101
|
Brandsma CA, de Vries M, Costa R, Woldhuis RR, Königshoff M, Timens W. Lung ageing and COPD: is there a role for ageing in abnormal tissue repair? Eur Respir Rev 2017; 26:26/146/170073. [PMID: 29212834 DOI: 10.1183/16000617.0073-2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide, with increasing prevalence, in particular in the elderly. COPD is characterised by abnormal tissue repair resulting in (small) airways disease and emphysema. There is accumulating evidence that ageing hallmarks are prominent features of COPD. These ageing hallmarks have been described in different subsets of COPD patients, in different lung compartments and also in a variety of cell types, and thus might contribute to different COPD phenotypes. A better understanding of the main differences and similarities between normal lung ageing and the pathology of COPD may improve our understanding of the mechanisms driving COPD pathology, in particular in those patients that develop the most severe form of COPD at a relatively young age, i.e. severe early-onset COPD patients.In this review, after introducing the main concepts of lung ageing and COPD pathology, we focus on the role of (abnormal) ageing in lung remodelling and repair in COPD. We discuss the current evidence for the involvement of ageing hallmarks in these pathological features of COPD. We also highlight potential novel treatment strategies and opportunities for future research based on our current knowledge of abnormal lung ageing in COPD.
Collapse
Affiliation(s)
- Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Zentrum München, University Hospital of the Ludwig Maximilians University, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA.,Both authors contributed equally
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,Both authors contributed equally
| |
Collapse
|
102
|
Ahmed E, Sansac C, Assou S, Gras D, Petit A, Vachier I, Chanez P, De Vos J, Bourdin A. Lung development, regeneration and plasticity: From disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol Ther 2017; 183:58-77. [PMID: 28987320 DOI: 10.1016/j.pharmthera.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lungs have a complex structure composed of different cell types that form approximately 17 million airway branches of gas-delivering bronchioles connected to 500 million gas-exchanging alveoli. Airways and alveoli are lined by epithelial cells that display a low rate of turnover at steady-state, but can regenerate the epithelium in response to injuries. Here, we review the key points of lung development, homeostasis and epithelial cell plasticity in response to injury and disease, because this knowledge is required to develop new lung disease treatments. Of note, canonical signaling pathways that are essential for proper lung development during embryogenesis are also involved in the pathophysiology of most chronic airway diseases. Moreover, the perfect control of these interconnected pathways is needed for the successful differentiation of induced pluripotent stem cells (iPSC) into lung cells. Indeed, differentiation of iPSC into airway epithelium and alveoli is based on the use of biomimetics of normal embryonic and fetal lung development. In vitro iPSC-based models of lung diseases can help us to better understand the impaired lung repair capacity and to identify new therapeutic targets and new approaches, such as lung cell therapy.
Collapse
Affiliation(s)
- Engi Ahmed
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Caroline Sansac
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France
| | - Said Assou
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Delphine Gras
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - Aurélie Petit
- INSERM, U1046, PhyMedExp, Montpellier F34000, France
| | | | - Pascal Chanez
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - John De Vos
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; CHU Montpellier, Unit for Cellular Therapy, Hospital Saint-Eloi, Montpellier F 34000, France.
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; INSERM, U1046, PhyMedExp, Montpellier F34000, France.
| |
Collapse
|
103
|
Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, Wagner DE, Günther A, Königshoff M. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J 2017; 50:50/2/1602367. [PMID: 28775044 PMCID: PMC5593348 DOI: 10.1183/13993003.02367-2016] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and primary cells. Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers. These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF. Alveolar epithelial cell senescence occurs in IPF and senolytic treatment attenuates experimental lung fibrosishttp://ow.ly/nFlz30bsmNm
Collapse
Affiliation(s)
- Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martina Korfei
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stephan Klee
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Wioletta Skronska-Wasek
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hani N Alsafadi
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chiharu Ota
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rita Costa
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Lindner
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Günther
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany.,Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany.,European IPF Network and European IPF Registry
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany .,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
104
|
Skronska-Wasek W, Mutze K, Baarsma HA, Bracke KR, Alsafadi HN, Lehmann M, Costa R, Stornaiuolo M, Novellino E, Brusselle GG, Wagner DE, Yildirim AÖ, Königshoff M. Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 196:172-185. [PMID: 28245136 DOI: 10.1164/rccm.201605-0904oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD), in particular emphysema, is characterized by loss of parenchymal alveolar tissue and impaired tissue repair. Wingless and INT-1 (WNT)/β-catenin signaling is reduced in COPD; however, the mechanisms thereof, specifically the role of the frizzled (FZD) family of WNT receptors, remain unexplored. OBJECTIVES To identify and functionally characterize specific FZD receptors that control downstream WNT signaling in impaired lung repair in COPD. METHODS FZD expression was analyzed in lung homogenates and alveolar epithelial type II (ATII) cells of never-smokers, smokers, patients with COPD, and two experimental COPD models by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunofluorescence. The functional effects of cigarette smoke on FZD4, WNT/β-catenin signaling, and elastogenic components were investigated in primary ATII cells in vitro and in three-dimensional lung tissue cultures ex vivo. Gain- and loss-of-function approaches were applied to determine the effects of FZD4 signaling on alveolar epithelial cell wound healing and repair, as well as on expression of elastogenic components. MEASUREMENTS AND MAIN RESULTS FZD4 expression was reduced in human and experimental COPD lung tissues as well as in primary human ATII cells from patients with COPD. Cigarette smoke exposure down-regulated FZD4 expression in vitro and in vivo, along with reduced WNT/β-catenin activity. Inhibition of FZD4 decreased WNT/β-catenin-driven epithelial cell proliferation and wound closure, and it interfered with ATII-to-ATI cell transdifferentiation and organoid formation, which were augmented by FZD4 overexpression. Moreover, FZD4 restoration by overexpression or pharmacological induction led to induction of WNT/β-catenin signaling and expression of elastogenic components in three-dimensional lung tissue cultures ex vivo. CONCLUSIONS Reduced FZD4 expression in COPD contributes to impaired alveolar repair capacity.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Kathrin Mutze
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Hoeke A Baarsma
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Ken R Bracke
- 2 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hani N Alsafadi
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Mareike Lehmann
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Rita Costa
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Mariano Stornaiuolo
- 3 Department of Pharmacy, University of Naples Federico II, Naples, Italy; and
| | - Ettore Novellino
- 3 Department of Pharmacy, University of Naples Federico II, Naples, Italy; and
| | - Guy G Brusselle
- 2 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Darcy E Wagner
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Ali Ö Yildirim
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany.,4 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| |
Collapse
|
105
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
106
|
Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J 2017; 50:50/1/1601805. [PMID: 28679607 DOI: 10.1183/13993003.01805-2016] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
The pulmonary extracellular matrix (ECM) determines the tissue architecture of the lung, and provides mechanical stability and elastic recoil, which are essential for physiological lung function. Biochemical and biomechanical signals initiated by the ECM direct cellular function and differentiation, and thus play a decisive role in lung development, tissue remodelling processes and maintenance of adult homeostasis. Recent proteomic studies have demonstrated that at least 150 different ECM proteins, glycosaminoglycans and modifying enzymes are expressed in the lung, and these assemble into intricate composite biomaterials. These highly insoluble assemblies of interacting ECM proteins and their glycan modifications can act as a solid phase-binding interface for hundreds of secreted proteins, which creates an information-rich signalling template for cell function and differentiation. Dynamic changes within the ECM that occur upon injury or with ageing are associated with several chronic lung diseases. In this review, we summarise the available data about the structure and function of the pulmonary ECM, and highlight changes that occur in idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. We discuss potential mechanisms of ECM remodelling and modification, which we believe are relevant for future diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Bettina Oehrle
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
107
|
Distinct Roles of Wnt/ β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2017; 2017:3520581. [PMID: 28588349 PMCID: PMC5447271 DOI: 10.1155/2017/3520581] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases.
Collapse
|
108
|
Baarsma HA, Königshoff M. 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax 2017; 72:746-759. [PMID: 28416592 PMCID: PMC5537530 DOI: 10.1136/thoraxjnl-2016-209753] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic lung diseases represent a major public health problem with only limited therapeutic options. An important unmet need is to identify compounds and drugs that target key molecular pathways involved in the pathogenesis of chronic lung diseases. Over the last decade, there has been extensive interest in investigating Wingless/integrase-1 (WNT) signalling pathways; and WNT signal alterations have been linked to pulmonary disease pathogenesis and progression. Here, we comprehensively review the cumulative evidence for WNT pathway alterations in chronic lung pathologies, including idiopathic pulmonary fibrosis, pulmonary arterial hypertension, asthma and COPD. While many studies have focused on the canonical WNT/β-catenin signalling pathway, recent reports highlight that non-canonical WNT signalling may also significantly contribute to chronic lung pathologies; these studies will be particularly featured in this review. We further discuss recent advances uncovering the role of WNT signalling early in life, the potential of pharmaceutically modulating WNT signalling pathways and highlight (pre)clinical studies describing promising new therapies for chronic lung diseases.
Collapse
Affiliation(s)
- H A Baarsma
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - M Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
109
|
LiCl Treatment Induces Programmed Cell Death of Schwannoma Cells through AKT- and MTOR-Mediated Necroptosis. Neurochem Res 2017; 42:2363-2371. [DOI: 10.1007/s11064-017-2256-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
|
110
|
Alsafadi HN, Staab-Weijnitz CA, Lehmann M, Lindner M, Peschel B, Königshoff M, Wagner DE. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 2017; 312:L896-L902. [PMID: 28314802 DOI: 10.1152/ajplung.00084.2017] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating chronic interstitial lung disease (ILD) characterized by lung tissue scarring and high morbidity. Lung epithelial injury, myofibroblast activation, and deranged repair are believed to be key processes involved in disease onset and progression, but the exact molecular mechanisms behind IPF remain unclear. Several drugs have been shown to slow disease progression, but treatments that halt or reverse IPF progression have not been identified. Ex vivo models of human lung have been proposed for drug discovery, one of which is precision-cut lung slices (PCLS). Although PCLS production from IPF explants is possible, IPF explants are rare and typically represent end-stage disease. Here we present a novel model of early fibrosis-like changes in human PCLS derived from patients without ILD/IPF using a combination of profibrotic growth factors and signaling molecules (transforming growth factor-β, tumor necrosis factor-α, platelet-derived growth factor-AB, and lysophosphatidic acid). Fibrotic-like changes of PCLS were qualitatively analyzed by histology and immunofluorescence and quantitatively by water-soluble tetrazolium-1, RT-qPCR, Western blot analysis, and ELISA. PCLS remained viable after 5 days of treatment, and fibrotic gene expression (FN1, SERPINE1, COL1A1, CTGF, MMP7, and ACTA2) increased as early as 24 h of treatment, with increases in protein levels at 48 h and increased deposition of extracellular matrix. Alveolar epithelium reprogramming was evident by decreases in surfactant protein C and loss of HOPX In summary, using human-derived PCLS, we established a novel ex vivo model that displays characteristics of early fibrosis and could be used to evaluate novel therapies and study early-stage IPF pathomechanisms.
Collapse
Affiliation(s)
- Hani N Alsafadi
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Mareike Lehmann
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Michael Lindner
- Asklepios Fachkliniken München-Gauting Center of Thoracic Surgery, Gauting, Germany; and
| | - Britta Peschel
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Darcy E Wagner
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany;
| |
Collapse
|
111
|
Poobalasingam T, Yates LL, Walker SA, Pereira M, Gross NY, Ali A, Kolatsi-Joannou M, Jarvelin MR, Pekkanen J, Papakrivopoulou E, Long DA, Griffiths M, Wagner D, Königshoff M, Hind M, Minelli C, Lloyd CM, Dean CH. Heterozygous Vangl2Looptail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair. Dis Model Mech 2017; 10:409-423. [PMID: 28237967 PMCID: PMC5399569 DOI: 10.1242/dmm.028175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema. Summary: Manipulating the PCP pathway may provide new approaches to treat damaged lung tissue.
Collapse
Affiliation(s)
- Thanushiyan Poobalasingam
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Laura L Yates
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Simone A Walker
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Miguel Pereira
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Nina Y Gross
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Akmol Ali
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London SW7 2AZ, UK.,Center for Life Course Epidemiology, Faculty of Medicine, P.O. Box 5000, University of Oulu, Oulu FI-90014 Finland.,Biocenter Oulu, P.O. Box 5000, Aapistie 5A, University of Oulu, Oulu FI-90014, Finland.,Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O. Box 20, Oulu FI-90220, Finland
| | - Juha Pekkanen
- National Institute for Health and Welfare, Living Environment and Health Unit, Kuopio FI-70701, Finland.,University of Helsinki, Department of Public Health, Helsinki FI-00014, Finland
| | | | - David A Long
- Developmental Biology and Cancer Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Mark Griffiths
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London SW3 6NP, UK
| | - Darcy Wagner
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, Munich 81377, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, Munich 81377, Germany
| | - Matthew Hind
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London SW3 6NP, UK.,Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Cosetta Minelli
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Clare M Lloyd
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Charlotte H Dean
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK .,Mammalian Genetics Unit, MRC Harwell Institute, Didcot OX11 0RD, UK
| |
Collapse
|
112
|
Mossina A, Lukas C, Merl-Pham J, Uhl FE, Mutze K, Schamberger A, Staab-Weijnitz C, Jia J, Yildirim AÖ, Königshoff M, Hauck SM, Eickelberg O, Meiners S. Cigarette smoke alters the secretome of lung epithelial cells. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Alessandra Mossina
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Christina Lukas
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science; Helmholtz Zentrum München; Munich Germany
| | - Franziska E. Uhl
- Department of Medicine; Vermont Lung Center (VLC); University of Vermont; Burlington VT USA
| | - Kathrin Mutze
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Andrea Schamberger
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Claudia Staab-Weijnitz
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Jie Jia
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Ali Ö. Yildirim
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Melanie Königshoff
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science; Helmholtz Zentrum München; Munich Germany
| | - Oliver Eickelberg
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease; Helmholtz Zentrum München; Munich Germany
| | - Silke Meiners
- Comprehensive; Pneumology Center (CPC); Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); University Hospital; Ludwig-Maximilians University; Munich Germany
| |
Collapse
|
113
|
Ng-Blichfeldt JP, Alçada J, Montero MA, Dean CH, Griesenbach U, Griffiths MJ, Hind M. Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in emphysema. Thorax 2017; 72:510-521. [DOI: 10.1136/thoraxjnl-2016-208846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/08/2016] [Accepted: 12/21/2016] [Indexed: 11/03/2022]
|
114
|
Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schuster G, Heinzelmann K, Günther A, Bracke KR, Dagouassat M, Boczkowski J, Brusselle GG, Smits R, Eickelberg O, Yildirim AÖ, Königshoff M. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. J Exp Med 2016; 214:143-163. [PMID: 27979969 PMCID: PMC5206496 DOI: 10.1084/jem.20160675] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/16/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Florian Ciolek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | | | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | | | | | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, 3000 Rotterdam, Netherlands
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| |
Collapse
|
115
|
Ota C, Baarsma HA, Wagner DE, Hilgendorff A, Königshoff M. Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling. Mol Cell Pediatr 2016; 3:34. [PMID: 27718180 PMCID: PMC5055515 DOI: 10.1186/s40348-016-0062-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most common chronic lung diseases in infants caused by pre- and/or postnatal lung injury. BPD is characterized by arrested alveolarization and vascularization due to extracellular matrix remodeling, inflammation, and impaired growth factor signaling. WNT signaling is a critical pathway for normal lung development, and its altered signaling has been shown to be involved in the onset and progression of incurable chronic lung diseases in adulthood, such as chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). In this review, we summarize the impact of WNT signaling on different stages of lung development and its potential contribution to developmental lung diseases, especially BPD, and chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Chiharu Ota
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany.
| | - Hoeke A Baarsma
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany.,The Perinatal Center, Campus Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
116
|
Abstract
With the expected rapid growth of the aging population worldwide, there is a clear need to understand the complex process of aging to develop interventions that might extend the health span in this group of patients. Aging is associated with increased susceptibility to a variety of chronic diseases, and lung pathologies are no exception. The prevalence of lung diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease has been found to increase considerably with age. In October 2014, the Division of Pulmonary, Allergy, and Critical Care of the University of Pittsburgh cohosted the Pittsburgh-Munich Lung Conference focused in aging and lung disease with the Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ludwig-Maximilians University and Helmholtz Zentrum Munich Germany. The purpose of the conference was to disseminate novel concepts in aging mechanisms that have an impact in lung physiology and pathogenesis of pulmonary diseases that commonly occur in older populations. The conference included 28 presentations on diverse topics, which are summarized in this report. The participants identified priorities for future basic and translational investigations that will assist in the identification of molecular insights involved in the pathogenesis of age-related pulmonary diseases and the design of therapeutic interventions for these lung conditions.
Collapse
|
117
|
Darquenne C, Fleming JS, Katz I, Martin AR, Schroeter J, Usmani OS, Venegas J, Schmid O. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung. J Aerosol Med Pulm Drug Deliv 2016; 29:107-26. [PMID: 26829187 DOI: 10.1089/jamp.2015.1270] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.
Collapse
Affiliation(s)
- Chantal Darquenne
- 1 Department of Medicine, University of California , San Diego, La Jolla, California
| | - John S Fleming
- 2 National Institute of Health Research Biomedical Research Unit in Respiratory Disease , Southampton, United Kingdom .,3 Department of Medical Physics and Bioengineering, University Hospital Southampton NHS Foundation Trust , Southampton, United Kingdom
| | - Ira Katz
- 4 Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay , Jouy-en-Josas, France .,5 Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| | - Andrew R Martin
- 6 Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada
| | | | - Omar S Usmani
- 8 Airway Disease Section, National Heart and Lung Institute , Imperial College London and Royal Brompton Hospital, London, United Kingdom
| | - Jose Venegas
- 9 Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - Otmar Schmid
- 10 Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research , Munich, Germany .,11 Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg, Germany
| |
Collapse
|
118
|
Reuter S, Beckert H, Taube C. Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases. J Transl Med 2016; 96:177-85. [PMID: 26595171 DOI: 10.1038/labinvest.2015.143] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Bronchial asthma and chronic obstructive pulmonary disease (COPD) are chronic diseases that are associated with inflammation and structural changes in the airways and lungs. Recent findings have implicated Wnt pathways in critically regulating inflammatory responses, especially in asthma. Furthermore, canonical and noncanonical Wnt pathways are involved in structural changes such as airway remodeling, goblet cell metaplasia, and airway smooth muscle (ASM) proliferation. In COPD, Wnt pathways are not only associated with structural changes in the airways but also involved in the development of emphysema. The present review summarizes the role and function of the canonical and noncanonical Wnt pathway with regard to airway inflammation and structural changes in asthma and COPD. Further identification of the role and function of different Wnt molecules and pathways could help to develop novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Sebastian Reuter
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North, Member of the German Center for Lung Research, Borstel, Germany
| | - Hendrik Beckert
- III Medical Clinic, University Medical Center, Mainz, Germany
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
119
|
Liu Z, Li W, Lv J, Xie R, Huang H, Li Y, He Y, Jiang J, Chen B, Guo S, Chen L. Identification of potential COPD genes based on multi-omics data at the functional level. MOLECULAR BIOSYSTEMS 2016; 12:191-204. [PMID: 26575263 DOI: 10.1039/c5mb00577a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease, which involves dysfunctions in multi-omics. The changes in biological processes, such as adhesion junction, signaling transduction, transcriptional regulation, and cell proliferation, will lead to the occurrence of COPD. A novel systematic approach MMMG (Methylation-MicroRNA-MRNA-GO) was proposed to identify potential COPD genes by integrating function information with a methylation profile, a microRNA expression profile and an mRNA expression profile. 8 co-functional classes and 102 potential COPD genes were identified. These genes displayed a high performance in classifying COPD patients and normal samples, revealed COPD-related pathways, and have been confirmed to be associated with COPD by Matthews correlation coefficient (MCC)-values, literature, an independent data set, and pathways. The MMMG method that analyzed multi-omics data at the functional level could effectively identify potential COPD genes. These potential COPD genes would provide in-depth insights into understanding the complexity of COPD genome landscapes, improve the early diagnostics, and guide new efforts to develop therapeutics in the future.
Collapse
Affiliation(s)
- Zhe Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
The 1918 Influenza Virus PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling in Mice. J Virol 2015; 90:2240-53. [PMID: 26656717 DOI: 10.1128/jvi.02974-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.
Collapse
|
121
|
Burgstaller G, Vierkotten S, Lindner M, Königshoff M, Eickelberg O. Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue. Am J Physiol Lung Cell Mol Physiol 2015; 309:L323-32. [PMID: 26092995 DOI: 10.1152/ajplung.00061.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022] Open
Abstract
During the last decades, the study of cell behavior was largely accomplished in uncoated or extracellular matrix (ECM)-coated plastic dishes. To date, considerable cell biological efforts have tried to model in vitro the natural microenvironment found in vivo. For the lung, explants cultured ex vivo as lung tissue cultures (LTCs) provide a three-dimensional (3D) tissue model containing all cells in their natural microenvironment. Techniques for assessing the dynamic live interaction between ECM and cellular tissue components, however, are still missing. Here, we describe specific multidimensional immunolabeling of living 3D-LTCs, derived from healthy and fibrotic mouse lungs, as well as patient-derived 3D-LTCs, and concomitant real-time four-dimensional multichannel imaging thereof. This approach allowed the evaluation of dynamic interactions between mesenchymal cells and macrophages with their ECM. Furthermore, fibroblasts transiently expressing focal adhesions markers incorporated into the 3D-LTCs, paving new ways for studying the dynamic interaction between cellular adhesions and their natural-derived ECM. A novel protein transfer technology (FuseIt/Ibidi) shuttled fluorescently labeled α-smooth muscle actin antibodies into the native cells of living 3D-LTCs, enabling live monitoring of α-smooth muscle actin-positive stress fibers in native tissue myofibroblasts residing in fibrotic lesions of 3D-LTCs. Finally, this technique can be applied to healthy and diseased human lung tissue, as well as to adherent cells in conventional two-dimensional cell culture. This novel method will provide valuable new insights into the dynamics of ECM (patho)biology, studying in detail the interaction between ECM and cellular tissue components in their natural microenvironment.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany; and
| | - Sarah Vierkotten
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany; and
| | - Michael Lindner
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany; and
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany; and
| |
Collapse
|
122
|
Mutze K, Vierkotten S, Milosevic J, Eickelberg O, Königshoff M. Enolase 1 (ENO1) and protein disulfide-isomerase associated 3 (PDIA3) regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells. Dis Model Mech 2015; 8:877-90. [PMID: 26035385 PMCID: PMC4527283 DOI: 10.1242/dmm.019117] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI) and type II (ATII) cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2) and an increase in enolase 1 (ENO1) and protein disulfide-isomerase associated 3 (PDIA3) protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker), exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC), whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair. Summary: The authors identified proteins involved in Wnt/β-catenin-driven alveolar epithelial plasticity in lung injury and repair.
Collapse
Affiliation(s)
- Kathrin Mutze
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Sarah Vierkotten
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | | | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|