101
|
Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration. Int J Alzheimers Dis 2011; 2011:189728. [PMID: 21660241 PMCID: PMC3109514 DOI: 10.4061/2011/189728] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/07/2011] [Indexed: 02/06/2023] Open
Abstract
GSK3 has diverse functions, including an important role in brain pathology. In this paper, we address the primary functions of GSK3 in development and neuroplasticity, which appear to be interrelated and to mediate age-associated neurological diseases. Specifically, GSK3 plays a pivotal role in controlling neuronal progenitor proliferation and establishment of neuronal polarity during development, and the upstream and downstream signals modulating neuronal GSK3 function affect cytoskeletal reorganization and neuroplasticity throughout the lifespan. Modulation of GSK3 in brain areas subserving cognitive function has become a major focus for treating neuropsychiatric and neurodegenerative diseases. As a crucial node that mediates a variety of neuronal processes, GSK3 is proposed to be a therapeutic target for restoration of synaptic functioning and cognition, particularly in Alzheimer's disease.
Collapse
Affiliation(s)
- Pamela Salcedo-Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 Ciudad de México, Mexico
| | | | | |
Collapse
|
102
|
Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord 2011; 3:162-74. [PMID: 21533542 PMCID: PMC3180925 DOI: 10.1007/s11689-011-9083-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/05/2011] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes.
Collapse
|
103
|
Abstract
The assembly of specific synaptic connections during development of the nervous system represents a remarkable example of cellular recognition and differentiation. Neurons employ several different cellular signaling strategies to solve this puzzle, which successively limit unwanted interactions and reduce the number of direct recognition events that are required to result in a specific connectivity pattern. Specificity mechanisms include the action of contact-mediated and long-range signals that support or inhibit synapse formation, which can take place directly between synaptic partners or with transient partners and transient cell populations. The molecular signals that drive the synaptic differentiation process at individual synapses in the central nervous system are similarly diverse and act through multiple, parallel differentiation pathways. This molecular complexity balances the need for central circuits to be assembled with high accuracy during development while retaining plasticity for local and dynamic regulation.
Collapse
Affiliation(s)
- Kang Shen
- Howard Hughes Medical Institute, Department of Biology and Pathology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
104
|
Abstract
Synapse formation is a critical step in the assembly of neuronal circuits. Both secreted and membrane-associated proteins contribute to the assembly and maturation of synapses. In addition, neuronal activity regulates the formation of neuronal circuits through the stimulation of growth factor secretion and the localization of receptors such as NMDA and AMPA receptors (NMDAR and AMPAR, respectively). Little is known, however, about the role of activity in the localization and function of receptors for synaptogenic molecules. Wnts are secreted proteins that play a role in synapse formation by regulating pre- and postsynaptic assembly at central and peripheral synapses. Wnts can signal through different receptors including Frizzleds (Fzs), the LRP5/6 coreceptors, Ror and Ryk. Fz receptors have been shown to mediate Wnt function during synapse formation. At the cell surface, Fz receptors are located at synaptic and extrasynaptic sites. Importantly, synaptic localization of Fzs is regulated by neuronal activity in a Wnt-dependent manner. In this review, we discuss the function of Wnt-Fz signaling in the assembly of central and peripheral synapses and the evidence supporting a role for Wnt ligands and their Fz receptors in activity-mediated synapse formation.
Collapse
Affiliation(s)
- Macarena Sahores
- Department of Cell and Developmental Biology, University College London, United Kingdom
| | | |
Collapse
|
105
|
Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 2010; 107:21164-9. [PMID: 21084636 DOI: 10.1073/pnas.1010011107] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Growing evidence indicates that Wingless-type (Wnt) signaling plays an important role in the maturation of the central nervous system. We report here that Wingless-type family member 5A (Wnt-5a) is expressed early in development and stimulates dendrite spine morphogenesis, inducing de novo formation of spines and increasing the size of the preexisting ones in hippocampal neurons. Wnt-5a increased intracellular calcium concentration in dendritic processes and the amplitude of NMDA spontaneous miniature currents. Acute application of Wnt-5a increased the amplitude of field excitatory postsynaptic potentials (fEPSP) in hippocampal slices, an effect that was prevented by calcium-channel blockers. The physiological relevance of our findings is supported by studies showing that Wnt scavengers decreased spine density, miniature excitatory postsynaptic currents, and fEPSP amplitude. We conclude that Wnt-5a stimulates different aspects of synaptic differentiation and plasticity in the mammalian central nervous system.
Collapse
|
106
|
Liebl FLW, McKeown C, Yao Y, Hing HK. Mutations in Wnt2 alter presynaptic motor neuron morphology and presynaptic protein localization at the Drosophila neuromuscular junction. PLoS One 2010; 5:e12778. [PMID: 20856675 PMCID: PMC2939895 DOI: 10.1371/journal.pone.0012778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 08/24/2010] [Indexed: 01/02/2023] Open
Abstract
Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.
Collapse
Affiliation(s)
- Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America.
| | | | | | | |
Collapse
|
107
|
Abstract
A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients.
Collapse
Affiliation(s)
- Erin M Johnson-Venkatesh
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
108
|
Mosca TJ, Schwarz TL. The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development. Nat Neurosci 2010; 13:935-43. [PMID: 20601947 PMCID: PMC2913881 DOI: 10.1038/nn.2593] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/04/2010] [Indexed: 12/18/2022]
Abstract
Synapse-to-nucleus signaling is critical for synaptic development and plasticity. In Drosophila, the ligand Wingless causes the C-terminus of its Frizzled2 receptor (Fz2-C) to be cleaved and translocated from the postsynaptic density to nuclei. The mechanism of nuclear import is unknown and the developmental consequences of this translocation are uncertain. Here, we show that Fz2-C localization to muscle nuclei requires the nuclear import factors, Importin-β11 and Importin-α2 and that this pathway promotes the postsynaptic development of the subsynaptic reticulum (SSR), an elaboration of the postsynaptic plasma membrane. importin-β11 and dfz2 mutants have less SSR and some boutons lacking the postsynaptic marker Discs Large. These developmental defects in importin-β11 can be overcome by expression of Fz2-C fused to a nuclear localization sequence that can bypass Importin-β11. Thus, Wnt-activated growth of the postsynaptic membrane is mediated by the synapse-to-nucleus translocation and active nuclear import of Fz2-C via a selective Importin-β11/α2 pathway.
Collapse
Affiliation(s)
- Timothy J Mosca
- The F.M. Kirby Neurobiology Center, Children's Hospital Boston, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
109
|
Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila pax3/7 homolog. J Neurosci 2010; 30:8071-82. [PMID: 20554858 DOI: 10.1523/jneurosci.5467-09.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In a large-scale screening effort, we identified the gene gooseberry (gsb) as being necessary for synaptic homeostasis at the Drosophila neuromuscular junction. The gsb gene encodes a pair-rule transcription factor that participates in embryonic neuronal cell fate specification. Here, we define a new postembryonic role for gooseberry. We show that gsb becomes widely expressed in the postembryonic CNS, including within mature motoneurons. Loss of gsb does not alter neuromuscular growth, morphology, or the distribution of essential synaptic proteins. However, gsb function is required postembryonically for the sustained expression of synaptic homeostasis. In GluRIIA mutant animals, miniature EPSP (mEPSP) amplitudes are significantly decreased, and there is a compensatory homeostatic increase in presynaptic release that restores normal muscle excitation. Loss of gsb significantly impairs the homeostatic increase in presynaptic release in the GluRIIA mutant. Interestingly, gsb is not required for the rapid induction of synaptic homeostasis. Furthermore, gsb seems to be specifically involved in the mechanisms responsible for a homeostatic increase in presynaptic release, since it is not required for the homeostatic decrease in presynaptic release observed following an increase in mEPSP amplitude. Finally, Gsb has been shown to antagonize Wingless signaling during embryonic fate specification, and we present initial evidence that this activity is conserved during synaptic homeostasis. Thus, we have identified a gene (gsb) that distinguishes between rapid induction versus sustained expression of synaptic homeostasis and distinguishes between the mechanisms responsible for homeostatic increase versus decrease in synaptic vesicle release.
Collapse
|
110
|
Sahores M, Gibb A, Salinas PC. Frizzled-5, a receptor for the synaptic organizer Wnt7a, regulates activity-mediated synaptogenesis. Development 2010; 137:2215-25. [PMID: 20530549 PMCID: PMC2882138 DOI: 10.1242/dev.046722] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2010] [Indexed: 11/20/2022]
Abstract
Wnt proteins play a crucial role in several aspects of neuronal circuit formation. Wnts can signal through different receptors including Frizzled, Ryk and Ror2. In the hippocampus, Wnt7a stimulates the formation of synapses; however, its receptor remains poorly characterized. Here, we demonstrate that Frizzled-5 (Fz5) is expressed during the peak of synaptogenesis in the mouse hippocampus. Fz5 is present in synaptosomes and colocalizes with the pre- and postsynaptic markers vGlut1 and PSD-95. Expression of Fz5 during early stages of synaptogenesis increases the number of presynaptic sites in hippocampal neurons. Conversely, Fz5 knockdown or the soluble Fz5-CRD domain (Fz5CRD), which binds to Wnt7a, block the ability of Wnt7a to stimulate synaptogenesis. Increased neuronal activity induced by K+ depolarization or by high-frequency stimulation (HFS), known to induce synapse formation, raises the levels of Fz5 at the cell surface. Importantly, both stimuli increase the localization of Fz5 at synapses, an effect that is blocked by Wnt antagonists or Fz5CRD. Conversely, low-frequency stimulation, which reduces the number of synapses, decreases the levels of surface Fz5 and the percentage of synapses containing the receptor. Interestingly, Fz5CRD abolishes HFS-induced synapse formation. Our results indicate that Fz5 mediates the synaptogenic effect of Wnt7a and that its localization to synapses is regulated by neuronal activity, a process that depends on endogenous Wnts. These findings support a model where neuronal activity and Wnts increase the responsiveness of neurons to Wnt signalling by recruiting Fz5 receptor at synaptic sites.
Collapse
Affiliation(s)
- Macarena Sahores
- Department of Cell and Developmental Biology, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
111
|
Lim BK, Cho SJ, Sumbre G, Poo MM. Region-specific contribution of ephrin-B and Wnt signaling to receptive field plasticity in developing optic tectum. Neuron 2010; 65:899-911. [PMID: 20346764 DOI: 10.1016/j.neuron.2010.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
Abstract
Ephrin-B/EphB and Wnts are known to regulate synapse maturation and plasticity, besides serving as axon guidance molecules, but the relevance of such synaptic regulation to neural circuit functions in vivo remains unclear. In this study, we have examined the role of ephrin-B and Wnt signaling in regulating visual experience-dependent and developmental plasticity of receptive fields (RFs) of tectal cells in the developing Xenopus optic tectum. We found that repetitive exposure to unidirectional moving visual stimuli caused varying degrees of shift in the RFs in different regions of the tectum. By acute perfusion of exogenous antagonists and inducible transgene expression, we showed that ephrin-B signaling in presynaptic retinal ganglion cells and Wnt secretion from tectal cells are specifically responsible for the enhanced visual stimulation-induced changes in neuronal responses and RFs in the ventral and dorsal tectum, respectively. Thus, ephrin-B and Wnt signaling contribute to region-specific plasticity of visual circuit functions.
Collapse
Affiliation(s)
- Byung Kook Lim
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
112
|
Farías GG, Godoy JA, Cerpa W, Varela-Nallar L, Inestrosa NC. Wnt signaling modulates pre- and postsynaptic maturation: therapeutic considerations. Dev Dyn 2010; 239:94-101. [PMID: 19681159 DOI: 10.1002/dvdy.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wnt signaling regulates a wealth of aspects of nervous system development and function in embryonic stages and in adulthood. The expression of Wnt ligands and components of the Wnt signaling machinery in early stages of neural development has been related to its role in neurite patterning and in synaptogenesis. Moreover, its expression in the mature nervous system suggests a role for this pathway in synaptic maintenance and function. Therefore, it is of crucial relevance the understanding of the mechanisms by which Wnt signaling regulates these processes. Herein, we discuss how different Wnt ligands, acting through different Wnt signaling pathways, operate in pre- and postsynaptic regions to modulate synapse structure and function. We also elaborate on the idea that Wnt signaling pathways are a target for the treatment of neurodegenerative diseases that affect synaptic integrity, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ginny G Farías
- Centro de Envejecimiento y Regeneración (CARE), Instituto Milenio (MIFAB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
113
|
Lee JM, Kim IS, Kim H, Lee JS, Kim K, Yim HY, Jeong J, Kim JH, Kim JY, Lee H, Seo SB, Kim H, Rosenfeld MG, Kim KI, Baek SH. RORalpha attenuates Wnt/beta-catenin signaling by PKCalpha-dependent phosphorylation in colon cancer. Mol Cell 2010; 37:183-95. [PMID: 20122401 DOI: 10.1016/j.molcel.2009.12.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/14/2009] [Accepted: 10/28/2009] [Indexed: 11/19/2022]
Abstract
Wnt family members play diverse roles in development and disease. Noncanonical Wnt ligands can inhibit canonical Wnt signaling depending on the cellular context; however, the underlying mechanism of this antagonism remains poorly understood. Here we identify a specific mechanism of orphan nuclear receptor RORalpha-mediated inhibition of canonical Wnt signaling in colon cancer. Wnt5a/PKCalpha-dependent phosphorylation on serine residue 35 of RORalpha is crucial to link RORalpha to Wnt/beta-catenin signaling, which exerts inhibitory function of the expression of Wnt/beta-catenin target genes. Intriguingly, there is a significant correlation of reduction of RORalpha phosphorylation in colorectal tumor cases compared to their normal counterpart, providing the clinical relevance of the findings. Our data provide evidence for a role of RORalpha, functioning at the crossroads between the canonical and the noncanonical Wnt signaling pathways, in mediating transrepression of the Wnt/beta-catenin target genes, thereby providing new approaches for the development of therapeutic agents for human cancers.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Biological Sciences, Creative Research Initiative Center for Chromatin Dynamics, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Su J, Gorse K, Ramirez F, Fox MA. Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J Comp Neurol 2010; 518:229-53. [PMID: 19937713 DOI: 10.1002/cne.22228] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses.
Collapse
Affiliation(s)
- Jianmin Su
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
115
|
Varela-Nallar L, Grabowski CP, Alfaro IE, Alvarez AR, Inestrosa NC. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev 2009; 4:41. [PMID: 19883499 PMCID: PMC2779803 DOI: 10.1186/1749-8104-4-41] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/02/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. RESULTS We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD) of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. CONCLUSION Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
- Laboratorio de Señalización Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina P Grabowski
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| | - Iván E Alfaro
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| | - Alejandra R Alvarez
- Laboratorio de Señalización Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| |
Collapse
|
116
|
Killeen MT. The dual role of the ligand UNC-6/Netrin in both axon guidance and synaptogenesis in C. elegans. Cell Adh Migr 2009; 3:268-71. [PMID: 19377288 DOI: 10.4161/cam.3.3.8398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The extracellular cue UNC-6/Netrin is a well-known axon guidance molecule and recently it has also been shown to be involved with localization of pre-synaptic complexes. Working through the UNC-40/DCC/Fra receptor, UNC-6/Netrin promotes the formation of pre-synaptic terminals between the pre-synaptic AIY interneuron and its post-synaptic partner, the RIA interneuron. In the DA9 motor neuron, UNC-6/Netrin has an alternate role promoting the exclusion of pre-synaptic components from the dendrite via its UNC-5-receptor. Surprisingly, the requirement for UNC-5 persists even after DA9 axon migration is complete, because synapses become mis-localized after it is depleted. This observation provides at least a partial explanation for the persistence of UNC-6/Netrin and UNC-5 in the adult nervous system. These activities parallel the previously known bi-functional axon guidance effects of UNC-6/Netrin, since it can attract cells and axons expressing UNC-40/DCC/Fra and repel those expressing UNC-5 alone or in combination with UNC-40. UNC-6/Netrin cooperates with the Wnt family members to exclude synapses from compartments within the DA9 axon, so that they only occur in regions free of the influence of both UNC-6/Netrin and the Wnts. Regulation of both axon guidance and synapse formation by axon guidance cues permits coordination in circuit assembly between pre- and post-synaptic cells.
Collapse
Affiliation(s)
- Marie T Killeen
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, ON, CA.
| |
Collapse
|
117
|
Abstract
The nervous system consists of hundreds of billions of neurons interconnected into the functional neural networks that underlie behaviors. The capacity of a neuron to innervate and function within a network is mediated via specialized cell junctions known as synapses. Synapses are macromolecular structures that regulate intercellular communication in the nervous system, and are the main gatekeepers of information flow within neural networks. Where and when synapses form determines the connectivity and functionality of neural networks. Therefore, our knowledge of how synapse formation is regulated is critical to our understanding of the nervous system and how it goes awry in neurological disorders. Synapse formation involves pairing of the pre- and postsynaptic partners at a specific neurospatial coordinate. The specificity of synapse formation requires the precise execution of multiple developmental events, including cell fate specification, cell migration, axon guidance, dendritic growth, synaptic target selection, and synaptogenesis (Juttner and Rathjen in Cell. Mol. Life Sci. 62:2811, 2005; Salie et al., in Neuron 45:189, 2005; Waites et al., in Annu. Rev. Neurosci. 28:251, 2005). Remarkably, during the development of the vertebrate nervous system, these developmental processes occur almost simultaneously in billions of neurons, resulting in the formation of trillions of synapses. How this remarkable specificity is orchestrated during development is one of the outstanding questions in the field of neurobiology, and the focus of discussion of this chapter. We center the discussion of this chapter on the early developmental events that orchestrate the process of synaptogenesis prior to activity-dependent mechanisms. We have therefore limited the discussion of important activity-dependent synaptogenic events, which are discussed in other chapters of this book. Moreover, our discussion is biased toward lessons we have learned from invertebrate systems, in particular from C. elegans and Drosophila. We did so to complement the discussions from other chapters in this book, which focus on the important findings that have recently emerged from the vertebrate literature. The chapter begins with a brief history of the field of synaptic biology. This serves as a backdrop to introduce some of the historically outstanding questions of synaptic development that have eluded us during the past century, and which are the focus of this review. We then discuss some general features of synaptic structure as it relates to its function. In particular, we will highlight evolutionarily conserved traits shared by all synaptic structures, and how these features have helped optimize these ancient cellular junctions for interneural communication. We then discuss the regulatory signals that orchestrate the precise assembly of these conserved macromolecular structures. This discussion will be framed in the context of the neurodevelopmental process. Specifically, much of our discussion will focus on how the seemingly disparate developmental processes are intimately linked at a molecular level, and how this relationship might be crucial in the developmental orchestration of circuit assembly. We hope that the discussion of the multifunctional cues that direct circuit development provides a conceptual framework into understanding how, with a limited set of signaling molecules, precise neural wiring can be coordinated between synaptic partners.
Collapse
Affiliation(s)
- Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|