101
|
Abstract
The microbiome is defined as the total of cellular microorganisms of baczerial, viral or e. g., parasite origin living on the surface of a body. Within the anatomical areas of otorhinolaryngology, a significant divergence and variance can be demonstrated. For ear, nose, throat, larynx and cutis different interactions of microbiome and common factors like age, diet and live style factors (e. g., smoking) have been detected in recent years. Besides, new insights hint at a passible pathognomic role of the microbiome towards diseases in the ENT area. This review article resumes the present findings of this rapidly devloping scientific area.
Collapse
Affiliation(s)
- Achim G Beule
- HNO-Uniklinik Münster.,Klinik und Poliklinik für Hals-Nasen-Ohrenkrankheiten der Universitätsmedizin Greifswald
| |
Collapse
|
102
|
Li Y, Hu X, Yang S, Zhou J, Qi L, Sun X, Fan M, Xu S, Cha M, Zhang M, Lin S, Liu S, Hu D. Comparison Between the Fecal Bacterial Microbiota of Healthy and Diarrheic Captive Musk Deer. Front Microbiol 2018; 9:300. [PMID: 29551996 PMCID: PMC5840195 DOI: 10.3389/fmicb.2018.00300] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrhea constitutes one of the most common diseases affecting the survival of captive musk deer and is usually caused by an imbalance in intestinal microbiota. Currently, research regarding the structure and function of intestinal microbiota in diarrheic musk deer is lacking. Therefore, in the present study, high-throughput 16S-rRNA gene sequencing was used to analyze the intestinal microbiota in feces of healthy captive musk deer (HMD) (n = 8) and musk deer with mild (MMD) (n = 8), and severe (n = 5) (SMD) diarrhea to compare the difference in intestinal microbiota of musk deer under various physiological conditions. The results showed that the diversity of HMD fecal microbiota was significantly higher than that of the two diarrhea samples. β Diversity results indicated that there were extremely significant differences in bacterial communities between the HMD sample and the MMD and SMD samples. However, no significant difference was found between the two diarrhea samples. LefSe analysis showed that the degree of intestinal physiological dysfunction in musk deer was correlated with the types of major pathogens. The main pathogen in the MMD group is Escherichia-Shigella, whereas Fusobacterium is the main pathogen in the SMD group. PICRUSt functional profile prediction indicated that the intestinal microbiota disorder could also lead to changes in the abundance of genes in metabolic pathways of the immune system. Altogether, this study provides a theoretical basis for the exploration of treatments for diarrhea in captive musk deer, which is of considerable significance to the implementation of the musk deer release into the wild program.
Collapse
Affiliation(s)
- Yimeng Li
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shuang Yang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Juntong Zhou
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lei Qi
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiaoning Sun
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengyuan Fan
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shanghua Xu
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Muha Cha
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Meishan Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shaobi Lin
- Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, China
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry University, Beijing, China.,Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
103
|
Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities. Appl Environ Microbiol 2018; 84:AEM.02470-17. [PMID: 29330190 PMCID: PMC5835734 DOI: 10.1128/aem.02470-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner.
Collapse
|
104
|
Heeney DD, Gareau MG, Marco ML. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol 2018; 49:140-147. [PMID: 28866243 PMCID: PMC5808898 DOI: 10.1016/j.copbio.2017.08.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Metagenomics and related methods have led to significant advances in our understanding of the human microbiome. Members of the genus Lactobacillus, although best understood for essential roles in food fermentations and applications as probiotics, have also come to the fore in a number of untargeted gut microbiome studies in humans and animals. Even though Lactobacillus is only a minor member of the human colonic microbiota, the proportions of those bacteria are frequently either positively or negatively correlated with human disease and chronic conditions. Recent findings on Lactobacillus species in human and animal microbiome research, together with the increased knowledge on probiotic and other ingested lactobacilli, have resulted in new perspectives on the importance of this genus to human health.
Collapse
Affiliation(s)
- Dustin D Heeney
- Department of Food Science & Technology, University of California, Davis, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, USA.
| |
Collapse
|
105
|
Implementation of an algorithm for selection of antimicrobial therapy for diarrhoeic calves: Impact on antimicrobial treatment rates, health and faecal microbiota. Vet J 2017; 226:15-25. [PMID: 28911836 PMCID: PMC7110828 DOI: 10.1016/j.tvjl.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/17/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023]
Abstract
Use of an algorithm for treatment of diarrhoeic calves resulted in a reduction of 80% in antimicrobial treatment rates. The reduction of antimicrobial treatment rates in diarrhoeic calves did not have a negative impact on the health of the calves. Changes in management practices on dairy farms can have a positive impact on the faecal microbiota of healthy calves. Changes in management practices in dairy farms may affect the faecal microbial diversity of healthy calves.
This study evaluated the impact of an algorithm targeting antimicrobial therapy of diarrhoeic calves on the incidence of diarrhoea, antimicrobial treatment rates, overall mortality, mortality of diarrhoeic calves and changes in the faecal microbiota. The algorithm was designed to target antimicrobial therapy in systemically ill calves from on two dairy farms. Retrospective (farm 1: 529 calves; farm 2: 639 calves) and prospective (farm 1: 639 calves; farm 2: 842 calves) cohorts were examined for 12 months before and after implementation of the algorithm. The Mantel–Haenszel test and Kaplan–Meier survival curves were used to assess the cumulative incidence risk (CIR) and time to development of each outcome before and after implementation of the algorithm. The CIR of antimicrobial treatment rates was 80% lower after implementation of the algorithm on both farms (CIR 0.19, 95% confidence interval 0.17–0.21). There was no difference in the CIR of overall mortality, but the CRI for mortality of diarrhoeic calves was lower in the period after implementation of the algorithm on one farm. The faecal microbiota of 15 healthy calves from both farms at each time period were characterised using a sequencing platform targeting the V4 region of the 16S rRNA gene. On both farms, there were significant differences in community membership and structure (parsimony P < 0.001). Use of the algorithm for treatment of diarrhoeic calves reduced antimicrobial treatment rates without a negative impact on the health of calves. However, the experimental design did not take into account the potential confounding effects of dietary changes between the study periods.
Collapse
|
106
|
Dorn ES, Tress B, Suchodolski JS, Nisar T, Ravindran P, Weber K, Hartmann K, Schulz BS. Bacterial microbiome in the nose of healthy cats and in cats with nasal disease. PLoS One 2017; 12:e0180299. [PMID: 28662139 PMCID: PMC5491177 DOI: 10.1371/journal.pone.0180299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background Traditionally, changes in the microbial population of the nose have been assessed using conventional culture techniques. Sequencing of bacterial 16S rRNA genes demonstrated that the human nose is inhabited by a rich and diverse bacterial microbiome that cannot be detected using culture-based methods. The goal of this study was to describe the nasal microbiome of healthy cats, cats with nasal neoplasia, and cats with feline upper respiratory tract disease (FURTD). Methodology/Principal findings DNA was extracted from nasal swabs of healthy cats (n = 28), cats with nasal neoplasia (n = 16), and cats with FURTD (n = 15), and 16S rRNA genes were sequenced. High species richness was observed in all samples. Rarefaction analysis revealed that healthy cats living indoors had greater species richness (observed species p = 0.042) and Shannon diversity (p = 0.003) compared with healthy cats living outdoors. Higher species richness (observed species p = 0.001) and Shannon diversity (p<0.001) were found in middle-aged cats in comparison to healthy cats in different age groups. Principal coordinate analysis revealed separate clustering based on similarities in bacterial molecular phylogenetic trees of 16S rRNA genes for indoor and outdoor cats. In all groups examined, the most abundant phyla identified were Proteobacteria, Firmicutes, and Bacteroidetes. At the genus level, 375 operational taxonomic units (OTUs) were identified. In healthy cats and cats with FURTD, Moraxella spp. was the most common genus, while it was unclassified Bradyrhizobiaceae in cats with nasal neoplasia. High individual variability was observed. Conclusion This study demonstrates that the nose of cats is inhabited by much more variable and diverse microbial communities than previously shown. Future research in this field might help to develop new diagnostic tools to easily identify nasal microbial changes, relate them to certain disease processes, and help clinicians in the decision process of antibiotic selection for individual patients.
Collapse
Affiliation(s)
- Elisabeth S. Dorn
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| | - Barbara Tress
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tariq Nisar
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Prajesh Ravindran
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Karin Weber
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
| | - Bianka S. Schulz
- Clinic of Small Animal Medicine, LMU University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
107
|
Zeineldin MM, Lowe JF, Grimmer ED, de Godoy MRC, Ghanem MM, Abd El-Raof YM, Aldridge BM. Relationship between nasopharyngeal and bronchoalveolar microbial communities in clinically healthy feedlot cattle. BMC Microbiol 2017; 17:138. [PMID: 28645257 PMCID: PMC5481913 DOI: 10.1186/s12866-017-1042-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The importance of upper airway structure in the susceptibility of the lower respiratory tract to colonization with potential pathogens is well established. With the advent of rapid, high throughput, next generation sequencing, there is a growing appreciation of the importance of commensal microbial populations in maintaining mucosal health, and a realization that bacteria colonize anatomical locations that were previously considered to be sterile. While upper respiratory tract microbial populations have been described, there are currently no published studies describing the normal microbial populations of the bovine lower respiratory tract. Consequently, we have little understanding of the relationship between upper and lower respiratory tract microbiota in healthy cattle. The primary objective of our study was to characterize the composition, structure and relationship of the lower and upper respiratory microbial communities in clinically healthy feedlot cattle. Nasopharyngeal swabs (NPS), and bronchoalveolar lavage (BAL) fluid, were collected from clinically healthy feedlot calves (n = 8). Genomic DNA from each sample was extracted, and the V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced using Illumina Miseq platform. RESULTS Across all samples, the most predominant phyla were Proteobacteria, Actinobacteria and Firmicutes. The most common genera were Rathayibacter, Mycoplasma, Bibersteinia and Corynebacterium. The microbial community structure was distinct between these two biogeographical sites. Most of the bacterial genera identified in the BAL samples were also present in the NPS, but biogeographical-specific genera were enriched in both the NPS (Rathayibacter) and BAL (Bibersteinia) samples. There were strong associations between the presence of certain taxa at each specific location, and strong correlations between the presence of specific taxa in both the NPS and BAL samples. CONCLUSIONS The correlation between the presence of specific taxa in both the NPS and BAL samples, supports the notion of a mutualistic interrelationship between these microbial communities. Future studies, in large cohorts of animals, are needed to determine the role and clinical importance of the relationships of respiratory tract microbial communities with health, productivity, and susceptibility to the development of respiratory disease, in growing cattle.
Collapse
Affiliation(s)
- Mohamed M Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 241 LAC, 1008 W Hazelwood Dr, Urbana, IL, 61802, USA
| | - James F Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 241 LAC, 1008 W Hazelwood Dr, Urbana, IL, 61802, USA
| | - Elsbeth D Grimmer
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 241 LAC, 1008 W Hazelwood Dr, Urbana, IL, 61802, USA
| | - Maria R C de Godoy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Mohamed M Ghanem
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Yassein M Abd El-Raof
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Brian M Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 241 LAC, 1008 W Hazelwood Dr, Urbana, IL, 61802, USA.
| |
Collapse
|
108
|
Tress B, Dorn ES, Suchodolski JS, Nisar T, Ravindran P, Weber K, Hartmann K, Schulz BS. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease. PLoS One 2017; 12:e0176736. [PMID: 28459886 PMCID: PMC5411083 DOI: 10.1371/journal.pone.0176736] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/14/2017] [Indexed: 01/08/2023] Open
Abstract
The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease.
Collapse
Affiliation(s)
- Barbara Tress
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | | | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tariq Nisar
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Prajesh Ravindran
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Karin Weber
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | | |
Collapse
|
109
|
Gomez DE, Arroyo LG, Costa MC, Viel L, Weese JS. Characterization of the Fecal Bacterial Microbiota of Healthy and Diarrheic Dairy Calves. J Vet Intern Med 2017; 31:928-939. [PMID: 28390070 PMCID: PMC5435056 DOI: 10.1111/jvim.14695] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Neonatal diarrhea accounts for more than 50% of total deaths in dairy calves. Few population-based studies of cattle have investigated how the microbiota is impacted during diarrhea. OBJECTIVES To characterize the fecal microbiota and predict the functional potential of the microbial communities in healthy and diarrheic calves. METHODS Fifteen diarrheic calves between the ages of 1 and 30 days and 15 age-matched healthy control calves were enrolled from 2 dairy farms. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene (Illumina, San Diego, CA). RESULTS Significant differences in community membership and structure were identified among healthy calves from different farms. Differences in community membership and structure also were identified between healthy and diarrheic calves within each farm. Based on linear discriminant analysis effect size (LEfSe), the genera Bifidobacterium, Megamonas, and a genus of the family Bifidobacteriaceae were associated with health at farm 1, whereas Lachnospiraceae incertae sedis, Dietzia and an unclassified genus of the family Veillonellaceae were significantly associated with health at farm 2. The Phylogenetic Investigation of Communities Reconstruction of Unobserved States (PICRUSt) analysis indicated that diarrheic calves had decreased abundances of genes responsible for metabolism of various vitamins, amino acids, and carbohydrate. CLINICAL RELEVANCE The fecal microbiota of healthy dairy calves appeared to be farm specific as were the changes observed during diarrhea. The differences in microbiota structure and membership between healthy and diarrheic calves suggest that dysbiosis can occur in diarrheic calves and it is associated with changes in predictive metagenomic function.
Collapse
Affiliation(s)
- D E Gomez
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M C Costa
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - L Viel
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
110
|
Yang Q, Huang X, Zhao S, Sun W, Yan Z, Wang P, Li S, Huang W, Zhang S, Liu L, Gun S. Structure and Function of the Fecal Microbiota in Diarrheic Neonatal Piglets. Front Microbiol 2017; 8:502. [PMID: 28392784 PMCID: PMC5364137 DOI: 10.3389/fmicb.2017.00502] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 12/12/2022] Open
Abstract
Diarrhea is a leading cause of increased mortality in neonatal and young piglets. Aberration of the gut microbiota is one important factor in the etiology of piglet diarrhea. However, information regarding the structure and function of the gut microbiome in diarrheic neonatal piglets is limited. To investigate the composition and functional potential of the fecal microbiota in neonatal piglets, we performed 16S rRNA gene sequencing on 20 fecal samples from diarrheic piglets and healthy controls, and metagenomics sequencing on a subset of six samples. We found striking compositional and functional differences in fecal microbiota between diarrheic and healthy piglets. Neonatal piglet diarrhea was associated with increases in the relative abundance of Prevotella, Sutterella, and Campylobacter, as well as Fusobacteriaceae. The increased relative abundance of Prevotella was correlated with the reduction in Escherichia coli and the majority of beneficial bacteria that belonging to the Firmicutes phylum (e.g., Enterococcus, Streptococcus, Lactobacillus, Clostridium, and Blautia) in diarrheic piglets. The differentially functional gene abundances in diarrheic piglets were an increase in bacterial ribosome, and contributed primarily by the genera Prevotella, this indicates a growth advantage of the Prevotella in diarrheic conditions. Additional functional gene sets were associated with the reduction of polyamine transport, monosaccharide and sugar-specific PTS transport, amino acid transport, and two-component regulatory system. These profiles likely impact the ability to transport and uptake nutrients, as well as the ability to fight microbial infections in the piglet gut ecosystem. This work identifies a potential role for Prevotella in the community-wide microbial aberration and dysfunction that underpins the pathogenesis of piglet diarrhea. Identification of these microbial and functional signatures may provide biomarkers of neonatal piglet diarrhea.
Collapse
Affiliation(s)
- Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Wangzhou Huang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Shengwei Zhang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Lixia Liu
- College of Life Science and Engineering, Northwest University for Nationalities Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural UniversityLanzhou, China; Gansu Research Center for Swine Production Engineering and TechnologyLanzhou, China
| |
Collapse
|
111
|
Kubasova T, Davidova-Gerzova L, Merlot E, Medvecky M, Polansky O, Gardan-Salmon D, Quesnel H, Rychlik I. Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets. PLoS One 2017; 12:e0170051. [PMID: 28085934 PMCID: PMC5234784 DOI: 10.1371/journal.pone.0170051] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Different housing systems can be used in pig production and little is known about their effect on gut microbiota composition. In this study we characterized fecal microbiota by sequencing the rRNA genes in sows kept during gestation in conventional pens with a slatted floor and in enriched pens with a floor covered with deep straw. After farrowing, microbiota of 1- and 4-day-old piglets were also monitored. Microbiota of sows from the enriched system contained significantly more Prevotella, Parabacteroides, CF231, Phascolarctobacterium, Fibrobacter, Anaerovibrio and YRC22 and significantly less Lactobacillus, Bulleidia, Lachnospira, Dorea, Ruminococcus and Oscillospira than microbiota of sows from the conventional system. The Firmicutes to Bacteroidetes ratio was 0.96 in the microbiota of sows kept in the enriched pens and this increased to 1.66 in the microbiota of sows kept in the conventional system. The production system therefore influenced microbiota composition, most likely due the ingestion of the straw. The microbiota of 1- and 4-day-old piglets differed from the microbiota of sows and sows therefore did not represent the most important source for their colonization in early days of life.
Collapse
Affiliation(s)
- Tereza Kubasova
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | | | | | - Matej Medvecky
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | - Ondrej Polansky
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
| | | | | | - Ivan Rychlik
- Veterinary Research Institute, Hudcova, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
112
|
Weese JS, Jelinski M. Assessment of the Fecal Microbiota in Beef Calves. J Vet Intern Med 2016; 31:176-185. [PMID: 27873352 PMCID: PMC5259625 DOI: 10.1111/jvim.14611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background There is increasing interest in the fecal microbiota, but study in calves has been limited. Hypothesis/Objectives To evaluate the fecal microbiota of beef calves and cows on different farms, and to preliminarily explore the impact of antimicrobial exposure. Animals A total of 172 animals, 156 (91%) calves and 16 (9.3%) cows, were enrolled from 5 cow‐calf farms. Methods The fecal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V4 region) amplicons. Results There were significant differences in the relative abundances of numerous phyla between calves on different farms. Farms could be separated into 2 groups: 1 (farms B and C) dominated by Firmicutes and 1 (farms A, D, and E) with predominance of Proteobacteria and Actinobacteria. Richness (median 2,974 versus 1,477, P = .008), diversity (51.4 versus 29.1, P = .0029), and evenness (0.73 versus 0.68, P = .006) were higher in cows. Over‐represented operational taxonomic units (OTUs) in cows tended to be from the classes Bacilli and Bacteroidia, whereas Clostridia and Actinobacteria were most prominently over‐represented in calves. There were differences in community membership (P = .028) and structure (P = .029) in calves that had a history of antimicrobial exposure compared those that did not. Eight (89%) over‐represented OTUs in the untreated group were Firmicutes (7 from the order Clostridiales), compared to only 3 (38%) (2 Clostridiales) in the untreated group. Conclusions and Clinical Importance Interfarm variation should be investigated to determine the causes and potential implications for health and production. Antimicrobial exposure may have an impact on the fecal microbiota at individual and farm levels.
Collapse
Affiliation(s)
- J S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
113
|
Espinosa‐de Aquino W, Olvera‐Ramírez A, Arellano‐Carbajal F, Lanz‐Mendoza H, Villagrán‐Herrera E, Acevedo‐Whitehouse K. Protein and
RNA
extraction from mucosal swabs: a minimally invasive source of ecological data for studies of natural populations. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wendy Espinosa‐de Aquino
- Unit for Basic and Applied Microbiology School of Natural Sciences Autonomous University of Queretaro Santiago de Querétaro Queretaro 76230 Mexico
| | - Andrea Olvera‐Ramírez
- Department of Veterinary Medicine School of Natural Sciences Autonomous University of Queretaro Santiago de Querétaro Queretaro 76230 Mexico
| | - Fausto Arellano‐Carbajal
- Unit for Basic and Applied Microbiology School of Natural Sciences Autonomous University of Queretaro Santiago de Querétaro Queretaro 76230 Mexico
| | - Humberto Lanz‐Mendoza
- Center for Infectious Diseases National Institute of Public Health Cuernavaca Morelos 62100 Mexico
| | - Elena Villagrán‐Herrera
- School of Medicine Autonomous University of Queretaro Santiago de Querétaro Queretaro 76230 Mexico
| | - Karina Acevedo‐Whitehouse
- Unit for Basic and Applied Microbiology School of Natural Sciences Autonomous University of Queretaro Santiago de Querétaro Queretaro 76230 Mexico
- The Marine Mammal Center 2000 Bunker Road Sausalito CA 94965 USA
| |
Collapse
|
114
|
Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus. PLoS One 2016; 11:e0160331. [PMID: 27509169 PMCID: PMC4980049 DOI: 10.1371/journal.pone.0160331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming.
Collapse
|
115
|
Summer holidays as break-point in shaping a tannery sludge microbial community around a stable core microbiota. Sci Rep 2016; 6:30376. [PMID: 27461169 PMCID: PMC4961970 DOI: 10.1038/srep30376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/08/2022] Open
Abstract
Recently, several investigations focused on the discovery of a bacterial consortium shared among different wastewater treatment plants (WWTPs). Nevertheless, the definition of a core microbiota over time represents the necessary counterpart in order to unravel the dynamics of bacterial communities in these environments. Here we performed a monthly survey on the bacterial community of a consortial industrial plant. Objectives of this study were: (1) to identify a core microbiota constant over time; (2) to evaluate the temporal dynamics of the community during one year. A conspicuous and diversified core microbiota is constituted by operational taxonomic units which are present throughout the year in the plant. Community composition data confirm that the presence and abundance of bacteria in WWTPs is highly consistent at high taxonomic level. Our results indicate however a difference in microbial community structure between two groups of samples, identifying the summer holiday period as the break-point. Changes in the structure of the microbial community occur otherwise gradually, one month after another. Further studies will clarify how the size and diversity of the core microbiota could affect the observed dynamics.
Collapse
|
116
|
Gorham JB, Kang S, Williams BA, Grant LJ, McSweeney CS, Gidley MJ, Mikkelsen D. Addition of arabinoxylan and mixed linkage glucans in porcine diets affects the large intestinal bacterial populations. Eur J Nutr 2016; 56:2193-2206. [PMID: 27401929 DOI: 10.1007/s00394-016-1263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate the effects of two cereal soluble dietary fibres (SDF), wheat arabinoxylan (AX) and oat-mixed linkage glucans (MLG), on fermentative end-products and bacterial community profiles of the porcine caecum (Cae) and distal colon (DC). We hypothesised that feeding pigs these SDF would stimulate Cae and DC carbohydrate fermentation, resulting in a modification of the resident bacterial communities. METHODS Five groups of six pigs were each fed one diet based on wheat starch (WS) only, or treatment diets in which some WS was replaced by 10 % AX, or 10 % MLG, a combination of 5 % AX:5 % MLG (AXMLG), or completely replaced with ground whole wheat. Post-euthanasia, Cae and DC digesta were collected for analysis of fermentative end-products, and bacterial community profiles were determined by 16S rRNA gene amplicon 454 pyrosequencing. RESULTS Across all the SDF-containing diets, predominantly in the proximal region of the large intestine, Prevotella, Lactobacillus, Mitsuokella and Streptococcus were most significantly influenced (P < 0.05), while notable changes were observed for the Ruminococcaceae and Lachnospiraceae families in the Cae and DC. The addition of MLG or AXMLG had the greatest effect of influencing bacterial profiles, reducing sequence proportions assigned to the genus Clostridium, considered detrimental to gut health, with associated increases in short-chain fatty acid and reduced ammonia concentrations. CONCLUSIONS This study demonstrated how the cereal SDF AX and MLG altered the large intestinal bacterial community composition, particularly proximally, further giving insights into how diets rich in specific complex carbohydrates shift the bacterial population, by increasing abundance and promoting greater diversity of those bacteria considered beneficial to gut health.
Collapse
Affiliation(s)
- John B Gorham
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Seungha Kang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Bioscience Precinct, Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Barbara A Williams
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Lucas J Grant
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Christopher S McSweeney
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Bioscience Precinct, Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Deirdre Mikkelsen
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
117
|
Correa-Fiz F, Fraile L, Aragon V. Piglet nasal microbiota at weaning may influence the development of Glässer's disease during the rearing period. BMC Genomics 2016; 17:404. [PMID: 27230662 PMCID: PMC4881051 DOI: 10.1186/s12864-016-2700-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The microbiota, the ensemble of microorganisms on a particular body site, has been extensively studied during the last few years, and demonstrated to influence the development of many diseases. However, these studies focused mainly on the human digestive system, while the populations in the respiratory tract have been poorly assessed, especially in pigs. The nasal mucosa of piglets is colonized by an array of bacteria, many of which are unknown. Among the early colonizers, Haemophilus parasuis also has clinical importance, since it is also the etiological agent of Glässer's disease. This disease produces economical losses in all the countries with pig production, and the factors influencing its development are not totally understood. Hence, the purpose of this work was to characterize the nasal microbiota composition of piglets, and its possible role in Glässer's disease development. RESULTS Seven farms from Spain (4 with Glässer's disease and 3 control farms without any respiratory disease) and three farms from UK (all control farms) were studied. Ten piglets from each farm were sampled at 3-4 weeks of age before weaning. The total DNA extracted from nasal swabs was used to amplify the 16S RNA gene for sequencing in Illumina MiSeq. Sequencing data was quality filtered and analyzed using QIIME software. The diversity of the nasal microbiota was low in comparison with other body sites, showing a maximum number of operational taxonomic units (OTUs) per pig of 1,603, clustered in five phyla. Significant differences were found at various taxonomical levels, when the microbiota was compared regarding the farm health status. Healthy status was associated to higher species richness and diversity, and UK farms demonstrated the highest diversity. CONCLUSIONS The composition of the nasal microbiota of healthy piglets was uncovered and different phylotypes were shown to be significantly altered in animals depending on the clinical status of the farm of origin. Several OTUs at genus level were identified over-represented in piglets from control farms, indicating their potential as probiotics. Although we provide relevant data, fully metagenomic approaches could give light on the genes and metabolic pathways involved in the roles of the nasal microbiota to prevent respiratory diseases.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universitat de Lleida, 25198, Lleida, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
118
|
Draft Genome Sequence of Megasphaera sp. Strain DJF_B143, an Isolate from Pig Hindgut Unable to Produce Skatole. GENOME ANNOUNCEMENTS 2016; 4:4/1/e00007-16. [PMID: 26950318 PMCID: PMC4767908 DOI: 10.1128/genomea.00007-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The butyrate-producing Megasphaera spp. predominate in the pig hindgut and may play important roles in gut health. Moreover, one Megasphaera isolate has been reported to produce the boar taint compound, skatole. Here, we provide a 2.58-Mbp draft genome of a pig hindgut isolate, Megasphaera sp. DJF_B143, unable to produce skatole.
Collapse
|