohort Studies
- DNA Methylation
- DNA Mismatch Repair/genetics
- Humans
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Immunoenzyme Techniques
- Infant
- Microsatellite Instability
- Microsatellite Repeats/genetics
- Mutation/genetics
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- PAX5 Transcription Factor/genetics
- PAX5 Transcription Factor/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Andrew Best
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
142
|
Ostrovnaya I, Begg CB. Testing clonal relatedness of tumors using array comparative genomic hybridization: a statistical challenge. Clin Cancer Res 2010; 16:1358-67. [PMID: 20179213 DOI: 10.1158/1078-0432.ccr-09-2398] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years several investigative groups have sought to use array technologies that characterize somatic alterations in tumors, such as array comparative genomic hybridization (ACGH), to classify pairs of tumors from the same patients as either independent primary cancers or metastases. A wide variety of strategies have been proposed. Several groups have endeavored to use hierarchical clustering for this purpose. This technique was popularized in genomics as a means of finding clusters of patients with similar gene expression patterns with a view to finding subcategories of tumors with distinct clinical characteristics. Unfortunately, this method is not well suited to the problem of classifying individual pairs of tumors as either clonal or independent. In this article we show why hierarchical clustering is unsuitable for this purpose, and why this method has the paradoxical property of producing a declining probability that clonal tumor pairs will be correctly identified as more information is accrued (i.e., more patients). We discuss alternative strategies that have been proposed, which are based on more conventional conceptual formulations for statistical testing and diagnosis, and point to the remaining challenges in constructing valid and robust techniques for this problem.
Collapse
Affiliation(s)
- Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
143
|
Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Campana D, Kun LE, Jeha S, Cheng C, Howard SC, Metzger ML, Bhojwani D, Downing JR, Evans WE, Relling MV. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010; 24:371-82. [PMID: 20010620 PMCID: PMC2820159 DOI: 10.1038/leu.2009.252] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 02/08/2023]
Abstract
We analyzed the long-term outcome of 1011 patients treated in five successive clinical trials (Total Therapy Studies 11, 12, 13A, 13B, and 14) between 1984 and 1999. The event-free survival improved significantly (P=0.003) from the first two trials conducted in the 1980s to the three more recent trials conducted in the 1990s. Approximately 75% of patients treated in the 1980s and 80% in the 1990s were cured. Early intensive triple intrathecal therapy, together with more effective systemic therapy, including consolidation and reinduction treatment (Studies 13A and 13B) as well as dexamethasone (Study 13B), resulted in a very low rate of isolated central nervous system (CNS) relapse rate (<2%), despite the reduced use of cranial irradiation. Factors consistently associated with treatment outcome were age, leukocyte count, immunophenotype, DNA index, and minimal residual disease level after remission induction treatment. Owing to concerns about therapy-related secondary myeloid leukemia and brain tumors, in our current trials we reserve the use of etoposide for patients with refractory or relapsed leukemia undergoing hematopoietic stem cell transplantation, and cranial irradiation for those with CNS relapse. The next main challenge is to further increase cure rates while improving quality of life for all patients.
Collapse
Affiliation(s)
- C H Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia 2009; 24:397-405. [PMID: 20016538 DOI: 10.1038/leu.2009.248] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The long-term outcome of 1390 children with acute lymphoblastic leukemia (ALL), treated in two successive clinical trials (Taiwan Pediatric Oncology Group (TPOG)-ALL-97 and TPOG-ALL-2002) between 1997 and 2007, is reported. The event-free survival improved significantly (P=0.0004) over this period, 69.3+/-1.9% in 1997-2001 to 77.4+/-1.7% in 2002-2007. A randomized trial in TPOG-97 testing L-asparaginase versus epidoxorubicin in combination with vincristine and prednisolone for remission induction in standard-risk (SR; low-risk) patients yielded similar outcomes. Another randomized trial, in TPOG-2002, showed that for SR patients, two reinduction courses did not improve long-term outcome over one course. Decreasing use of prophylactic cranial irradiation in the period 1997-2008 was not associated with increased rates of CNS relapse, prompting complete omission of prophylactic cranial irradiation from TPOG protocols, beginning in 2009. Decreased use of etoposide and cranial irradiation likely contributed to the low incidence of second cancers. High-risk B-lineage ALL, T-cell, CD10 negativity, t(9;22), infant, and higher leukocyte count were consistently adverse factors, whereas hyperdiploidy >50 was a consistently favorable factor. Higher leukocyte count and t(9;22) retained prognostic significance in both TPOG-97 and TPOG-2002 by multivariate analysis. Although long-term outcome in TPOG clinical trials is comparable with results being reported worldwide, the persistent strength of certain prognostic variables and the lower frequencies of favorable outcome predictors, such as ETV6-RUNX1 and hyperdiploidy >50, in Taiwanese children warrant renewed effort to cure a higher proportion of patients while preserving their quality of life.
Collapse
|
145
|
Abstract
Alterations in various developmental pathways are common themes in cancer. The early B-cell factors (EBF) are a family of four highly conserved DNA-binding transcription factors with an atypical zinc-finger and helix-loop-helix motif. They are involved in the differentiation and maturation of several cell lineages including B-progenitor lymphoblasts, neuronal precursors, and osteoblast progenitors. During B-cell development, EBF1 is required for the expression of Pax5, an essential factor for the production of antibody-secreting cells. Accumulating evidence indicates that genomic deletion of the EBF1 gene contributes to the pathogenesis, drug resistance, and relapse of B-progenitor acute lymphoblastic leukemia (ALL). Epigenetic silencing and genomic deletion of the EBF3 locus in chromosome 10q are very frequent in glioblastoma (GBM). Strikingly, the frequency of EBF3 loss in GBM is similar to that of the loss of Pten, a key suppressor of gliomagenesis. Cancer-specific somatic mutations were detected in EBF3 in GBM and in both EBF1 and EBF3 in pancreatic ductal adenocarcinoma. These missense mutations occur in the DNA-binding domain or the conserved IPT/TIG domain, suggesting that they might disrupt the functions of these two proteins. Functional studies revealed that EBF3 represses the expression of genes required for cell proliferation [e.g., cyclins and cyclin-dependent kinases (CDK)] and survival (e.g., Mcl-1 and Daxx) but activates those involved in cell cycle arrest (e.g., p21 and p27), leading to growth suppression and apoptosis. Therefore, EBFs represent new tumor suppressors whose inactivation blocks normal development and contributes to tumorigenesis of diverse types of human cancer.
Collapse
Affiliation(s)
- Daiqing Liao
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, University of Florida, Gainesville, FL 32611-3633, USA.
| |
Collapse
|
146
|
Molecular inversion probes reveal patterns of 9p21 deletion and copy number aberrations in childhood leukemia. ACTA ACUST UNITED AC 2009; 193:9-18. [PMID: 19602459 DOI: 10.1016/j.cancergencyto.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/12/2009] [Indexed: 01/19/2023]
Abstract
Childhood leukemia, which accounts for >30% of newly diagnosed childhood malignancies, is one of the leading causes of death for children with cancer. Genome-wide studies using microarray chips to identify copy number changes in human cancer are becoming more common. In this pilot study, 45 pediatric leukemia samples were analyzed for gene copy aberrations using novel molecular inversion probe (MIP) technology. Acute leukemia subtypes included precursor B-cell acute lymphoblastic leukemia (ALL) (n=23), precursor T-cell ALL (n=6), and acute myeloid leukemia (n=14). The MIP analysis identified 69 regions of recurring copy number changes, of which 41 have not been identified with other DNA microarray platforms. Copy number gains and losses were validated in 98% of clinical karyotypes and 100% of fluorescence in situ hybridization studies available. We report unique patterns of copy number loss in samples with 9p21.3 (CDKN2A) deletion in the precursor B-cell ALL patients, compared with the precursor T-cell ALL patients. MIPs represent an attractive technology for identifying novel copy number aberrations, validating previously reported copy number changes, and translating molecular findings into clinically relevant targets for further investigation.
Collapse
|
147
|
Peter A, Heiden T, Taube T, Körner G, Seeger K. Interphase FISH on TEL/AML1 positive acute lymphoblastic leukemia relapses--analysis of clinical relevance of additional TEL and AML1 copy number changes. Eur J Haematol 2009; 83:420-32. [PMID: 19594616 DOI: 10.1111/j.1600-0609.2009.01315.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES TEL/AML1 (ETV6/RUNX1) fusion resulting from the translocation t(12;21)(p13;q22) constitutes the most common chimeric fusion gene in initial childhood B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) (19-27%) and has been associated with good prognosis. Three secondary aberrations in TEL/AML1 positive ALL have been suspected to negatively influence outcome: deletion of the second TEL allele (T), gain of the second AML1 allele (A) and duplication of the derivative chromosome 21 (der(21), TA). Many studies have explored such aberrations in initial disease, while only few reports have investigated them in relapses. METHODS In this study, bone marrow samples from 38 children with relapsed TEL/AML1 RT-PCR positive and negative BCP-ALL were analyzed for these mutations by interphase fluorescence in situ hybridization and results were compared with published data. RESULTS In children with TEL/AML1 positive ALL relapse, additional (a) TEL loss, (b) combined AML1 and der(21) gain, (c) combined TEL loss and AML1 gain as well as (d) the occurrence of a subpopulation with the signal pattern 1T/3A/1TA appear to be related to higher peripheral blast counts (PBCs) at relapse diagnosis (a and d) or a tendency towards the occurrence of a subsequent relapse (b and c) (P-values <0.05). CONCLUSIONS Our data together with published results on TEL/AML1 positive ALL suggest that frequencies of additional TEL and AML1 mutations are, with the exception of loss of untranslocated TEL, higher in first relapses than in initial disease. They also show that it is important to consider combined mutations in the analysis of this leukemia entity.
Collapse
Affiliation(s)
- Anita Peter
- Department of Pediatric Oncology and Hematology, Otto-Heubner-Center for Pediatrics, Charité Campus Virchow-Klinikum, Berlin D-13353, Germany
| | | | | | | | | |
Collapse
|
148
|
Bacher U, Kohlmann A, Haferlach T. Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br J Haematol 2009; 145:555-68. [PMID: 19344393 DOI: 10.1111/j.1365-2141.2009.07656.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression profiling (GEP) enables the simultaneous investigation of the expression of tens of thousands of genes and was successfully introduced in leukaemia research a decade ago. Aiming to better understand the diversity of genetic aberrations in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL), pioneer studies investigated and confirmed the predictability of many cytogenetic and molecular subclasses in AML and ALL. In addition, GEP can define new prognostic subclasses within distinct leukaemia subgroups, as illustrated in AML with normal karyotype. Another approach is the development of treatment-specific sensitivity assays, which might contribute to targeted therapy studies. Finally, GEP might enable the detection of new molecular targets for therapy in patients with acute leukaemia. Meanwhile, large multicentre studies, e.g. the Microarray Innovations in LEukaemia (MILE) study, prepare for a standardised introduction of GEP in leukaemia diagnostic algorithms, aiming to translate this novel methodology into clinical routine for the benefit of patients with the complex disorders of AML and ALL.
Collapse
Affiliation(s)
- Ulrike Bacher
- Department of Stem Cell Transplantation, University Cancer Center Hamburg, Hamburg
| | | | | |
Collapse
|
149
|
Arlt MF, Mulle JG, Schaibley VM, Ragland RL, Durkin SG, Warren ST, Glover TW. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet 2009; 84:339-50. [PMID: 19232554 PMCID: PMC2667984 DOI: 10.1016/j.ajhg.2009.01.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/23/2009] [Accepted: 01/30/2009] [Indexed: 11/28/2022] Open
Abstract
Copy number variants (CNVs) are an important component of genomic variation in humans and other mammals. Similar de novo deletions and duplications, or copy number changes (CNCs), are now known to be a major cause of genetic and developmental disorders and to arise somatically in many cancers. A major mechanism leading to both CNVs and disease-associated CNCs is meiotic unequal crossing over, or nonallelic homologous recombination (NAHR), mediated by flanking repeated sequences or segmental duplications. Others appear to involve nonhomologous end joining (NHEJ) or aberrant replication suggesting a mitotic cell origin. Here we show that aphidicolin-induced replication stress in normal human cells leads to a high frequency of CNCs of tens to thousands of kilobases across the human genome that closely resemble CNVs and disease-associated CNCs. Most deletion and duplication breakpoint junctions were characterized by short (<6 bp) microhomologies, consistent with the hypothesis that these rearrangements were formed by NHEJ or a replication-coupled process, such as template switching. This is a previously unrecognized consequence of replication stress and suggests that replication fork stalling and subsequent error-prone repair are important mechanisms in the formation of CNVs and pathogenic CNCs in humans.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer G. Mulle
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | - Ryan L. Ragland
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sandra G. Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen T. Warren
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
150
|
Abstract
AbstractAll cancers evolve by a process of genetic diversification and “natural selection” akin to the process first described by Charles Darwin for species evolution. The evolutionary, natural history of childhood acute lymphoblastic leukemia (ALL) is almost entirely covert, clinically silent and well advanced by the point of diagnosis. It has, however, been possible to backtrack this process by molecular scrutiny of appropriate clinical samples: (i) leukemic clones in monozygotic twins that are either concordant or discordant for ALL; (ii) archived neonatal blood spots or Guthrie cards from individuals who later developed leukemia; and (iii) stored, viable cord blood cells. These studies indicate prenatal initiation of leukemia by chromosome translocation and gene fusion (or hyperdiploidy) and the post-natal acquisition of multiple, gene copy number alterations (CNAs), mostly deletions. The prenatal or first “hit” occurs very commonly, exceeding the clinical rate of ALL by some 100× and indicating a low rate of penetrance or evolutionary progression. The acquisition of the critical, secondary CNAs requires some Darwinian selective advantage to expand numbers of cells at risk, and the cytokine TGF beta is able to exercise this function. The clonal architecture of ALL has been investigated by single cell analysis with multicolor probes to mutant genes. The data reveal not a linear sequence of mutation acquisition with clonal succession but rather considerable complexity with a tree-like or branching structure of genetically distinct subclones very reminiscent of Darwin’s original 1837 evolutionary divergence diagram. This evolutionary pattern has important implications for stem cells in ALL, for the origins of relapse and for therapeutic targeting.
Collapse
|