101
|
Xin CP, Tholen D, Devloo V, Zhu XG. The benefits of photorespiratory bypasses: how can they work? PLANT PHYSIOLOGY 2015; 167:574-85. [PMID: 25516604 PMCID: PMC4326737 DOI: 10.1104/pp.114.248013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.
Collapse
Affiliation(s)
- Chang-Peng Xin
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Danny Tholen
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Vincent Devloo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Xin-Guang Zhu
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| |
Collapse
|
102
|
Singh J, Pandey P, James D, Chandrasekhar K, Achary VMM, Kaul T, Tripathy BC, Reddy MK. Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1217-30. [PMID: 25196090 DOI: 10.1111/pbi.12246] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/14/2014] [Accepted: 07/20/2014] [Indexed: 05/05/2023]
Abstract
Despite the declarations and collective measures taken to eradicate hunger at World Food Summits, food security remains one of the biggest issues that we are faced with. The current scenario could worsen due to the alarming increase in world population, further compounded by adverse climatic conditions, such as increase in atmospheric temperature, unforeseen droughts and decreasing soil moisture, which will decrease crop yield even further. Furthermore, the projected increase in yields of C3 crops as a result of increasing atmospheric CO2 concentrations is much less than anticipated. Thus, there is an urgent need to increase crop productivity beyond existing yield potentials to address the challenge of food security. One of the domains of plant biology that promises hope in overcoming this problem is study of C3 photosynthesis. In this review, we have examined the potential bottlenecks of C3 photosynthesis and the strategies undertaken to overcome them. The targets considered for possible intervention include RuBisCO, RuBisCO activase, Calvin-Benson-Bassham cycle enzymes, CO2 and carbohydrate transport, and light reactions among many others. In addition, other areas which promise scope for improvement of C3 photosynthesis, such as mining natural genetic variations, mathematical modelling for identifying new targets, installing efficient carbon fixation and carbon concentrating mechanisms have been touched upon. Briefly, this review intends to shed light on the recent advances in enhancing C3 photosynthesis for crop improvement.
Collapse
Affiliation(s)
- Jitender Singh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Rosenthal DM, Ruiz-Vera UM, Siebers MH, Gray SB, Bernacchi CJ, Ort DR. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:136-46. [PMID: 25113459 DOI: 10.1016/j.plantsci.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change.
Collapse
Affiliation(s)
- David M Rosenthal
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA.
| | - Ursula M Ruiz-Vera
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew H Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sharon B Gray
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carl J Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
104
|
Mettler T, Mühlhaus T, Hemme D, Schöttler MA, Rupprecht J, Idoine A, Veyel D, Pal SK, Yaneva-Roder L, Winck FV, Sommer F, Vosloh D, Seiwert B, Erban A, Burgos A, Arvidsson S, Schönfelder S, Arnold A, Günther M, Krause U, Lohse M, Kopka J, Nikoloski Z, Mueller-Roeber B, Willmitzer L, Bock R, Schroda M, Stitt M. Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:2310-2350. [PMID: 24894045 PMCID: PMC4114937 DOI: 10.1105/tpc.114.124537] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 05/18/2023]
Abstract
We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.
Collapse
Affiliation(s)
- Tabea Mettler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dorothea Hemme
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Jens Rupprecht
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Adam Idoine
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sunil Kumar Pal
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Liliya Yaneva-Roder
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Flavia Vischi Winck
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Frederik Sommer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Daniel Vosloh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Bettina Seiwert
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Samuel Arvidsson
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | | - Anne Arnold
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marc Lohse
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
105
|
McGrath JM, Long SP. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. PLANT PHYSIOLOGY 2014; 164:2247-61. [PMID: 24550242 PMCID: PMC3982776 DOI: 10.1104/pp.113.232611] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/16/2014] [Indexed: 05/18/2023]
Abstract
Experimental elevation of [CO₂] around C₃ crops in the field has been shown to increase yields by suppressing the Rubisco oxygenase reaction and, in turn, photorespiration. Bioengineering a cyanobacterial carbon-concentrating mechanism (CCM) into C₃ crop species provides a potential means of elevating [CO₂] at Rubisco, thereby decreasing photorespiration and increasing photosynthetic efficiency and yield. The cyanobacterial CCM is an attractive alternative relative to other CCMs, because its features do not require anatomical changes to leaf tissue. However, the potential benefits of engineering the entire CCM into a C₃ leaf are unexamined. Here, a CO₂ and HCO₃⁻ diffusion-reaction model is developed to examine how components of the cyanobacterial CCM affect leaf light-saturated CO₂ uptake (A(sat)) and to determine whether a different Rubisco isoform would perform better in a leaf with a cyanobacterial CCM. The results show that the addition of carboxysomes without other CCM components substantially decreases A(sat) and that the best first step is the addition of HCO₃⁻ transporters, as a single HCO₃⁻ transporter increased modeled A(sat) by 9%. Addition of all major CCM components increased A(sat) from 24 to 38 µmol m⁻² s⁻¹. Several Rubisco isoforms were compared in the model, and increasing ribulose bisphosphate regeneration rate will allow for further improvements by using a Rubisco isoform adapted to high [CO₂]. Results from field studies that artificially raise [CO₂] suggest that this 60% increase in A(sat) could result in a 36% to 60% increase in yield.
Collapse
Affiliation(s)
- Justin M. McGrath
- Institute for Genomic Biology (J.M.M.), Department of Crop Sciences (S.P.L.), and Department of Plant Biology (S.P.L.), University of Illinois, Urbana-Champaign, Illinois 61801
| | - Stephen P. Long
- Institute for Genomic Biology (J.M.M.), Department of Crop Sciences (S.P.L.), and Department of Plant Biology (S.P.L.), University of Illinois, Urbana-Champaign, Illinois 61801
| |
Collapse
|
106
|
Wang Y, Long SP, Zhu XG. Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. PLANT PHYSIOLOGY 2014; 164:2231-46. [PMID: 24521879 PMCID: PMC3982775 DOI: 10.1104/pp.113.230284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/27/2014] [Indexed: 05/19/2023]
Abstract
C4 photosynthesis has higher light, nitrogen, and water use efficiencies than C3 photosynthesis. Although the basic anatomical, cellular, and biochemical features of C4 photosynthesis are well understood, the quantitative significance of each element of C4 photosynthesis to the high photosynthetic efficiency are not well defined. Here, we addressed this question by developing and using a systems model of C4 photosynthesis, which includes not only the Calvin-Benson cycle, starch synthesis, sucrose synthesis, C4 shuttle, and CO₂ leakage, but also photorespiration and metabolite transport between the bundle sheath cells and mesophyll cells. The model effectively simulated the CO₂ uptake rates, and the changes of metabolite concentrations under varied CO₂ and light levels. Analyses show that triose phosphate transport and CO₂ leakage can help maintain a high photosynthetic rate by balancing ATP and NADPH amounts in bundle sheath cells and mesophyll cells. Finally, we used the model to define the optimal enzyme properties and a blueprint for C4 engineering. As such, this model provides a theoretical framework for guiding C4 engineering and studying C4 photosynthesis in general.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory for Hybrid Rice and Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.W., X.-G.Z.)
- and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (S.P.L.)
| | - Stephen P. Long
- State Key Laboratory for Hybrid Rice and Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (Y.W., X.-G.Z.)
- and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (S.P.L.)
| | | |
Collapse
|
107
|
Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 2013; 195:5112-22. [PMID: 24013630 DOI: 10.1128/jb.00672-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpX(C)) and one on plasmid pBM19 (GlpX(P)), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpX(C) and glpX(P) from B. methanolicus. GlpX(P) and GlpX(C) share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn(2+) ions and inhibited by Li(+), but differed in terms of the kinetic parameters. GlpX(C) showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s(-1) mM(-1) and 14 ± 0.5 μM, respectively) than GlpX(P) (8.8 s(-1) mM(-1) and 440 ± 7.6 μM, respectively), indicating that GlpX(C) is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpX(P) but not for GlpX(C). Based on these in vitro data, GlpX(P) is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.
Collapse
|
108
|
Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A. Modelling C₃ photosynthesis from the chloroplast to the ecosystem. PLANT, CELL & ENVIRONMENT 2013; 36:1641-1657. [PMID: 23590343 DOI: 10.1111/pce.12118] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 05/27/2023]
Abstract
Globally, photosynthesis accounts for the largest flux of CO₂ from the atmosphere into ecosystems and is the driving process for terrestrial ecosystem function. The importance of accurate predictions of photosynthesis over a range of plant growth conditions led to the development of a C₃ photosynthesis model by Farquhar, von Caemmerer & Berry that has become increasingly important as society places greater pressures on vegetation. The photosynthesis model has played a major role in defining the path towards scientific understanding of photosynthetic carbon uptake and the role of photosynthesis on regulating the earth's climate and biogeochemical systems. In this review, we summarize the photosynthesis model, including its continued development and applications. We also review the implications these developments have on quantifying photosynthesis at a wide range of spatial and temporal scales, and discuss the model's role in determining photosynthetic responses to changes in environmental conditions. Finally, the review includes a discussion of the larger-scale modelling and remote-sensing applications that rely on the leaf photosynthesis model and are likely to open new scientific avenues to address the increasing challenges to plant productivity over the next century.
Collapse
Affiliation(s)
- Carl J Bernacchi
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Cohu CM, Muller O, Stewart JJ, Demmig-Adams B, Adams WW. Association between minor loading vein architecture and light- and CO2-saturated rates of photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes. FRONTIERS IN PLANT SCIENCE 2013; 4:264. [PMID: 23898338 PMCID: PMC3724126 DOI: 10.3389/fpls.2013.00264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/30/2013] [Indexed: 05/05/2023]
Abstract
Through microscopic analysis of veins and assessment of light- and CO2-saturated rates of photosynthetic oxygen evolution, we investigated the relationship between minor loading vein anatomy and photosynthesis of mature leaves in three ecotypes of Arabidopsis thaliana grown under four different combinations of temperature and photon flux density (PFD). All three ecotypes exhibited greater numbers and cross-sectional area of phloem cells as well as higher photosynthesis rates in response to higher PFD and especially lower temperature. The Swedish ecotype exhibited the strongest response to these conditions, the Italian ecotype the weakest response, and the Col-0 ecotype exhibited an intermediate response. Among all three ecotypes, strong linear relationships were found between light- and CO2-saturated rates of photosynthetic oxygen evolution and the number and area of either sieve elements or of companion and phloem parenchyma cells in foliar minor loading veins, with the Swedish ecotype showing the highest number of cells in minor loading veins (and largest minor veins) coupled with unprecedented high rates of photosynthesis. Linear, albeit less significant, relationships were also observed between number and cross-sectional area of tracheids per minor loading vein versus light- and CO2-saturated rates of photosynthetic oxygen evolution. We suggest that sugar distribution infrastructure in the phloem is co-regulated with other features that set the upper limit for photosynthesis. The apparent genetic differences among Arabidopsis ecotypes should allow for future identification of the gene(s) involved in augmenting sugar-loading and -transporting phloem cells and maximal rates of photosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| |
Collapse
|
110
|
Borak B, Ort DR, Burbaum JJ. Energy and carbon accounting to compare bioenergy crops. Curr Opin Biotechnol 2013; 24:369-75. [PMID: 23518005 DOI: 10.1016/j.copbio.2013.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/09/2013] [Accepted: 02/19/2013] [Indexed: 02/06/2023]
Abstract
To compare the utility of current and future biofuels and biofuel feedstocks in an objective manner can be extremely challenging. This challenge exists because agricultural data are inherently variable, experimental techniques are crop-dependent, and the literatures usually report relative, rather than absolute, values. Here, we discuss the 'PETRO approach', a systematic approach to evaluate new crops. This approach accounts for not only the capture of solar energy but also the capture of atmospheric carbon (as CO2) to generate a final carbon-based liquid fuel product. The energy yield, per unit area, of biofuel crops grown in different climate zones can thus be benchmarked and quantitatively compared in terms of both carbon gain and solar energy conversion efficiency.
Collapse
Affiliation(s)
- Brian Borak
- Booz Allen Hamilton, Washington, DC 20024, United States
| | | | | |
Collapse
|
111
|
Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM. Rubisco activity and regulation as targets for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:717-30. [PMID: 23162118 DOI: 10.1093/jxb/ers336] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rubisco (ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase) enables net carbon fixation through the carboxylation of RuBP. However, some characteristics of Rubisco make it surprisingly inefficient and compromise photosynthetic productivity. For example, Rubisco catalyses a wasteful reaction with oxygen that leads to the release of previously fixed CO(2) and NH(3) and the consumption of energy during photorespiration. Furthermore, Rubisco is slow and large amounts are needed to support adequate photosynthetic rates. Consequently, Rubisco has been studied intensively as a prime target for manipulations to 'supercharge' photosynthesis and improve both productivity and resource use efficiency. The catalytic properties of Rubiscos from diverse sources vary considerably, suggesting that changes in turnover rate, affinity, or specificity for CO(2) can be introduced to improve Rubisco performance in specific crops and environments. While attempts to manipulate plant Rubisco by nuclear transformation have had limited success, modifying its catalysis by targeted changes to its catalytic large subunit via chloroplast transformation have been much more successful. However, this technique is still in need of development for most major food crops including maize, wheat, and rice. Other bioengineering approaches for improving Rubisco performance include improving the activity of its ancillary protein, Rubisco activase, in addition to modulating the synthesis and degradation of Rubisco's inhibitory sugar phosphate ligands. As the rate-limiting step in carbon assimilation, even modest improvements in the overall performance of Rubisco pose a viable pathway for obtaining significant gains in plant yield, particularly under stressful environmental conditions.
Collapse
Affiliation(s)
- Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | | | | | | | | | | | | |
Collapse
|
112
|
Hanson MR, Gray BN, Ahner BA. Chloroplast transformation for engineering of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:731-42. [PMID: 23162121 DOI: 10.1093/jxb/ers325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many efforts are underway to engineer improvements in photosynthesis to meet the challenges of increasing demands for food and fuel in rapidly changing environmental conditions. Various transgenes have been introduced into either the nuclear or plastid genomes in attempts to increase photosynthetic efficiency. We examine the current knowledge of the critical features that affect levels of expression of plastid transgenes and protein accumulation in transplastomic plants, such as promoters, 5' and 3' untranslated regions, RNA-processing sites, translation signals and amino acid sequences that affect protein turnover. We review the prior attempts to manipulate the properties of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through plastid transformation. We illustrate how plastid operons could be created for expression of the multiple genes needed to introduce new pathways or enzymes to enhance photosynthetic rates or reduce photorespiration. We describe here the past accomplishments and future prospects for manipulating plant enzymes and pathways to enhance carbon assimilation through plastid transformation.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
113
|
Zarzycki J, Axen SD, Kinney JN, Kerfeld CA. Cyanobacterial-based approaches to improving photosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:787-98. [PMID: 23095996 DOI: 10.1093/jxb/ers294] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants rely on the Calvin-Benson (CB) cycle for CO(2) fixation. The key carboxylase of the CB cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Efforts to enhance carbon fixation in plants have traditionally focused on RubisCO or on approaches that can help to remedy RubisCO's undesirable traits: its low catalytic efficiency and photorespiration. Towards reaching the goal of improving plant photosynthesis, cyanobacteria may be instrumental. Because of their evolutionary relationship to chloroplasts, they represent ideal model organisms for photosynthesis research. Furthermore, the molecular understanding of cyanobacterial carbon fixation provides a rich source of strategies that can be exploited for the bioengineering of chloroplasts. These strategies include the cyanobacterial carbon concentrating mechanism (CCM), which consists of active and passive transporter systems for inorganic carbon and a specialized organelle, the carboxysome. The carboxysome encapsulates RubisCO together with carbonic anhydrase in a protein shell, resulting in an elevated CO(2) concentration around RubisCO. Moreover, cyanobacteria differ from plants in the isoenzymes involved in the CB cycle and the photorespiratory pathways as well as in mechanisms that can affect the activity of RubisCO. In addition, newly available cyanobacterial genome sequence data from the CyanoGEBA project, which has more than doubled the amount of genomic information available for cyanobacteria, increases our knowledge on the CCM and the occurrence and distribution of genes of interest.
Collapse
Affiliation(s)
- Jan Zarzycki
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | | | | |
Collapse
|
114
|
Jiang K, Frick-Cheng A, Trusov Y, Delgado-Cerezo M, Rosenthal DM, Lorek J, Panstruga R, Booker FL, Botella JR, Molina A, Ort DR, Jones AM. Dissecting Arabidopsis Gβ signal transduction on the protein surface. PLANT PHYSIOLOGY 2012; 159:975-83. [PMID: 22570469 PMCID: PMC3387721 DOI: 10.1104/pp.112.196337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gβ-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gβ-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.
Collapse
|
115
|
Zhu XG, Song Q, Ort DR. Elements of a dynamic systems model of canopy photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:237-44. [PMID: 22325454 DOI: 10.1016/j.pbi.2012.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 05/19/2023]
Abstract
Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- State Key Laboratory of Hybrid Rice Research, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, China.
| | | | | |
Collapse
|
116
|
Chen X, Shachar-Hill Y. Insights into metabolic efficiency from flux analysis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2343-51. [PMID: 22378949 DOI: 10.1093/jxb/ers057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The efficiency of carbon and energy flows throughout metabolism defines the potential for growth and reproductive success of plants. Understanding the basis for metabolic efficiency requires relevant definitions of efficiency as well as measurements of biochemical functions through metabolism. Here insights into the basis of efficiency provided by (13)C-based metabolic flux analysis (MFA) as well as the uses and limitations of efficiency in predictive flux balance analysis (FBA) are highlighted. (13)C-MFA studies have revealed unusual features of central metabolism in developing green seeds for the efficient use of light to conserve carbon and identified metabolic inefficiencies in plant metabolism due to dissipation of ATP by substrate cycling. Constraints-based FBA has used efficiency to guide the prediction of the growth and actual internal flux distribution of plant systems. Comparisons in a few cases have been made between flux maps measured by (13)C-based MFA and those predicted by FBA assuming one or more maximal efficiency parameters. These studies suggest that developing plant seeds and photoautotrophic microorganisms may indeed have patterns of metabolic flux that maximize efficiency. MFA and FBA are synergistic toolsets for uncovering and explaining the metabolic basis of efficiencies and inefficiencies in plant systems.
Collapse
Affiliation(s)
- Xuewen Chen
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | | |
Collapse
|