101
|
Attatippaholkun N, Kosaisawe N, U-Pratya Y, Supraditaporn P, Lorthongpanich C, Pattanapanyasat K, Issaragrisil S. Selective Tropism of Dengue Virus for Human Glycoprotein Ib. Sci Rep 2018; 8:2688. [PMID: 29426910 PMCID: PMC5807543 DOI: 10.1038/s41598-018-20914-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 11/10/2022] Open
Abstract
Since the hemorrhage in severe dengue seems to be primarily related to the defect of the platelet, the possibility that dengue virus (DENV) is selectively tropic for one of its surface receptors was investigated. Flow cytometric data of DENV-infected megakaryocytic cell line superficially expressing human glycoprotein Ib (CD42b) and glycoprotein IIb/IIIa (CD41 and CD41a) were analyzed by our custom-written software in MATLAB. In two-dimensional analyses, intracellular DENV was detected in CD42b+, CD41+ and CD41a+ cells. In three-dimensional analyses, the DENV was exclusively detected in CD42b+ cells but not in CD42b- cells regardless of the other expressions. In single-cell virus-protein analyses, the amount of DENV was directly correlated with those of CD42b at the Pearson correlation coefficient of 0.9. Moreover, RT- PCR and apoptosis assays showed that DENV was able to replicate itself and release its new progeny from the infected CD42b+ cells and eventually killed those cells. These results provide evidence for the involvement of CD42b in DENV infection.
Collapse
Affiliation(s)
- Nattapol Attatippaholkun
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Laboratory for System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Nont Kosaisawe
- Siriraj Laboratory for System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panthipa Supraditaporn
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Siriraj Center of Excellence for Flow Cytometry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
102
|
Affiliation(s)
- Stacy C Goldthorpe
- a Foundational Sciences , Central Michigan University College of Medicine , Mount Pleasant , MI , USA
| | - Michael J Conway
- a Foundational Sciences , Central Michigan University College of Medicine , Mount Pleasant , MI , USA
| |
Collapse
|
103
|
Lin GL, Chang HH, Lien TS, Chen PK, Chan H, Su MT, Liao CY, Sun DS. Suppressive effect of dengue virus envelope protein domain III on megakaryopoiesis. Virulence 2017. [PMID: 28622093 DOI: 10.1080/21505594.2017.1343769] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) infection can cause severe, life-threatening events, and no specific treatments of DENV infection are currently approved. Although thrombocytopenia is frequently observed in dengue patients, its pathogenesis is still not fully understood. Previous studies have suggested that DENV-induced thrombocytopenia occurs through viral-replication-mediated megakaryopoiesis inhibition in the bone marrow; however, the exact mechanism for megakaryopoiesis suppression remains elusive. In this study, a reductionist approach was applied, in which C57B/6J mice were inoculated with recombinant DENV-envelope protein domain III (DENV-EIII) instead of the full viral particle. Our results demonstrated that DENV-EIII-suppressed megakaryopoiesis is similar to those observed with DENV infection. Furthermore, in agreement with our in vivo analyses, DENV-EIII sufficiently suppressed the megakaryopoiesis of progenitor cells from murine bone marrow and human cord blood in vitro. Additional analyses suggested that autophagy impairment and apoptosis are involved in DENV-EIII-mediated suppression of megakaryopoiesis. These data suggest that, even without viral replication, the binding of DENV-EIII to the cell surface is sufficient to suppress megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan
| | - Hsin-Hou Chang
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan.,b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Te-Sheng Lien
- b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Po-Kong Chen
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan
| | - Hao Chan
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan
| | - Mei-Tzu Su
- b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| | - Chi-Yuan Liao
- c Department of Obstetrics and Gynecology , Mennonite Christian Hospital , Hualien , Taiwan
| | - Der-Shan Sun
- a Institute of Medical Sciences, Tzu-Chi University , Hualien , Taiwan.,b Department of Molecular Biology and Human Genetics , Tzu-Chi University , Hualien , Taiwan
| |
Collapse
|
104
|
Lo YC, Chien YW, Perng GC. Could inactivation of platelets be key to preventing thrombocytopenia in dengue virus infected patients? Future Virol 2017. [DOI: 10.2217/fvl-2017-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yu-Chih Lo
- Department of Biotechnology & Bioindustry Sciences, College of Bioscience & Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chien
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
105
|
The prevalence of dengue virus serotypes in asymptomatic blood donors reveals the emergence of serotype 4 in Saudi Arabia. Virol J 2017; 14:107. [PMID: 28599678 PMCID: PMC5466713 DOI: 10.1186/s12985-017-0768-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Transmission of dengue virus (DENV) through blood transfusion has been documented and hence screening for DENV during blood donation has been recently recommended by the American Association of Blood Banks and Centres of Disease Control and Prevention. DENV is endemic in the Western province of the Kingdom of Saudi Arabia (KSA) and serotypes 1, 2 and 3, but not 4, have been detected. However, little is known regarding the rates of DENV during blood donation in the kingdom. The aim of this study was therefore to measure the prevalence of dengue virus and its serotypes in eligible Saudi blood donors in the endemic Western region of KSA. METHODS This was a cross-sectional study and serum samples were collected from 910 eligible Saudi male blood donors. DENV IgM and IgG antibodies were measured serologically by ELISA while viral serotypes were detected by a single step IVD CE certified multiplex RT-PCR kit. RESULTS The overall prevalence was 39 and 5.5% for IgG+ and IgM+, respectively. There were 12 (1.3%) with exclusively IgM+, 317 (34.8%) exclusively IgG+ and 38 (4.2%) with dual IgM+/IgG+ donors. The overall prevalence was 3.2% (n = 29) and 2.3% (n = 21) for primary and secondary infections. PCR was positive in 5.5% (n = 50) and, DENV-2 (n = 24; 48%) was the most frequent serotype and was significantly higher than DENV-1 (20%; P = 0.02) and DENV-3 (2%; P = 0.1 × 10-5) but not DENV-4 (30%; P = 0.2). There was no significant difference between both DENV-4 and DENV-1 (P = 0.4). The combination of the PCR and serology findings showed that 22 (2.4%) and 28 (3.1%) donors had primary and secondary viremic infections, respectively. CONCLUSIONS The detected rates of DENV by PCR suggest a potential high risk of viral transmission by blood transfusion. To the best of our knowledge, this study is the first to report the detection of DENV-4 serotype in Saudi Arabia. More studies are required to measure the precise prevalence of DENV serotypes and their potential transmission rate during blood donation in the kingdom.
Collapse
|
106
|
Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017; 151:261-269. [PMID: 28437586 DOI: 10.1111/imm.12748] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
107
|
Trugilho MRDO, Hottz ED, Brunoro GVF, Teixeira-Ferreira A, Carvalho PC, Salazar GA, Zimmerman GA, Bozza FA, Bozza PT, Perales J. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathog 2017; 13:e1006385. [PMID: 28542641 PMCID: PMC5453622 DOI: 10.1371/journal.ppat.1006385] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/01/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses. Dengue is the most frequent hemorrhagic viral disease and re-emergent infection in the world. Recent decades were marked by a progressive global expansion of the infection including a higher frequency of severe dengue. Currently there is no effective vaccinal coverage or specific therapies, while efforts aimed at vector control have failed to stop the progression of epidemics and expansion of the disease. An increased understanding of the molecular physiology is of paramount importance for the establishment of new therapeutic targets and better clinical management. Dengue fever is characterized by thrombocytopenia and vascular leak. Although thrombocytopenia is a hallmark of dengue, the molecular phenotype and activities of platelets in the pathogenesis of dengue is not well elucidated. This work characterizes the proteome of platelets isolated from patients with dengue and includes validation of functionally-linked protein networks that we identified, using samples from a larger cohort of dengue patients. Moreover, in vitro experiments revealed activities of platelets that have recognized importance to dengue pathogenesis, including chemokine release, antigen presentation, and proteasome activity. Finally, our results identify circulating histones as a novel mechanism of platelet activation in dengue. These findings provide new evidence for platelet immune activities in dengue illness, and mark an advance in the understanding of this disease.
Collapse
Affiliation(s)
- Monique Ramos de Oliveira Trugilho
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eugenio Damaceno Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Análise de Glicoconjugados, Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - André Teixeira-Ferreira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paulo Costa Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, Paraná, Brazil
| | - Gustavo Adolfo Salazar
- Computational Biology Group, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Guy A. Zimmerman
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Fernando A. Bozza
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail: , (PTB); (JP)
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail: , (PTB); (JP)
| |
Collapse
|
108
|
Abstract
INTRODUCTION Myelofibrosis (MF) is characterized by bone marrow fibrosis with subsequent extramedullary hematopoiesis and abnormal cytokine expression leading to splenomegaly, constitutional symptoms and cytopenias. The discovery of the JAK2 V617F mutation in the majority of MF patients has been followed by significant progress in drug development for MF. Areas covered: In this article, we review advances in the understanding of the underlying disease biology, prognostic assessment and therapeutic modalities for MF. We provide clinical trial evidence behind using the JAK2 inhibitor ruxolitinib, erythropoiesis stimulating agents, androgens, immunomodulatory drugs, interferon, cytoreductive drugs and hypomethylating agents in MF. Finally, we review novel therapeutic options for MF including the new JAK1/2 inhibitors, ruxolitinib based combination approaches as well as novel therapeutic agents. Expert commentary: Despite significant reduction of splenomegaly and improvement of symptom burden and a signal for survival improvement, ruxolitinib does not lead to major reductions in JAK2 V617F allele burden and bone marrow fibrosis. No ruxolitinib-based combination approach has so far demonstrated superiority over ruxolitinib monotherapy. The novel JAK2 inhibitors pacritinib and momelotinib, other JAK inhibitors, telomerase inhibitors, anti-fibrosis agents and hsp90 inhibitors are in different stages of development.
Collapse
Affiliation(s)
- Maximilian Stahl
- a Yale University School of Medicine , Department of Internal Medicine, Section of Hematology and the Yale Cancer Center , New Haven , CT , USA
| | - Amer M Zeidan
- a Yale University School of Medicine , Department of Internal Medicine, Section of Hematology and the Yale Cancer Center , New Haven , CT , USA
| |
Collapse
|
109
|
Kar M, Singla M, Chandele A, Kabra SK, Lodha R, Medigeshi GR. Dengue Virus Entry and Replication Does Not Lead to Productive Infection in Platelets. Open Forum Infect Dis 2017; 4:ofx051. [PMID: 28491890 PMCID: PMC5420081 DOI: 10.1093/ofid/ofx051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Thrombocytopenia is a characteristic feature during the acute phase of dengue infection and has been found to associate with vascular leakage in severe dengue. Although dengue antigens have been observed in platelets, there is no strong evidence to suggest a direct infection of platelets by dengue virus as a contributing factor for thrombocytopenia. We show that dengue virus can enter platelets but replicate viral ribonucleic acid to a minimal extent and, therefore, cannot produce infectious virus. Dengue antigen was undetectable in platelets isolated from dengue patients; however, we observed an increase in CD14+CD16+ monocyte-platelet complexes, suggesting a mechanism for platelet clearance.
Collapse
Affiliation(s)
- Meenakshi Kar
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Guruprasad R Medigeshi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana
| |
Collapse
|
110
|
Tsai JJ, Chang JS, Chang K, Chen PC, Liu LT, Ho TC, Tan SS, Chien YW, Lo YC, Perng GC. Transient Monocytosis Subjugates Low Platelet Count in Adult Dengue Patients. Biomed Hub 2017; 2:1-16. [PMID: 31988894 PMCID: PMC6945895 DOI: 10.1159/000457785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/21/2017] [Indexed: 01/10/2023] Open
Abstract
Background Dengue is one of the most important vector-borne human viral diseases globally. The kinetic changes of hematological parameters of dengue in adult Taiwanese patients have seldomly been systematically investigated and characterized. Methodology/Principal Findings Serial laboratory data of 1,015 adult patients who were diagnosed with dengue virus serotype 2 (DENV2) and 3 (DENV3) infections in southern Taiwan were retrospectively examined. Prominent parameters were verified with specimens from a 2015 dengue outbreak. Higher absolute monocyte counts on day 5 in severe patients than mild fever subjects after the onset of fever was seen. The absolute number of monocytes was significantly greater in those with DENV2 than DENV3 infections in spite of subtle differences in laboratory tests. Platelet counts were lowest and activated partial thromboplastin time was highest on day 5 in patients with severe conditions. In addition, sudden downward platelet counts corresponding to a transient surge of monocytes on day 4 onward was observed. Fluorescence-activated cell sorting analysis of peripheral blood mononuclear cells obtained from acute dengue patients and experimental investigations revealed that phagocytic effects of innate immune cells contribute to thrombocytopenia in dengue patients. Conclusion Innate phagocytic cells play an essential role in low platelet counts in adult patients with dengue virus infections.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Tropical Medicine Center, Department of Internal Medicine, Tainan, Taiwan, ROC.,Division of Infectious Diseases, Department of Internal Medicine, Tainan, Taiwan, ROC.,Center for Dengue Fever Control and Research, Tainan, Taiwan, ROC.,School of Medicine, Kaohsiung Medical University, Tainan, Taiwan, ROC
| | - Jung-San Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Tainan, Taiwan, ROC.,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Tainan, Taiwan, ROC
| | - Ko Chang
- Tropical Medicine Center, Department of Internal Medicine, Tainan, Taiwan, ROC.,Division of Infectious Diseases, Department of Internal Medicine, Tainan, Taiwan, ROC.,Center for Dengue Fever Control and Research, Tainan, Taiwan, ROC.,School of Medicine, Kaohsiung Medical University, Tainan, Taiwan, ROC.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Tainan, Taiwan, ROC
| | - Po-Chih Chen
- Tropical Medicine Center, Department of Internal Medicine, Tainan, Taiwan, ROC.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Tainan, Taiwan, ROC
| | - Li-Teh Liu
- Center for Dengue Fever Control and Research, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung-Hwa University of Medical Technology, Departments of Microbiology and Immunology, Tainan, Taiwan, ROC
| | - Tzu-Chuan Ho
- Departments of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Sia Seng Tan
- Departments of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Wen Chien
- Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Guey Chuen Perng
- Departments of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan, ROC.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
111
|
Abstract
Virus–platelet interplay is complex. Diverse virus types have been shown to associate with numerous distinct platelet receptors. This association can benefit the virus or the host, and thus the platelet is somewhat of a renegade. Evidence is accumulating to suggest that viruses are capable of entering platelets. For at least one type of RNA virus (dengue virus), the platelet has the necessary post-translational and packaging machinery required for production of replicative viral progeny. As a facilitator of immunity, the platelet also participates in eradicating the virus by direct and indirect mechanisms involving presentation of the pathogen to the innate and adaptive immune systems, thus enhancing inflammation by release of cytokines and other agonists. Virus-induced thrombocytopenia is caused by tangential imbalance of thrombopoeisis, autoimmunity, and loss of platelet function and integrity.
Collapse
|
112
|
Ojha A, Nandi D, Batra H, Singhal R, Annarapu GK, Bhattacharyya S, Seth T, Dar L, Medigeshi GR, Vrati S, Vikram NK, Guchhait P. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep 2017; 7:41697. [PMID: 28139770 PMCID: PMC5282509 DOI: 10.1038/srep41697] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Thrombocytopenia is common in patients with dengue virus (DENV) infections. With a focus on understanding the possible mechanism of thrombocytopenia in DENV infections we described a direct correlation between activation and depletion of platelets in patients. Our data showed a sharp decrease in platelet counts at day 4 of fever in patients. The high DENV genome copies in platelets correlated directly with the elevated platelet activation along with increased binding of complement factor C3 and IgG on their surface at day 4. Recovery in platelet count was observed on day 10 through day 6 and 8 with simultaneous decrease in platelet activation markers. Further, our in vitro data supported the above observations describing a concentration-dependent increase in platelet activation by DENV serotype-2. The high copy number of DENV2 genome in the platelet pellet correlated directly with platelet activation, microparticle generation and clot formation. Furthermore the DENV2-activated platelets were phagocytosed in large numbers by the monocytes. The DENV2-mediated lysis and clearance of platelets were abrogated in presence of platelet activation inhibitor, prostacyclin. These observations collectively suggest that platelet activation status is an important determinant of thrombocytopenia in dengue infections. A careful strategy of inactivation of platelets may rescue them from rapid destruction during DENV infections.
Collapse
Affiliation(s)
- Amrita Ojha
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
- Department of Biotechnology, Manipal University, Karnataka, India
| | - Dipika Nandi
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Harish Batra
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Rashi Singhal
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
- Department of Biotechnology, Manipal University, Karnataka, India
| | - Gowtham K. Annarapu
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
- Department of Biotechnology, Manipal University, Karnataka, India
| | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tulika Seth
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Guruprasad R. Medigeshi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Naval K. Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
113
|
Middleton E, Rondina MT. Platelets in infectious disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:256-261. [PMID: 27913489 PMCID: PMC6142503 DOI: 10.1182/asheducation-2016.1.256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sepsis is a dynamic, acute, infectious disease syndrome characterized by dysregulated thrombo-inflammatory responses. The high mortality associated with sepsis has been recognized since the earliest clinicians' writings. Despite this, advances in the treatment of sepsis have been more modest. This is limited, in part, by the heterogeneity in the definition, population, presentation, and causal factors of infectious syndromes. Given the persistently high morbidity and mortality associated with sepsis, a better understanding of the dysregulated cellular biology underpinning sepsis is needed. Platelets are small, anucleate cells that have hemostatic, inflammatory, and immune-mediating properties. Platelets are the second most common circulating blood cell, and emerging evidence suggests that platelets serve as sentinel and effector cells during infectious syndromes. Nevertheless, the molecular and functional changes that occur in platelets during sepsis, and their impact on the clinical course of infected patients, remain incompletely understood. In this review, we first highlight the complex and dynamic pathophysiology characteristics of acute, systemic infections and we then discuss established and emerging evidence of the roles of platelets in sepsis.
Collapse
Affiliation(s)
- Elizabeth Middleton
- Program in Molecular Medicine and
- Department Internal Medicine, University of Utah, Salt Lake City, UT; and
| | - Matthew T. Rondina
- Program in Molecular Medicine and
- Department Internal Medicine, University of Utah, Salt Lake City, UT; and
- Department of Internal Medicine at the George E. Wahlen Salt Lake City VAMC, Salt Lake City, UT
| |
Collapse
|
114
|
Stokol T, Serpa PBDS, Zahid MN, Brooks MB. Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation. Front Vet Sci 2016; 3:99. [PMID: 27909693 PMCID: PMC5112437 DOI: 10.3389/fvets.2016.00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023] Open
Abstract
Equid herpes virus type-1 (EHV-1) is a major pathogen of horses, causing abortion storms and outbreaks of herpes virus myeloencephalopathy. These clinical syndromes are partly attributed to ischemic injury from thrombosis in placental and spinal vessels. The mechanism of thrombosis in affected horses is unknown. We have previously shown that EHV-1 activates platelets through virus-associated tissue factor-initiated thrombin generation. Activated platelets participate in thrombus formation by providing a surface to localize coagulation factor complexes that amplify and propagate thrombin generation. We hypothesized that coagulation inhibitors that suppress thrombin generation (heparins) or platelet inhibitors that impede post-receptor thrombin signaling [phosphodiesterase (PDE) antagonists] would inhibit EHV-1-induced platelet activation ex vivo. We exposed platelet-rich plasma (PRP) collected from healthy horses to the RacL11 abortigenic and Ab4 neuropathogenic strains of EHV-1 at 1 plaque-forming unit/cell in the presence or absence of unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) or the PDE inhibitors, 3-isobutyl-1methylxanthine (IBMX), and cilostazol. We assessed platelet activation status in flow cytometric assays by measuring P-selectin expression. We found that all of the inhibitors blocked EHV-1- and thrombin-induced platelet activation in a dose-dependent manner. Platelet activation in PRP was maximally inhibited at concentrations of 0.05 U/mL UFH and 2.5 μg/mL LMWH. These concentrations represented 0.1–0.2 U/mL anti-factor Xa activity measured in chromogenic assays. Both IBMX and cilostazol showed maximal inhibition of platelet activation at the highest tested concentration of 50 μM, but inhibition was lower than that seen with UFH and LMWH. Our results indicate that heparin anticoagulants and strong non-selective (IBMX) or isoenzyme-3 selective (cilostazol) PDE antagonists inhibit ex vivo EHV-1-induced platelet activation. These drugs have potential as adjunctive therapy to reduce the serious complications associated with EHV-1-induced thrombosis. Treatment trials are warranted to determine whether these drugs yield clinical benefit when administered to horses infected with EHV-1.
Collapse
Affiliation(s)
- Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, Cornell University , Ithaca, NY , USA
| | | | - Muhammad N Zahid
- Department of Population Medicine and Diagnostic Sciences, Cornell University , Ithaca, NY , USA
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, Cornell University , Ithaca, NY , USA
| |
Collapse
|
115
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
116
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
117
|
Koenen RR. The prowess of platelets in immunity and inflammation. Thromb Haemost 2016; 116:605-12. [PMID: 27384503 DOI: 10.1160/th16-04-0300] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
Platelets not only serve as essential haemostatic cells, they also have important roles in immune defence and inflammation. Despite not having a nucleus, platelets contain physiologically relevant amounts of RNA, which can be spliced and translated into functional proteins. In addition, platelets have the ability to bind to numerous other cells, such as leukocytes and vascular cells. During those interactions, platelets can modulate cellular responses, resulting in e. g. inflammatory activation or apoptosis. Recent studies have demonstrated that platelets can influence the outcomes of bacterial and viral infection, as well as the extent of tissue injury after ischaemia. Platelets also carry considerable amounts of cytokines and growth factors in their secretory granules, preformed for rapid secretion. Those properties in combination with the sheer amount of platelets circulating in the blood stream make them an important force in the immune response during health and disease. In this overview, recent findings concerning those interesting properties of platelets beyond haemostasis are discussed.
Collapse
Affiliation(s)
- Rory R Koenen
- Rory R. Koenen, PhD, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, Tel.: +31 43 3881674, Fax: +31 43 3884159, E-mail:
| |
Collapse
|
118
|
Pei H, Zuo L, Ma J, Cui L, Yu F, Lin Y. Transcriptome profiling reveals differential expression of interferon family induced by dengue virus 2 in human endothelial cells on tissue culture plastic and polyacrylamide hydrogel. J Med Virol 2016; 88:1137-51. [PMID: 27061404 DOI: 10.1002/jmv.24465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 02/06/2023]
Abstract
A cell model is critical for studying the molecular mechanisms of dengue virus 2 (DENV-2) invasions and cell bioactivity can be easily affected by the substrate matrix. Tissue culture plastic (TCP) and polyacrylamide hydrogel (PAMH) are two kinds of matrices widely used for cells. The effects of different matrices on the cultured cells with DENV-2 invasion remain unknown. To address the issue, the effects of TCP and PAMH were explored in primary human umbilical vein endothelial cells (HUVECs) with DENV-2 invasion. HUVECs were assigned into four groups: group A (cultured on TCP), group B (cultured on PAMH), group C (cultured on TCP with DENV-2 invasion), and group D (cultured on PAMH with DENV-2 invasion). Flow cytometry was performed on HUVECs after 48-hr culture. Gene expression patterns were analyzed by gene microarray. The levels of interleukin-29 (IL-29) were measured by real-time qRT-PCR and ELISA. There were no cell apoptosis induced by DENV-2 in HUVECs cultured on TCP and PAMH (P > 0.05). After DENV-2 invasion, the up-regulated genes involve in the activities of oligoadenylate synthetase (OAS), interferon-related cytokine, and growth factors so on. The up-regulated pathways involve in the responses to DENV-2 and innate immunity. IL-29 was induced in the HUVECs on PAMH when compared with the cells on TCP (P < 0.05). Thus, different matrices cause different immune responses, which should be considered in the cell models for exploring the molecular mechanisms of DENV-induced diseases.
Collapse
Affiliation(s)
- Hua Pei
- Department of Immunology, Guiyang Medical University, Guiyang, China
- Department of Immunology, Hainan Medical University, Longhua District, Haikou, China
| | - Li Zuo
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Jing Ma
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Lili Cui
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Fangfang Yu
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Yingzi Lin
- Department of Immunology, Hainan Medical University, Longhua District, Haikou, China
| |
Collapse
|
119
|
Jo Y, Choi H, Cho WK. Genome Sequence of Dengue virus 3 from the Pythium insidiosum Transcriptomes. Front Microbiol 2016; 7:926. [PMID: 27379056 PMCID: PMC4908670 DOI: 10.3389/fmicb.2016.00926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yeonhwa Jo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University Seoul, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University Seoul, Republic of Korea
| | - Won K Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, Republic of Korea; The Taejin Genome InstituteHoengseong, Republic of Korea
| |
Collapse
|
120
|
Faddy HM, Fryk JJ, Watterson D, Young PR, Modhiran N, Muller DA, Keil SD, Goodrich RP, Marks DC. Riboflavin and ultraviolet light: impact on dengue virus infectivity. Vox Sang 2016; 111:235-241. [PMID: 27281512 DOI: 10.1111/vox.12414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dengue viruses (DENV 1-4) are emerging across the world, and these viruses pose a risk to transfusion safety. Pathogen inactivation may be an alternative approach for managing the risk of DENV transfusion transmission. This study aimed to investigate the ability of riboflavin and UV light to inactivate DENV 1-4 in platelet concentrates. MATERIALS AND METHODS DENV 1-4 were spiked into buffy coat-derived platelet concentrates in additive solution (SSP+) before being treated with riboflavin and UV light. Infectious virus was quantified pre- and posttreatment, and the reduction in viral infectivity was calculated. RESULTS All four DENV serotypes were modestly reduced after treatment. The greatest amount of reduction in infectivity was observed for DENV-4 (1·81 log reduction) followed by DENV-3 (1·71 log reduction), DENV-2 (1·45 log reduction) and then DENV-1 (1·28 log reduction). CONCLUSION Our study demonstrates that DENV 1-4 titres are modestly reduced following treatment with riboflavin and UV light. With the increasing number of transfusion-transmitted cases of DENV around the globe, and the increasing incidence and geographical distribution of DENV, additional approaches for maintaining blood safety may be required in the future.
Collapse
Affiliation(s)
- H M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Qld, Australia. .,School of Medicine, University of Queensland, Brisbane, Qld, Australia.
| | - J J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, Qld, Australia
| | - D Watterson
- Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia
| | - P R Young
- Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia
| | - N Modhiran
- Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia
| | - D A Muller
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | | | | | - D C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|
121
|
Lo YC, Perng GC. Novel concept on antiviral strategies to dengue. Curr Opin Virol 2016; 18:97-108. [DOI: 10.1016/j.coviro.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022]
|
122
|
Hebbal P, Darwich Y, Fong J, Hagmann SHF, Purswani MU. Nephrotic-range proteinuria in an eight-year-old traveler with severe dengue: Case report and review of the literature. Travel Med Infect Dis 2016; 14:45-48. [PMID: 26874782 DOI: 10.1016/j.tmaid.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
We report a case of an eight-year-old male, native of the Dominican Republic, who visited the U.S. and was admitted to a pediatric intensive care unit with severe dengue. He needed aggressive fluid management for dengue shock syndrome and developed proteinuria on the sixth day of his illness, shortly after his nadir thrombocytopenia. His proteinuria peaked on the eight day, and reduced to trace levels by the tenth day of his illness, coinciding with normalization of his platelet count. His highest random urine protein/creatinine ratio was in the nephrotic range, at 3.9 g/g. Dengue fever can cause a wide spectrum of acute kidney injury (AKI), ranging in incidence from 0.9 to 36%. Review of the literature shows that nephrotic-range proteinuria is an uncommon complication of AKI caused by dengue, reported thus far only in Southeast Asia. Immune-mediated mechanisms may explain the observed association between dengue-induced thrombocytopenia and severe proteinuria, in this case, and previously reported cases. Dengue virus infection is the commonest mosquito-borne disease in the world with substantial morbidity and mortality. Well-designed prospective studies are needed to further characterize the extent and mechanisms of AKI in populations living in countries with ongoing transmission, as well as in those with travel-associated disease.
Collapse
Affiliation(s)
- Pooja Hebbal
- J.J.M. Medical College, Davangere, Karnataka, India
| | - Yamil Darwich
- Department of Pediatrics, Bronx-Lebanon Hospital Center, Bronx, NY, USA
| | - Jane Fong
- Department of Pediatrics, Bronx-Lebanon Hospital Center, Bronx, NY, USA; Division of Pediatric Intensive Care, Bronx-Lebanon Hospital Center, Bronx, NY, USA
| | - Stefan H F Hagmann
- Department of Pediatrics, Bronx-Lebanon Hospital Center, Bronx, NY, USA; Division of Pediatric Infectious Diseases, Bronx-Lebanon Hospital Center, Bronx, NY, USA
| | - Murli U Purswani
- Department of Pediatrics, Bronx-Lebanon Hospital Center, Bronx, NY, USA; Division of Pediatric Infectious Diseases, Bronx-Lebanon Hospital Center, Bronx, NY, USA.
| |
Collapse
|
123
|
Sutherland MR, Simon AY, Serrano K, Schubert P, Acker JP, Pryzdial ELG. Dengue virus persists and replicates during storage of platelet and red blood cell units. Transfusion 2016; 56:1129-37. [PMID: 26779802 DOI: 10.1111/trf.13454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/21/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dengue virus (DENV) is a transfusion-transmissible arbovirus that threatens blood donor systems with approximately 200 million high-titer asymptomatic infections occurring annually. Here we investigated the viability of DENV during storage of donor-derived platelet (PLT) and red blood cell (RBC) units. While purified PLTs have been shown to generate viable DENV, RBCs are replication incompetent. Combined with different storage criteria, distinct virus persistence profiles were anticipated in PLT and RBC units. STUDY DESIGN AND METHODS Mimicking the virus titer of asymptomatic donors, purified DENV was spiked (10(5) -10(6) infectious units/mL) into PLT or RBC units produced and stored according to blood bank operating procedures. DENV was measured by infectious plaque-forming assays and by quantitative reverse transcription-polymerase chain reaction. RESULTS In both PLT (7 days, 20-24°C) and RBC (42 days, 1-6°C) units, infectious DENV persisted throughout storage despite logarithmic decay. In buffer alone, DENV infectivity was insignificant by Day 1 at 20 to 24°C or 14 days at 1 to 6°C. Infectious virus production was identified in stored PLT units using a translation inhibitor and supported by virus genome replication. Surprisingly, DENV was also produced in RBC units, implying the involvement of cells other than RBCs. CONCLUSION Both virus propagation and effects independent of cell function mitigate the intrinsic lability of DENV. Nevertheless, the overall rapid storage decay suggests that aged PLT and RBC units may be safer. These data raise awareness to the possible persistence of other conceivably more robust RNA viruses during the storage of cellular blood products.
Collapse
Affiliation(s)
- Michael R Sutherland
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayo Y Simon
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,African Centre of Excellence on Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Katherine Serrano
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason P Acker
- Network Centre for Applied Development, Canadian Blood Services, Vancouver, British Columbia, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward L G Pryzdial
- Centre for Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
124
|
Hsu AYH, Wu SR, Tsai JJ, Chen PL, Chen YP, Chen TY, Lo YC, Ho TC, Lee M, Chen MT, Chiu YC, Perng GC. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci Rep 2015; 5:17990. [PMID: 26657027 PMCID: PMC4675971 DOI: 10.1038/srep17990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a "sunny-side up egg" appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development.
Collapse
Affiliation(s)
- Alan Yi-Hui Hsu
- Department of Microbiology and Immunology, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, Kaohsiung, Taiwan
- Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ping Chen
- Department of Internal Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsai-Yun Chen
- Department of Internal Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chih Lo
- Center of Infectious Disease and Signaling Research, Tainan, Taiwan
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chuan Ho
- Department of Microbiology and Immunology, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, Tainan, Taiwan
| | - Meed Lee
- Department of Microbiology and Immunology, Tainan, Taiwan
| | - Min-Ting Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, Tainan, Taiwan
| |
Collapse
|
125
|
Differential proteomic analysis of virus-enriched fractions obtained from plasma pools of patients with dengue fever or severe dengue. BMC Infect Dis 2015; 15:518. [PMID: 26572220 PMCID: PMC4647599 DOI: 10.1186/s12879-015-1271-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Dengue is the most widespread mosquito-borne viral disease of public health concern. In some patients, endothelial cell and platelet dysfunction lead to life-threatening hemorrhagic dengue fever or dengue shock syndrome. Prognostication of disease severity is urgently required to improve patient management. The pathogenesis of severe dengue has not been fully elucidated, and the role of host proteins associated with viral particles has received little exploration. Methods The proteomes of virion-enriched fractions purified from plasma pools of patients with dengue fever or severe dengue were compared. Virions were purified by ultracentrifugation combined with a water-insoluble polyelectrolyte-based technique. Following in-gel hydrolysis, peptides were analyzed by nano-liquid chromatography coupled to ion trap mass spectrometry and identified using data libraries. Results Both dengue fever and severe dengue viral-enriched fractions contained identifiable viral envelope proteins and host cellular proteins. Canonical pathway analysis revealed the identified host proteins are mainly involved in the coagulation cascade, complement pathway or acute phase response signaling pathway. Some host proteins were over- or under-represented in plasma from patients with severe dengue compared to patients with dengue fever. ELISAs were used to validate differential expression of a selection of identified host proteins in individual plasma samples of patients with dengue fever compared to patients with severe dengue. Among 22 host proteins tested, two could differentiate between dengue fever and severe dengue in two independent cohorts (olfactomedin-4: area under the curve (AUC), 0.958; and platelet factor-4: AUC, 0.836). Conclusion A novel technique of virion-enrichment from plasma has allowed to identify two host proteins that have prognostic value for classifying patients with acute dengue who are more likely to develop a severe dengue. The impact of these host proteins on pathogenicity and disease outcome are discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1271-7) contains supplementary material, which is available to authorized users.
Collapse
|
126
|
Abstract
In this issue of Blood, Simon and colleagues provide the first proof that dengue virus (DENV) raids platelets and steals their translational machinery to replicate and produce infectious virus.
Collapse
Affiliation(s)
- Matthew T Rondina
- UNIVERSITY OF UTAH; GEORGE E. WAHLEN DEPARTMENT OF VETERANS AFFAIRS MEDICAL CENTER
| | | |
Collapse
|
127
|
Ali RA, Wuescher LM, Worth RG. Platelets: essential components of the immune system. CURRENT TRENDS IN IMMUNOLOGY 2015; 16:65-78. [PMID: 27818580 PMCID: PMC5096834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Platelets are anucleate cell fragments known for their central role in coagulation and vascular integrity. However, it is becoming increasingly clear that platelets contribute to diverse immunological processes extending beyond the traditional view of platelets as fragmentary mediators of hemostasis and thrombosis. There is recent evidence that platelets participate in: 1) intervention against microbial threats; 2) recruitment and promotion of innate effector cell functions; 3) modulating antigen presentation; and 4) enhancement of adaptive immune responses. In this way, platelets should be viewed as the underappreciated orchestrator of the immune system. This review will discuss recent and historical evidence regarding how platelets influence both innate and adaptive immune responses.
Collapse
|