101
|
de Oliveira Furlam T, Roque IG, Machado da Silva EW, Vianna PP, Costa Valadão PA, Guatimosim C, Teixeira AL, de Miranda AS. Inflammasome activation and assembly in Huntington's disease. Mol Immunol 2022; 151:134-142. [PMID: 36126501 DOI: 10.1016/j.molimm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Inflammasomes are multiprotein complexes capable of sensing pathogen-associated and damage-associated molecular patterns, triggering innate immune pathways. Activation of inflammasomes results in a pro-inflammatory cascade involving, among other molecules, caspases and interleukins. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3) is the most studied inflammasome complex, and its activation results in caspase-1 mediated cleavage of the pro-interleukins IL-1β and IL-18 into their mature forms, also inducing a gasdermin D mediated form of pro-inflammatory cell death, i.e. pyroptosis. Accumulating evidence has implicated NLRP3 inflammasome complex in neurodegenerative diseases. The evidence in HD is still scant and mostly derived from pre-clinical studies. This review aims to present the available evidence on NLRP3 inflammasome activation in HD and to discuss whether targeting this innate immune system complex might be a promising therapeutic strategy to alleviate its symptoms.
Collapse
Affiliation(s)
| | | | | | - Pedro Parenti Vianna
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cristina Guatimosim
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Faculdade Santa Casa BH, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
102
|
Araújo B, Caridade-Silva R, Soares-Guedes C, Martins-Macedo J, Gomes ED, Monteiro S, Teixeira FG. Neuroinflammation and Parkinson's Disease-From Neurodegeneration to Therapeutic Opportunities. Cells 2022; 11:cells11182908. [PMID: 36139483 PMCID: PMC9497016 DOI: 10.3390/cells11182908] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by a progressive degeneration of dopaminergic neurons (DAn), resulting in severe motor complications. Preclinical and clinical studies have indicated that neuroinflammation can play a role in PD pathophysiology, being associated with its onset and progression. Nevertheless, several key points concerning the neuroinflammatory process in PD remain to be answered. Bearing this in mind, in the present review, we cover the impact of neuroinflammation on PD by exploring the role of inflammatory cells (i.e., microglia and astrocytes) and the interconnections between the brain and the peripheral system. Furthermore, we discuss both the innate and adaptive immune responses regarding PD pathology and explore the gut–brain axis communication and its influence on the progression of the disease.
Collapse
Affiliation(s)
- Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Soares-Guedes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Martins-Macedo
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Eduardo D. Gomes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
103
|
Yan YQ, Pu JL, Zheng R, Fang Y, Gu LY, Tao-Guo, Si XL, Cheng-Zhou, Ying-Chen, Yi-Liu, Guan XJ, Xu XJ, Yan YP, Yin XZ, Zhang MM, Tao ZH, Zhang BR. Different patterns of exosomal α-Synuclein between Parkinson's disease and probable rapid eye movement sleep behavior disorder. Eur J Neurol 2022; 29:3590-3599. [PMID: 36047985 DOI: 10.1111/ene.15537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The insidious onset of Parkinson's disease (PD) makes early diagnosis difficult. Notably, idiopathic rapid eye movement sleep behavior disorder (iRBD) was reported as a prodrome of PD, which may represent a breakthrough for the early diagnosis of PD. However, currently there is no reliable biomarker for PD diagnosis. OBJECTIVES Considering that α-synuclein (α-Syn) and neuroinflammation are known to develop prior to the onset of clinical symptoms in PD, we hypothesized that plasma total exosomal α-Syn (t-exo α-Syn), neural-derived exosomal α-Syn (n-exo α-Syn), and exosomal apoptosis-associated speck-like protein containing a CARD (ASC) may be potential biomarkers of PD. METHODS In this study, we recruited 78 PD patients, 153 probable iRBD patients (pRBD), and 63 healthy controls (HCs). α-Syn concentrations were measured using a one-step paramagnetic particle-based chemiluminescence immunoassay (MPs-CILA), and ASC levels were measured using the Ella system. RESULTS We found that t-exo α-Syn was significantly increased in the PD group compared to the pRBD and HC groups (p<0.0001), while n-exo α-Syn levels were significantly increased in both the PD and pRBD groups compared to HC (p<0.0001). Furthermore, although no difference was found in ASC levels between the PD and pRBD groups, there was a positive correlation between ASC and α-Syn in exosomes. CONCLUSIONS Our results suggest that both t-exo α-Syn and n-exo α-Syn were elevated in the PD group, while only n-exo α-Syn was elevated in the pRBD group. Additionally, the adaptor protein of inflammasome ASC is correlated with α-Syn and may facilitate synucleinopathy.
Collapse
Affiliation(s)
- Yi-Qun Yan
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Li Pu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Fang
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu-Yan Gu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao-Guo
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Li Si
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng-Zhou
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Chen
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Liu
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Jun Guan
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Jun Xu
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ping Yan
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Zhen Yin
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Hua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
104
|
Neuroprotective effects of human umbilical cord mesenchymal stromal cells in PD mice via centrally and peripherally suppressing NLRP3 inflammasome-mediated inflammatory responses. Biomed Pharmacother 2022; 153:113535. [DOI: 10.1016/j.biopha.2022.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
|
105
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
106
|
Arena G, Sharma K, Agyeah G, Krüger R, Grünewald A, Fitzgerald JC. Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Curr Neurol Neurosci Rep 2022; 22:427-440. [PMID: 35674870 PMCID: PMC9174445 DOI: 10.1007/s11910-022-01207-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Neuroinflammation plays a significant role in Parkinson's disease (PD) etiology along with mitochondrial dysfunction and impaired proteostasis. In this context, mechanisms related to immune response can act as modifiers at different steps of the neurodegenerative process and justify the growing interest in anti-inflammatory agents as potential disease-modifying treatments in PD. The discovery of inherited gene mutations in PD has allowed researchers to develop cellular and animal models to study the mechanisms of the underlying biology, but the original cause of neuroinflammation in PD is still debated to date. RECENT FINDINGS Cell autonomous alterations in neuronal cells, including mitochondrial damage and protein aggregation, could play a role, but recent findings also highlighted the importance of intercellular communication at both local and systemic level. This has given rise to debate about the role of non-neuronal cells in PD and reignited intense research into the gut-brain axis and other non-neuronal interactions in the development of the disease. Whatever the original trigger of neuroinflammation in PD, what appears quite clear is that the aberrant activation of glial cells and other components of the immune system creates a vicious circle in which neurodegeneration and neuroinflammation nourish each other. In this review, we will provide an up-to-date summary of the main cellular alterations underlying neuroinflammation in PD, including those induced by environmental factors (e.g. the gut microbiome) and those related to the genetic background of affected patients. Starting from the lesson provided by familial forms of PD, we will discuss pathophysiological mechanisms linked to inflammation that could also play a role in idiopathic forms. Finally, we will comment on the potential clinical translatability of immunobiomarkers identified in PD patient cohorts and provide an update on current therapeutic strategies aimed at overcoming or preventing inflammation in PD.
Collapse
Affiliation(s)
- G Arena
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - K Sharma
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - G Agyeah
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - R Krüger
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - A Grünewald
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - J C Fitzgerald
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
107
|
Jose S, Groves NJ, Roper KE, Gordon R. Mechanisms of NLRP3 activation and pathology during neurodegeneration. Int J Biochem Cell Biol 2022; 151:106273. [PMID: 35926782 DOI: 10.1016/j.biocel.2022.106273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes that are mainly present in resident and infiltrating immune cells in the central nervous system. Inflammasomes function as intracellular sensors of immunometabolic stress, infection and changes in the local microenvironment. Inflammasome assembly in response to these 'danger signals', triggers recruitment and cluster-dependent activation of caspase-1 and the subsequent proteolytic activation of inflammatory cytokines such as interleukin-1β and interleukin-18. This is typically followed by a form of inflammatory cell death through pyroptosis. Since the discovery of inflammasomes in 2002, they have come to be recognized as central regulators of acute and chronic inflammation, a hallmark of progressive neurological diseases. Indeed, over the last decade, extensive inflammasome activation has been found at the sites of neuropathology in all progressive neurodegenerative diseases. Disease-specific misfolded protein aggregates which accumulate in neurodegenerative diseases, such as alpha synuclein or beta amyloid, have been found to be important triggers of NLRP3 inflammasome activation in the central nervous system. Together, these discoveries have transformed our understanding of how chronic inflammation is triggered and sustained in the central nervous system, and how it can contribute to neuronal death and disease progression in age-related neurodegenerative diseases. Therapeutic strategies around inhibition of NLRP3 activation in the central nervous system are already being evaluated to determine their effectiveness to slow progressive neurodegeneration. This review summarizes current understanding of inflammasomes in the most prevalent neurodegenerative diseases and discusses current knowledge gaps and inflammasome inhibition as a therapeutic strategy.
Collapse
Affiliation(s)
- Sara Jose
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia
| | - Natalie J Groves
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia
| | - Kathrein E Roper
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia
| | - Richard Gordon
- UQ Centre for Clinical Research, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia; School of Biomedical Sciences, Faculty of Medicine, Faculty of Medicine, The University of Queensland, Australia.
| |
Collapse
|
108
|
Yang X, Li Z, Bai L, Shen X, Wang F, Han X, Zhang R, Li Z, Zhang J, Dong M, Wang Y, Cao T, Zhao S, Chu C, Liu C, Zhu X. Association of Plasma and Electroencephalography Markers With Motor Subtypes of Parkinson’s Disease. Front Aging Neurosci 2022; 14:911221. [PMID: 35903537 PMCID: PMC9314775 DOI: 10.3389/fnagi.2022.911221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The aim of this study was to investigate the correlations of plasma neurodegenerative proteins and electroencephalography (EEG) dynamic functional network (DFN) parameters with disease progression in early Parkinson’s disease (PD) with different motor subtypes, including tremor-dominant (TD) and postural instability and gait disorder (PIGD). Methods In our study, 33 patients with PD (21 TD and 12 PIGD) and 33 healthy controls (HCs) were enrolled. Plasma neurofilament light chain (NfL), α-synuclein (α-syn), total-tau (t-tau), β-amyloid 42 (Aβ42), and β-amyloid 40 (Aβ40) levels were measured using an ultrasensitive single-molecule array (Simoa) immunoassay. All the patients with PD underwent EEG quantified by DFN analysis. The motor and non-motor performances were evaluated by a series of clinical assessments. Subsequently, a correlation analysis of plasma biomarkers and EEG measures with clinical scales was conducted. Results In the TD group, plasma NfL exhibited a significant association with MDS-UPDRS III and Montreal Cognitive Assessment (MoCA). A higher Aβ42/40 level was significantly related to a decrease in Hamilton Depression Rating Scale (HAMD) and Hamilton Anxiety Rating Scale (HAMA) in the PIGD group. In terms of the correlation between EEG characteristic parameters and clinical outcomes, trapping time (TT) delta was positively correlated with MDS-UPDRS III and MoCA scores in the TD group, especially in the prefrontal and frontal regions. For other non-motor symptoms, there were significant direct associations of kPLI theta with HAMD and HAMA, especially in the prefrontal region, and kPLI gamma was particularly correlated with Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire (RBDSQ) scores in the prefrontal, frontal, and parietal regions in the TD group. Furthermore, there was a significant positive correlation between plasma t-tau and kPLI, and pairwise correlations were found among plasma NfL, theta TT, and MoCA scores in the TD group. Conclusion These results provide evidence that plasma neurodegenerative proteins and EEG measures have great potential in predicting the disease progression of PD subtypes, especially for the TD subtype. A combination of these two kinds of markers may have a superposition effect on monitoring and estimating the prognosis of PD subtypes and deserves further research in larger, follow-up PD cohorts.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lipeng Bai
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Shen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghui Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengmeng Dong
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanlin Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tingyu Cao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shujun Zhao
- National Health Commission Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- *Correspondence: Chunguang Chu,
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- Chen Liu,
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Xiaodong Zhu,
| |
Collapse
|
109
|
Acquasaliente L, Pontarollo G, Radu CM, Peterle D, Artusi I, Pagotto A, Uliana F, Negro A, Simioni P, De Filippis V. Exogenous human α-Synuclein acts in vitro as a mild platelet antiaggregant inhibiting α-thrombin-induced platelet activation. Sci Rep 2022; 12:9880. [PMID: 35701444 PMCID: PMC9198058 DOI: 10.1038/s41598-022-12886-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
α-Synuclein (αSyn) is a small disordered protein, highly conserved in vertebrates and involved in the pathogenesis of Parkinson’s disease (PD). Indeed, αSyn amyloid aggregates are present in the brain of patients with PD. Although the pathogenic role of αSyn is widely accepted, the physiological function of this protein remains elusive. Beyond the central nervous system, αSyn is expressed in hematopoietic tissue and blood, where platelets are a major cellular host of αSyn. Platelets play a key role in hemostasis and are potently activated by thrombin (αT) through the cleavage of protease-activated receptors. Furthermore, both αT and αSyn could be found in the same spatial environment, i.e. the platelet membrane, as αT binds to and activates platelets that can release αSyn from α-granules and microvesicles. Here, we investigated the possibility that exogenous αSyn could interfere with platelet activation induced by different agonists in vitro. Data obtained from distinct experimental techniques (i.e. multiple electrode aggregometry, rotational thromboelastometry, immunofluorescence microscopy, surface plasmon resonance, and steady-state fluorescence spectroscopy) on whole blood and platelet-rich plasma indicate that exogenous αSyn has mild platelet antiaggregating properties in vitro, acting as a negative regulator of αT-mediated platelet activation by preferentially inhibiting P-selectin expression on platelet surface. We have also shown that both exogenous and endogenous (i.e. cytoplasmic) αSyn preferentially bind to the outer surface of activated platelets. Starting from these findings, a coherent model of the antiplatelet function of αSyn is proposed.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Center for Thrombosis and Hemostasis (CTH) University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Claudia Maria Radu
- Department of Women's & Children's Health, University of Padua, Padua, Italy.,Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University of Padua, via Giustiniani, 2, 35128, Padua, Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave. 02115, Boston, MA, USA
| | - Ilaria Artusi
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Anna Pagotto
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Federico Uliana
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padua, viale G. Colombo 3, 35100, Padua, Italy.
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University of Padua, via Giustiniani, 2, 35128, Padua, Italy.
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy. .,Biotechnology Center, CRIBI, University of Padua, Padua, Italy.
| |
Collapse
|
110
|
Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson's Disease - Putative Pathomechanisms and Targets for Disease-Modification. Front Immunol 2022; 13:878771. [PMID: 35663989 PMCID: PMC9158130 DOI: 10.3389/fimmu.2022.878771] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.
Collapse
Affiliation(s)
| | | | - Jingjing Wu
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
111
|
Zubelzu M, Morera-Herreras T, Irastorza G, Gómez-Esteban JC, Murueta-Goyena A. Plasma and serum alpha-synuclein as a biomarker in Parkinson's disease: A meta-analysis. Parkinsonism Relat Disord 2022; 99:107-115. [PMID: 35717321 DOI: 10.1016/j.parkreldis.2022.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Reliable biomarkers for Parkinson's disease (PD) diagnosis are urgently needed. Alpha-synuclein (α-syn) and its proteoforms play a key role in PD pathology but in vivo measurements have raised conflicting results, and whether α-syn in blood could distinguish PD patients from healthy controls is still controversial. METHODS A systematic literature search yielded 35 eligible studies for meta-analysis reporting the concentration of total, oligomeric or phosphorylated α-syn in plasma and/or serum of PD patients and healthy controls. Standardized mean differences (SMD) were pooled using multivariate/multilevel linear mixed-effects models. Meta-regression analyses were conducted to investigate possible modifiers. RESULTS A meta-analysis of 32 articles involving 2683 PD patients and 1838 controls showed a significant overall effect of PD on total α-syn levels (SMD = 0.85, p = 0.004). Meta-regression showed that increased SMD of total α-syn in PD was significantly associated with lower age, shorter disease duration, mild motor impairment, and Immunomagnetic Reduction assay for protein quantification. In contrast, no significant differences were observed for oligomeric or phosphorylated α-syn between PD and controls but increased oligomeric α-syn was significantly associated with shorter disease duration. The heterogeneity among studies was high (>98%). CONCLUSIONS These findings suggest that increased total plasma/serum α-syn levels in PD primarily occur in early phases of the disease. The evidence obtained from a small number of studies measuring plasma/serum concentrations of oligomeric and phosphorylated species of α-syn shows no difference. The clinical applicability of measuring plasma or serum α-syn species for differentiating PD from healthy control warrants further studies with better clinical profiling of PD patients.
Collapse
Affiliation(s)
- Maider Zubelzu
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| | - Gorka Irastorza
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Department of Neurology, Cruces University Hospital, Osakidetza, Barakaldo, Bizkaia, Spain
| | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
112
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|
113
|
Detection and assessment of alpha-synuclein in Parkinson disease. Neurochem Int 2022; 158:105358. [PMID: 35561817 DOI: 10.1016/j.neuint.2022.105358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Different studies have reported varying alpha-synuclein values in the cerebrospinal fluid (CSF), serum, and plasma, making determination of the alpha-synuclein cutoff value for Parkinson's disease difficult and rendering identifying the cause of variation essential. METHOD We searched PubMed from inception to June 2021 and identified 76 eligible studies. Included studies reported data on total, phosphorylated, and oligomeric alpha-synuclein in the CSF, serum, or plasma from individuals with Parkinson's disease and healthy controls. The mean or median alpha-synuclein values from the included studies were summarized and categorized through laboratory assays to visualize potential trends. RESULTS The enzyme-linked immunosorbent assay (ELISA) is the most common assay used to determine alpha-synuclein concentrations. Less common assays include Luminex, single molecule arrays, electrochemiluminescence, and immunomagnetic reduction (IMR). IMR is a single-antibody and wash-free immunoassay designed for determining the extremely low concentration of bio-molecules. For patients with Parkinson's disease, the median or mean testing values ranged from 60.9 to 55,000 pg/mL in the CSF, 0.446 to 1,777,100 pg/mL in plasma, and 0.0292 to 38,200,000 pg/mL in serum. The antibody selection was diverse between studies. The tendency of distribution was more centralized among studies that used the same kit. Studies adopting specific antibodies or in-house assays contribute to the extreme values. Only a few studies on phosphorylated and oligomeric alpha-synuclein were included. CONCLUSION The type of assay and antibody selection in the laboratory played major roles in the alpha-synuclein variation. Studies that used the same assay and kit yielded relatively unanimous results. Furthermore, IMR may be a promising assay for plasma and serum alpha-synuclein quantification. A consensus on sample preparation and testing protocol unification is warranted in the future.
Collapse
|
114
|
Anghelescu A, Onose G, Popescu C, Băilă M, Stoica SI, Postoiu R, Brumă E, Petcu IR, Ciobanu V, Munteanu C. Parkinson's Disease and SARS-CoV-2 Infection: Particularities of Molecular and Cellular Mechanisms Regarding Pathogenesis and Treatment. Biomedicines 2022; 10:1000. [PMID: 35625737 PMCID: PMC9138688 DOI: 10.3390/biomedicines10051000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Accumulating data suggest that chronic neuroinflammation-mediated neurodegeneration is a significant contributing factor for progressive neuronal and glial cell death in age-related neurodegenerative pathology. Furthermore, it could be encountered as long-term consequences in some viral infections, including post-COVID-19 Parkinsonism-related chronic sequelae. The current systematic review is focused on a recent question aroused during the pandemic's successive waves: are there post-SARS-CoV-2 immune-mediated reactions responsible for promoting neurodegeneration? Does the host's dysregulated immune counter-offensive contribute to the pathogenesis of neurodegenerative diseases, emerging as Parkinson's disease, in a complex interrelation between genetic and epigenetic risk factors? A synthetic and systematic literature review was accomplished based on the "Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses" (PRISMA) methodology, including registration on the specific online platform: International prospective register of systematic reviews-PROSPERO, no. 312183. Initially, 1894 articles were detected. After fulfilling the five steps of the selection methodology, 104 papers were selected for this synthetic review. Documentation was enhanced with a supplementary 47 bibliographic resources identified in the literature within a non-standardized search connected to the subject. As a final step of the PRISMA method, we have fulfilled a Population-Intervention-Comparison-Outcome-Time (PICOT)/Population-Intervention-Comparison-Outcome-Study type (PICOS)-based metanalysis of clinical trials identified as connected to our search, targeting the outcomes of rehabilitative kinesitherapeutic interventions compared to clinical approaches lacking such kind of treatment. Accordingly, we identified 10 clinical trials related to our article. The multi/interdisciplinary conventional therapy of Parkinson's disease and non-conventional multitarget approach to an integrative treatment was briefly analyzed. This article synthesizes the current findings on the pathogenic interference between the dysregulated complex mechanisms involved in aging, neuroinflammation, and neurodegeneration, focusing on Parkinson's disease and the acute and chronic repercussions of COVID-19. Time will tell whether COVID-19 neuroinflammatory events could trigger long-term neurodegenerative effects and contribute to the worsening and/or explosion of new cases of PD. The extent of the interrelated neuropathogenic phenomenon remains obscure, so further clinical observations and prospective longitudinal cohort studies are needed.
Collapse
Affiliation(s)
- Aurelian Anghelescu
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.A.); (S.I.S.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
| | - Mihai Băilă
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Simona Isabelle Stoica
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (A.A.); (S.I.S.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
| | - Ruxandra Postoiu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
| | - Elena Brumă
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (M.B.); (R.P.); (E.B.)
| | - Irina Raluca Petcu
- Physical Medicine and Rehabilitation Laboratory (Treatment Base), Turnu Magurele Municipal Hospital, 145200 Turnu Magurele, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Constantin Munteanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| |
Collapse
|
115
|
NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation. Int J Inflam 2022; 2022:2337363. [PMID: 35265316 PMCID: PMC8898874 DOI: 10.1155/2022/2337363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptors (TLRs) play a critical role in innate immune system responses to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). A growing body of evidence suggests that excessive TLR-mediated innate immune system activation can lead to neuronal damage and precipitate or perpetuate neurodegenerative diseases. Among TLR subtypes, both TLR2 and TLR9 have been implicated in neurodegenerative disorders with increased expression of these receptors in the central nervous system being associated with pro-inflammatory signaling and increased burdens of pathologic aggregated proteins. In the current study, we characterized the actions of a combined TLR2/TLR9 antagonist, NPT1220-312, on pro-inflammatory signaling and cytokine release in monocyte/macrophage-derived heterologous cells, human microglia, and murine and human whole blood. NPT1220-312 potently blocked TLR2- and TLR9-mediated release of inflammatory cytokines in monocyte/macrophage cells and in human microglia. NPT1220-312 also blocked TLR2-mediated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome including IL-1β, IL-18, and apoptosis-associated speck-like protein containing a CARD (ASC) release to the culture medium of human differentiated macrophages. The ability of NPT1220-312 to inhibit TLR2 mediated pro-inflammatory release of chemokines and cytokines in situ was demonstrated using murine and human whole blood. Together, these findings suggest that blockade of TLR2 and TLR9 may reduce inappropriate production of pro-inflammatory cytokines and chemokines from peripheral and central immune cells and thus potentially provide therapeutic benefit in neuroinflammatory/neurodegenerative disorders.
Collapse
|
116
|
Zhang J, Yang Y, Zhou C, Zhu R, Xiao X, Zhou B, Wan D. LncRNA miR-17-92a-1 cluster host gene (MIR17HG) promotes neuronal damage and microglial activation by targeting the microRNA-153-3p/alpha-synuclein axis in Parkinson's disease. Bioengineered 2022; 13:4493-4516. [PMID: 35137671 PMCID: PMC8974023 DOI: 10.1080/21655979.2022.2033409] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been regarded as modulators of neurodegenerative diseases. Here, we addressed the role of lncRNA miR-17-92a-1 cluster host gene (MIR17HG) in Parkinson's disease (PD). C57BL/6 mice and SH-SY5Y cells were intervened with 6-hydroxydopamine (6-OHDA) to set up PD models in vivo and in vitro. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was implemented to compare the expression of MIR17HG and miR-153-3p. Cell viability and apoptosis were estimated by 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and Western blot (WB). The expression of alpha-synuclein (α-syn, SNCA) in BV2 was validated by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activity were evaluated using commercially available kits. Bioinformatics analysis, the dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and qRT-PCR were conducted to demonstrate the interactions between miR-153-3p, MIR17HG, and alpha-synuclein (SNCA). MIR17HG was up-regulated while miR-153-3p was down-regulated in PD patients, mouse models and cells. Inhibiting MIR17HG attenuated neuronal apoptosis, microglial activation and SNCA expression in PD mice. Conditioned medium from 6-OHDA-treated SH-SY5Y cells intensified microglial inflammation, while inhibition of MIR17HG or overexpression of miR-153-3p restrained the inflammatory responses. MIR17HG's function was enforced by sponging miR-153-3p and releasing the attenuation of the putative targets of miR-153-3p and SNCA. Overall, MIR17HG, by targeting miR-153-3p and up-regulating SNCA, stimulates neuronal apoptosis and microglial inflammation in PD.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Yun Yang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Chaoyang Zhou
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Ronglan Zhu
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Xiao
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhou
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Dengfeng Wan
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
117
|
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines 2022; 10:343. [PMID: 35203552 PMCID: PMC8961788 DOI: 10.3390/biomedicines10020343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
118
|
Lai TT, Kim YJ, Ma HI, Kim YE. Evidence of Inflammation in Parkinson’s Disease and Its Contribution to Synucleinopathy. J Mov Disord 2022; 15:1-14. [PMID: 35124957 PMCID: PMC8820875 DOI: 10.14802/jmd.21078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulation of alpha-synuclein (αSyn) protein in neurons is a renowned pathological hallmark of Parkinson’s disease (PD). In addition, accumulating evidence indicates that activated inflammatory responses are involved in the pathogenesis of PD. Thus, achieving a better understanding of the interaction between inflammation and synucleinopathy in relation to the PD process will facilitate the development of promising disease-modifying therapies. In this review, the evidence of inflammation in PD is discussed, and human, animal, and laboratory studies relevant to the relationship between inflammation and αSyn are explored as well as new therapeutic targets associated with this relationship.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
- Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Korea
| | - Yun Joong Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hyeo-il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
- Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
- Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Korea
- Corresponding author: Young Eun Kim, MD Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-ro 170beon-gil, Dongangu, Anyang 14068, Korea / Tel: +82-31-380-3740 / E-mail:
| |
Collapse
|
119
|
Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome Signaling in the Aging Brain and Age-Related Neurodegenerative Diseases. Mol Neurobiol 2022; 59:2288-2304. [PMID: 35066762 DOI: 10.1007/s12035-021-02683-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Inflammasomes are intracellular protein complexes, members of the innate immune system, and their activation and regulation play an essential role in maintaining homeostatic conditions against exogenous and endogenous stimuli. Inflammasomes occur as cytosolic proteins and assemble into a complex during the recognition of pathogen-associated or danger-associated molecular patterns by pattern-recognition receptors in host cells. The formation of the inflammasome complex elicits signaling molecules of proinflammatory cytokines such as interleukin-1β and interleukin 18 via activation of caspase-1 in the canonical inflammasome pathway whereas caspase-11 in the case of a mouse and caspase-4 and caspase-5 in the case of humans in the non-canonical inflammasome pathway, resulting in pyroptotic or inflammatory cell death which ultimately leads to neuroinflammation and neurodegenerative diseases. Inflammasome activation, particularly in microglial cells and macrophages, has been linked to aging as well as age-related neurodegenerative diseases. The accumulation of abnormal/ misfolded proteins acts as a ligand for inflammasome activation in neurodegenerative diseases. Although recent studies have revealed the inflammasomes' functionality in both in vitro and in vivo models, many inflammasome signaling cascade activations during biological aging, neuroinflammation, and neurodegeneration are still ambiguous. In this review, we comprehensively unveil the cellular and molecular mechanisms of inflammasome activation during neuronal aging and age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, prion disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, Tamil Nadu, 610005, India
| | - Narmadhaa Sivagurunathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, Tamil Nadu, 610005, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, Tamil Nadu, 610005, India.
| |
Collapse
|
120
|
Johnson AM, Ou ZYA, Gordon R, Saminathan H. Environmental neurotoxicants and inflammasome activation in Parkinson's disease - A focus on the gut-brain axis. Int J Biochem Cell Biol 2022; 142:106113. [PMID: 34737076 DOI: 10.1016/j.biocel.2021.106113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Inflammasomes are multi-protein complexes expressed in immune cells that function as intracellular sensors of environmental, metabolic and cellular stress. Inflammasome activation in the brain, has been shown to drive neuropathology and disease progression by multiple mechanisms, making it one of the most attractive therapeutic targets for disease modification in Parkinson's Disease (PD). Extensive inflammasome activation is evident in the brains of people with PD at the sites of dopaminergic degeneration and synuclein aggregation. While substantial progress has been made on validating inflammasome activation as a therapeutic target for PD, the mechanisms by which inflammasome activation is triggered and sustained over the disease course remain poorly understood. A growing body of evidence point to environmental and occupational chemical exposures as possible triggers of inflammasome activation in PD. The involvement of the gastrointestinal system and gut microbiota in PD pathophysiology is beginning to be elucidated, especially the profound link between gut dysbiosis and immune activation. While large cohort studies confirmed specific changes in the gut microbiota in PD patients compared to age-matched healthy controls, recent research suggest that synuclein pathology could be initiated in the gastrointestinal tract. In this review, we present a summarized perspective on current understanding on inflammasome activation and the gut-brain-axis link during PD pathophysiology. We discuss multiple environmental toxicants that are implicated as the etiological agents in causing idiopathic PD and their mechanistic underpinnings during neuroinflammatory events. We additionally present future directions that needs to address the research questions related to the gut-microbiome-brain mechanisms in PD.
Collapse
Affiliation(s)
- Aishwarya M Johnson
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Zhen-Yi Andy Ou
- Translational Neuroscience Laboratory, UQ Centre for Clinical Research, The University of Queensland, Australia; School of Biomedical Sciences, University of Queensland, Australia
| | - Richard Gordon
- Translational Neuroscience Laboratory, UQ Centre for Clinical Research, The University of Queensland, Australia; School of Biomedical Sciences, University of Queensland, Australia
| | - Hariharan Saminathan
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
121
|
Terkelsen MH, Klaestrup IH, Hvingelby V, Lauritsen J, Pavese N, Romero-Ramos M. Neuroinflammation and Immune Changes in Prodromal Parkinson's Disease and Other Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S149-S163. [PMID: 35723115 PMCID: PMC9535563 DOI: 10.3233/jpd-223245] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Multiple lines of clinical and pre-clinical research support a pathogenic role for neuroinflammation and peripheral immune system dysfunction in Parkinson's disease. In this paper, we have reviewed and summarised the published literature reporting evidence of neuroinflammation and peripheral immune changes in cohorts of patients with isolated REM sleep behaviour disorder and non-manifesting carriers of GBA or LRRK2 gene mutations, who have increased risk for Parkinsonism and synucleinopathies, and could be in the prodromal stage of these conditions. Taken together, the findings of these studies suggest that the early stages of pathology in Parkinsonism involve activation of both the central and peripheral immune systems with significant crosstalk. We consider these findings with respect to those found in patients with clinical Parkinson's disease and discuss their possible pathological roles. Moreover, those factors possibly associated with the immune response, such as the immunomodulatory role of the affected neurotransmitters and the changes in the gut-brain axis, are also considered.
Collapse
Affiliation(s)
| | - Ida H. Klaestrup
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Victor Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
| | - Johanne Lauritsen
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Clinical Medicine – Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
122
|
Nguyen LTN, Nguyen HD, Kim YJ, Nguyen TT, Lai TT, Lee YK, Ma HI, Kim YE. Role of NLRP3 Inflammasome in Parkinson's Disease and Therapeutic Considerations. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2117-2133. [PMID: 35988226 PMCID: PMC9661339 DOI: 10.3233/jpd-223290] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 05/23/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with two main pathological features: misfolded α-synuclein protein accumulation and neurodegeneration. Inflammation has recently been identified as a contributor to a cascade of events that may aggravate PD pathology. Inflammasomes, a group of intracellular protein complexes, play an important role in innate immune responses to various diseases, including infection. In PD research, accumulating evidence suggests that α-synuclein aggregations may activate inflammasomes, particularly the nucleotide-binding oligomerization domain-leucine-rich repeat-pyrin domain-containing 3 (NLRP3) type, which exacerbates inflammation in the central nervous system by secreting proinflammatory cytokines like interleukin (IL)-18 and IL-1β. Afterward, activated NLRP3 triggers local microglia and astrocytes to release additional IL-1β. In turn, the activated inflammatory process may contribute to additional α-synuclein aggregation and cell loss. This review summarizes current research evidence on how the NLRP3 inflammasome contributes to PD pathogenesis, as well as potential therapeutic strategies targeting the NLRP3 inflammasome in PD.
Collapse
Affiliation(s)
- Linh Thi Nhat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, South Korea
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Huu Dat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, Gangwon, South Korea
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, South Korea
| | - Tinh Thi Nguyen
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Thuy Thi Lai
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Yoon Kyoung Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
| | - Hyeo-il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, South Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, Gyeonggi, South Korea
- Hallym Neurological Institute, Hallym University, Anyang, Gyeonggi, South Korea
| |
Collapse
|
123
|
Zimmermann M, Brockmann K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S183-S200. [PMID: 35661021 PMCID: PMC9535573 DOI: 10.3233/jpd-223277] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Given the clear role of inflammation in the pathogenesis of Parkinson's disease (PD) and its impact on incidence and phenotypical characteristics, this review provides an overview with focus on inflammatory biofluid markers in blood and cerebrospinal fluid (CSF) in PD patient cohorts. In preparation for clinical trials targeting the immune system, we specifically address the following questions: 1) What evidence do we have for pro-inflammatory profiles in blood and in CSF of sporadic and genetic PD patients? 2) Is there a role of anti-inflammatory mediators in blood/CSF? 3) Do inflammatory profiles in blood reflect those in CSF indicative of a cross-talk between periphery and brain? 4) Do blood/CSF inflammatory profiles change over the disease course as assessed in repeatedly taken biosamples? 5) Are blood/CSF inflammatory profiles associated with phenotypical trajectories in PD? 6) Are blood/CSF inflammatory profiles associated with CSF levels of neurodegenerative/PD-specific biomarkers? Knowledge on these questions will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures for clinical trials.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
124
|
Rui W, Xiao H, Fan Y, Ma Z, Xiao M, Li S, Shi J. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimer's disease. J Neuroinflammation 2021; 18:280. [PMID: 34856990 PMCID: PMC8638109 DOI: 10.1186/s12974-021-02329-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing evidence indicates that inflammasome-mediated inflammation plays important roles in the pathophysiology of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). Pyroptosis induced by inflammasome, and Gasdermin D (GSDMD) is involved in several neurodegenerative disorders. However, it is not clear whether peripheral inflammasome and pyroptosis are activated in aMCI and AD patients, influencing on neuroinflammation. The aim of this study was to examine the association between systemic inflammasome-induced pyroptosis and clinical features in aMCI and AD. METHODS A total of 86 participants, including 33 subjects with aMCI, 33 subjects with AD, and 20 cognitively normal controls, in this study. The Mini Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) scale were used for cognitive assessment. Levels of inflammasome-related genes/proteins in peripheral blood mononuclear cells (PBMCs) were determined using quantitative polymerase chain reaction and Western blotting. The levels of IL-1β, Aβ1-42, Aβ1-40, p-tau, and t-tau in cerebrospinal fluid (CSF), as well as the plasma IL-1β level, were measured by enzyme-linked immunosorbent assay. Finally, lipopolysaccharides (LPS) were used to investigate the effects of systemic inflammasome-induced pyroptosis in an AD mice model. RESULTS Several genes involved in the inflammatory response were enriched in PBMCs of AD patients. The mRNA and protein levels of NLRP3, caspase-1, GSDMD, and IL-1β were increased in PBMCs of aMCI and AD patients. The IL-1β level in plasma and CSF of aMCI and AD patients was significantly higher than that in controls and negatively correlated with the CSF Aβ1-42 level, as well as MMSE and MoCA scores. Furthermore, there was a positive correlation between the IL-1β level in plasma and CSF of aMCI or AD patients. In vivo experiments showed that systemic inflammasome-induced pyroptosis aggravated neuroinflammation in 5 × FAD mice. CONCLUSIONS Our findings showed that canonical inflammasome signaling and GSDMD-induced pyroptosis were activated in PBMCs of aMCI and AD patients. In addition, the proinflammatory cytokine IL-1β was strongly associated with the pathophysiology of aMCI and AD. As such, targeting inflammasome-induced pyroptosis may be a new approach to inhibit neuroinflammation in aMCI and AD patients.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of the Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hong Xiao
- Department of the Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yi Fan
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhongxuan Ma
- Department of Pharmacy, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
125
|
Hu Y, Wang B, Li S, Yang S. Pyroptosis, and its Role in Central Nervous System Disease. J Mol Biol 2021; 434:167379. [PMID: 34838808 DOI: 10.1016/j.jmb.2021.167379] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of cell death executed by transmembrane pore-forming proteins known as gasdermins and can be activated in an inflammasome-dependent or -independent manner. Inflammasome-dependent pyroptosis is triggered in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and has emerged as an important player in the pathogenesis of multiple inflammatory diseases, mainly by releasing inflammatory contents. More recently, numerous studies have revealed the intricate mechanisms of pyroptosis and its role in the development of neuroinflammation in central nervous system (CNS) diseases. In this review, we summarize current understandings of the molecular and regulatory mechanisms of pyroptosis. In addition, we discuss how pyroptosis can drive different forms of neurological diseases and new promising therapeutic strategies targeting pyroptosis that can be leveraged to treat neuroinflammation.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shuo Yang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
126
|
Memou A, Dimitrakopoulos L, Kedariti M, Kentros M, Lamprou A, Petropoulou-Vathi L, Valkimadi PE, Rideout HJ. Defining (and blocking) neuronal death in Parkinson's disease: Does it matter what we call it? Brain Res 2021; 1771:147639. [PMID: 34492263 DOI: 10.1016/j.brainres.2021.147639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, comprised of both familial and idiopathic forms, behind only Alzheimer's disease (AD). The disease is characterized, regardless of the pathogenesis, primarily by a loss of DA neurons in the ventral midbrain as well as noradrenergic neurons of the locus coeruleus; however, by the time symptoms manifest, considerable neuronal loss in both areas has occurred. Neuroprotective strategies thus have to be paired with more sensitive and specific biomarker assays that can identify early at-risk patients in order to initiate disease-modifying therapies at an earlier stage in the disease. Complicating this is the fact that multiple forms of cell death mediate the neuronal loss; however, with a common underlying element that the cell death is considered a "regulated" form of cell death, in contrast to an un-controlled necrotic cell death process. In this review we focus our discussion on several categories of regulated cell death in the context of PD: apoptosis, necroptosis, pyroptosis, and autophagic cell death. In clinical studies as well as experimental in vivo models of PD, there is evidence for a role of each of these forms of cell death in the loss of midbrain DA neurons, and specific therapeutic strategies have been proposed and tested. What remains unclear however is the relative contributions of these distinct forms of cell death to the overall loss of DA neurons, whether they occur at different stages of the disease, or whether specific sub-regions within the midbrain are more susceptible to specific death triggers and pathways.
Collapse
Affiliation(s)
- Anna Memou
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lampros Dimitrakopoulos
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Kedariti
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michalis Kentros
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Andriana Lamprou
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Lilian Petropoulou-Vathi
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polytimi-Eleni Valkimadi
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Hardy J Rideout
- Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
127
|
Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L, Sun Y, Wu J, Zhou Q, Huang J, Xiong N, Wang T. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. Front Immunol 2021; 12:719807. [PMID: 34691027 PMCID: PMC8531525 DOI: 10.3389/fimmu.2021.719807] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
According to emerging studies, the excessive activation of microglia and the subsequent release of pro-inflammatory cytokines play important roles in the pathogenesis and progression of Parkinson's disease (PD). However, the exact mechanisms governing chronic neuroinflammation remain elusive. Findings demonstrate an elevated level of NLRP3 inflammasome in activated microglia in the substantia nigra of PD patients. Activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Abnormal protein aggregation of α-synuclein (α-syn), a pathologically relevant protein of PD, were reported to activate the NLRP3 inflammasome of microglia through interaction with toll-like receptors (TLRs). This eventually releases pro-inflammatory cytokines through the translocation of nuclear factor kappa-B (NF-κB) and causes an impairment of mitochondria, thus damaging the dopaminergic neurons. Currently, therapeutic drugs for PD are primarily aimed at providing relief from its clinical symptoms, and there are no well-established strategies to halt or reverse this disease. In this review, we aimed to update existing knowledge on the role of the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis and microglial activation in PD. In addition, this review summarizes recent progress on the α-syn/TLRs/NF-κB/NLRP3 inflammasome axis of microglia as a potential target for PD treatment by inhibiting microglial activation.
Collapse
Affiliation(s)
- Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
128
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
129
|
Lünemann JD, Malhotra S, Shinohara ML, Montalban X, Comabella M. Targeting Inflammasomes to Treat Neurological Diseases. Ann Neurol 2021; 90:177-188. [PMID: 34219266 DOI: 10.1002/ana.26158] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Inflammasomes are multimeric protein complexes that can sense a plethora of microbe- and damage-associated molecular signals. They play important roles in innate immunity and are key regulators of inflammation in health and disease. Inflammasome-mediated processing and secretion of proinflammatory cytokines such as interleukin (IL) 1β and IL-18 and induction of pyroptosis, a proinflammatory form of cell death, have been associated with the development and progression of common immune-mediated and degenerative central nervous system (CNS) diseases such as Alzheimer disease, multiple sclerosis, brain injury, stroke, epilepsy, Parkinson disease, and amyotrophic lateral sclerosis. A growing number of pharmacological compounds inhibiting inflammasome activation and signaling show therapeutic efficacy in preclinical models of the aforementioned disease conditions. Here, we illustrate regulatory mechanisms of inflammasome activation during CNS homeostasis and tissue injury. We highlight the evidence for inflammasome activation as a mechanistic underpinning in a wide range of CNS diseases and critically discuss the promise and potential limitations of therapeutic strategies that aim to inhibit the inflammasome components in neurological disorders. ANN NEUROL 2021;90:177-188.
Collapse
Affiliation(s)
- Jan D Lünemann
- Department of Neurology and Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sunny Malhotra
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Center of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Center of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manuel Comabella
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Center of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
130
|
Zheng R, Ruan Y, Yan Y, Lin Z, Xue N, Yan Y, Tian J, Yin X, Pu J, Zhang B. Melatonin Attenuates Neuroinflammation by Down-Regulating NLRP3 Inflammasome via a SIRT1-Dependent Pathway in MPTP-Induced Models of Parkinson's Disease. J Inflamm Res 2021; 14:3063-3075. [PMID: 34267535 PMCID: PMC8275196 DOI: 10.2147/jir.s317672] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background Inflammasome-induced neuroinflammation is a key contributor to the pathology of Parkinson's disease (PD). NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation has been implicated in PD in postmortem human PD brains, indicating it as a potential target for PD treatment. Melatonin, a multitasking molecule, has been found to have anti-inflammatory activities, mediated by silence information regulator 1 (SIRT1). However, whether and how melatonin is involved in inflammasome-induced neuroinflammation in PD pathogenesis remains unclear. Methods We investigated the potential anti-inflammatory effects of melatonin in vitro and in vivo, using 1-methyl-4-phenylpyridinium (MPP+)-simulated BV2 and primary microglia cell models, and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine PD model, with or without melatonin treatment. Rotarod, grip strength, and open-field tests were performed to measure the effects of melatonin on MPTP-induced motor disorders. Degeneration of dopaminergic neurons was evaluated by immunofluorescence. Changes in microglia were examined by immunofluorescence and Western blotting, and the expression levels of the involved signaling molecules were assessed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Intracellular reactive oxygen species (ROS) was detected using fluorescent probes via flow cytometry. Results We found that melatonin significantly alleviated motor dysfunction and prevented MPTP-induced neurotoxicity in dopaminergic neurons. Additionally, melatonin reduced MPTP-induced microglial activation and suppressed NLRP3 inflammasome activity, and also inhibited IL-1β secretion. Moreover, in MPP+-primed BV2 cells, melatonin markedly restored the downregulation of SIRT1 and attenuated the activation of the NLRP3 inflammasome. This was reversed by SIRT1 inhibitor treatment. Conclusion In conclusion, our data demonstrated that melatonin attenuates neuroinflammation by negatively regulating NLRP3 inflammasome activation via a SIRT1-dependent pathway in MPTP-induced PD models. These findings provide novel insights into the mechanism underlying the anti-inflammatory effects of melatonin in PD.
Collapse
Affiliation(s)
- Ran Zheng
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Yang Ruan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Yiqun Yan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Zhihao Lin
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Naijia Xue
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Yaping Yan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Jun Tian
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Xinzhen Yin
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| |
Collapse
|
131
|
Samidurai M, Palanisamy BN, Bargues-Carot A, Hepker M, Kondru N, Manne S, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. PKC Delta Activation Promotes Endoplasmic Reticulum Stress (ERS) and NLR Family Pyrin Domain-Containing 3 (NLRP3) Inflammasome Activation Subsequent to Asynuclein-Induced Microglial Activation: Involvement of Thioredoxin-Interacting Protein (TXNIP)/Thioredoxin (Trx) Redoxisome Pathway. Front Aging Neurosci 2021; 13:661505. [PMID: 34276337 PMCID: PMC8283807 DOI: 10.3389/fnagi.2021.661505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
A classical hallmark of Parkinson's disease (PD) pathogenesis is the accumulation of misfolded alpha-synuclein (αSyn) within Lewy bodies and Lewy neurites, although its role in microglial dysfunction and resultant dopaminergic (DAergic) neurotoxicity is still elusive. Previously, we identified that protein kinase C delta (PKCδ) is activated in post mortem PD brains and experimental Parkinsonism and that it participates in reactive microgliosis; however, the relationship between PKCδ activation, endoplasmic reticulum stress (ERS) and the reactive microglial activation state in the context of α-synucleinopathy is largely unknown. Herein, we show that oxidative stress, mitochondrial dysfunction, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, and PKCδ activation increased concomitantly with ERS markers, including the activating transcription factor 4 (ATF-4), serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1α (p-IRE1α), p-eukaryotic initiation factor 2 (eIF2α) as well as increased generation of neurotoxic cytokines, including IL-1β in aggregated αSynagg-stimulated primary microglia. Importantly, in mouse primary microglia-treated with αSynagg we observed increased expression of Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the thioredoxin (Trx) pathway, a major antioxidant protein system. Additionally, αSynagg promoted interaction between NLRP3 and TXNIP in these cells. In vitro knockdown of PKCδ using siRNA reduced ERS and led to reduced expression of TXNIP and the NLRP3 activation response in αSynagg-stimulated mouse microglial cells (MMCs). Additionally, attenuation of mitochondrial reactive oxygen species (mitoROS) via mito-apocynin and amelioration of ERS via the eIF2α inhibitor salubrinal (SAL) reduced the induction of the ERS/TXNIP/NLRP3 signaling axis, suggesting that mitochondrial dysfunction and ERS may act in concert to promote the αSynagg-induced microglial activation response. Likewise, knockdown of TXNIP by siRNA attenuated the αSynagg-induced NLRP3 inflammasome activation response. Finally, unilateral injection of αSyn preformed fibrils (αSynPFF) into the striatum of wild-type mice induced a significant increase in the expression of nigral p-PKCδ, ERS markers, and upregulation of the TXNIP/NLRP3 inflammasome signaling axis prior to delayed loss of TH+ neurons. Together, our results suggest that inhibition of ERS and its downstream signaling mediators TXNIP and NLRP3 might represent novel therapeutic avenues for ameliorating microglia-mediated neuroinflammation in PD and other synucleinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| |
Collapse
|
132
|
Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin attenuates motor dysfunction in a mouse model of Parkinson's disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 2021; 239:113510. [PMID: 34181930 DOI: 10.1016/j.physbeh.2021.113510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Silybum marianum (L.) Gaertn has been widely used to obtain a drug for the treatment of hepatic diseases. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of S. marianumis investigated in our study to explore its motor protective potential on Parkinson's disease (PD) model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PD is a neurodegenerative disease that causes a debilitating movement disorder, characterized by a progressive loss of nigrostriatal (substantia nigra and striatum) dopaminergic neurons. Several studies have proven that neurodegeneration is aggravated by neuroinflammation, oxidative stress and/or the presence of α-synuclein (α-syn) aggregation. Essentially no causal therapy for PD exists at present. Our results demonstrate that silibinin significantly attenuates MPTP-induced movement disorder in behavioral tests. Immunohistochemical analysis shows that MPTP injection results in the loss of dopaminergic neurons in the substantia nigra, and the decrease of the striatal tyrosine hydroxylase. However, MPTP-injected mice were protected against dopaminergic neuronal loss by oral administration of silibinin (280 mg/kg) that increased expressions of PTEN-induced putative kinase 1 (PINK1) and Parkin, suggesting mitophagy activation. The neuroprotective mechanism of silibinin involves not only reduction of mitochondrial damage by repressing proinflammatory response and α-syn aggregation, but also enhancement of oxidative defense system. Namely, protection of dopaminergic nerves is due to promotion of mitophagy, leading to clearance of the toxic effects of damaged mitochondria. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinzhe Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
133
|
Khan A, Johnson R, Wittmer C, Maile M, Tatsukawa K, Wong JL, Gill MB, Stocking EM, Natala SR, Paulino AD, Bowden-Verhoek JK, Wrasidlo W, Masliah E, Bonhaus DW, Price DL. NPT520-34 improves neuropathology and motor deficits in a transgenic mouse model of Parkinson's disease. Brain 2021; 144:3692-3709. [PMID: 34117864 DOI: 10.1093/brain/awab214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/09/2022] Open
Abstract
NPT520-34 is a clinical-stage, small molecule being developed for the treatment of Parkinson's disease and other neurodegenerative disorders. The therapeutic potential of NPT520-34 was first suggested by findings from cell-based assays of alpha-synuclein (ASYN) clearance. As reported here, NPT520-34 was subsequently evaluated for therapeutically relevant actions in a transgenic animal model of Parkinson's disease that overexpresses human ASYN and in an acute lipopolysaccharide (LPS)-challenge model using wild-type mice. Daily administration of NPT520-34 to mThy1-ASYN (Line 61) transgenic mice for one or three months resulted in reduced ASYN pathology, reduced expression of markers of neuroinflammation, and improvements in multiple indices of motor function. In an LPS-challenge model using wild-type mice, a single-dose of NPT520-34 reduced LPS-evoked increases in the expression of several pro-inflammatory cytokines in plasma. These findings demonstrate the beneficial effects of NPT520-34 on both inflammation and protein-pathology endpoints, with consequent improvements in motor function in an animal model of Parkinson's disease. These findings further suggest that NPT520-34 may have two complementary actions: (1) to increase the clearance of neurotoxic protein aggregates and (2) to directly attenuate inflammation. NPT520-34 treatment may thereby address two of the predominate underlying pathophysiological aspects of neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Asma Khan
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Robert Johnson
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Carrie Wittmer
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Michelle Maile
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Keith Tatsukawa
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Julian L Wong
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Martin B Gill
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Emily M Stocking
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Srinivasa R Natala
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Amy D Paulino
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Jon K Bowden-Verhoek
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Wolfgang Wrasidlo
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Eliezer Masliah
- Departments of Neuroscience and Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Douglas W Bonhaus
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Diana L Price
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| |
Collapse
|
134
|
Solini A, Rossi C, Santini E, Giuntini M, Raggi F, Parolini F, Biancalana E, Del Prete E, Bonuccelli U, Ceravolo R. P2X7 receptor/NLRP3 inflammasome complex and α-synuclein in peripheral blood mononuclear cells: a prospective study in neo-diagnosed, treatment-naïve Parkinson's disease. Eur J Neurol 2021; 28:2648-2656. [PMID: 33991356 DOI: 10.1111/ene.14918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation and probably systemic inflammation, with abnormal α-synuclein deposition, participate in the development of Parkinson's disease (PD). The P2X7 receptor/NLRP3 inflammasome complex is upregulated in the brain of PD patients. By a prospective approach, the degree of systemic activation of such complex, and its regulatory mechanisms, were explored in treatment-naïve PD individuals. METHODS The expression and functional activity of the inflammasome were measured in peripheral blood mononuclear cells of 25 newly diagnosed PD patients and 25 controls at baseline and after 12 months of pharmacological treatment, exploring the intracellular signalling involved and its epigenetic regulation. RESULTS De novo PD patients were characterized by a systemic hyper-expression of the P2X7R/NLRP3 inflammasome platform, probably able to modulate lymphomonocyte α-synuclein, whose brain deposits represent the main pathogenetic factor of PD. A reduced c-Jun N-terminal kinase (JNK) phosphorylation might be the intracellular signalling mediating this effect. miR-7 and miR-30, implied in the pathogenesis of PD and in the post-transcriptional control of α-synuclein and NLRP3 expression, were also increased in PD. After 1 year of usual anti-Parkinson treatments, such inflammatory platform was significantly reduced. CONCLUSIONS Mononuclear cells of newly diagnosed PD subjects display a hyper-expression of the P2X7R/NLRP3 inflammasome platform that seems to modulate cellular α-synuclein content and is reduced after PD treatment; an impaired JNK phosphorylation might be the intracellular signalling mediating this effect, undergoing an epigenetic regulation by miR-7 and miR-30.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | | | - Martina Giuntini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
135
|
Lin Y, Xu D, Gao F, Zheng X. Ulinastatin inhibits NLRP3-induced apoptosis in a PD cell model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:924. [PMID: 34350239 PMCID: PMC8263882 DOI: 10.21037/atm-21-1882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Background Emerging evidence suggests that inflammation induced by the inflammasome plays a crucial role in the course of Parkinson’s disease (PD). Ulinastatin (UTI) has shown significant anti-inflammatory effects. However, few studies have examined whether UTI protects neurons through its anti-inflammatory effects in PD. The purpose of this study is to determine whether UTI exerts neuroprotection in a PD cell model and to explore the mechanisms. Methods SH-SY5Y cells and nerve growth factor (NGF)-treated PC12 cells were used to establish MPP+ induced PD cell models. Cells were pre-treated with UTI, then cell viabilities were detected using the MTT assay. Lactate dehydrogenase (LDH) release was detected using the LDH release assay kit. Inflammatory factors such as IL-1β, IL-6, and TNF-α were detected using ELISA. The expression levels of TH, NLRP3, caspase-1, ASC, IL-1β, and IL-18 were measured using western blotting, and DA release was detected using HPLC. A NLRP3 activator Nigericin was used to verify the effect of NLRP3 in the neuroprotective mechanism of UTI. Results We observed decreased cell viability, increased apoptosis, and increased inflammatory factors such as IL-1β, IL-6, and TNF-α in the MPP+ induced PD model. We also found decreased DA secretion and TH expression, as well as increased NLRP3, caspase-1, ASC, IL-1α, and IL-18 expression in the MPP+ induced PD model. These changes were significantly attenuated by UTI pre-treatment in a dose dependent manner. NLRP3 activator Nigericin markedly increased LDH release, accelerated apoptosis, increased inflammation levels and decreased DA secretion and TH expression, suggesting that Nigericin eliminated the neuroprotective effect of UTI on MPP+ treated cells. Conclusions Our data demonstrated that UTI pre-treatment performed a neuroprotective role in the MPP+ induced PD cell models by inhibiting the NLRP3 pathway.
Collapse
Affiliation(s)
- Yicheng Lin
- Cheeloo College of Medicine, Shandong University, Shandong Qianfoshan Hospital, Jinan, China
| | - Dongsheng Xu
- Department of Kidney Transplantation, The Second Hospital, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
136
|
Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathol 2021; 141:527-545. [PMID: 33555429 PMCID: PMC7952334 DOI: 10.1007/s00401-021-02268-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A Ferreira
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
137
|
Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF. Neurodegenerative Disease and the NLRP3 Inflammasome. Front Pharmacol 2021; 12:643254. [PMID: 33776778 PMCID: PMC7987926 DOI: 10.3389/fphar.2021.643254] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of neurodegenerative disease has increased significantly in recent years, and with a rapidly aging global population, this trend is expected to continue. These diseases are characterised by a progressive neuronal loss in the brain or peripheral nervous system, and generally involve protein aggregation, as well as metabolic abnormalities and immune dysregulation. Although the vast majority of neurodegeneration is idiopathic, there are many known genetic and environmental triggers. In the past decade, research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease or is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, a crucial component of the innate immune system, is usually activated in response to infection or tissue damage. Dysregulation of the NLRP3 inflammasome has been implicated in the progression of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. This review aims to summarise current literature on the role of the NLRP3 inflammasome in the pathogenesis of neurodegenerative diseases, and recent work investigating NLRP3 inflammasome inhibition as a potential future therapy.
Collapse
Affiliation(s)
- Jonathan A. Holbrook
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Heledd H. Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Emily Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - James A. Poulter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Caroline H. Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
- Leeds Centre for Cystic Fibrosis, St James’s University Hospital, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
138
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomed Pharmacother 2021; 138:111428. [PMID: 33667787 DOI: 10.1016/j.biopha.2021.111428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
In an ageing society, neurodegenerative diseases have attracted attention because of their high incidence worldwide. Despite extensive research, there is a lack of conclusive insights into the pathogenesis of neurodegenerative diseases, which limit the strategies for symptomatic treatment. Therefore, better elucidation of the molecular mechanisms involved in neurodegenerative diseases can provide an important theoretical basis for the discovery of new and effective prevention and treatment methods. The innate immune system is activated during the ageing process and in response to neurodegenerative diseases. Inflammasomes are multiprotein complexes that play an important role in the activation of the innate immune system. They mediate inflammatory reactions and pyroptosis, which are closely involved in neurodegeneration. There are different types of inflammasomes, although the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is the most common inflammasome; NLRP3 plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we will discuss the mechanisms that are involved in the activation of the NLRP3 inflammasome and its crucial role in the pathology of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. We will also review various treatments that target the NLRP3 inflammasome pathway and alleviate neuroinflammation. Finally, we will summarize the novel treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang 050051, PR China.
| |
Collapse
|
139
|
Piancone F, La Rosa F, Marventano I, Saresella M, Clerici M. The Role of the Inflammasome in Neurodegenerative Diseases. Molecules 2021; 26:molecules26040953. [PMID: 33670164 PMCID: PMC7916884 DOI: 10.3390/molecules26040953] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are chronic, progressive disorders that occur in the central nervous system (CNS). They are characterized by the loss of neuronal structure and function and are associated with inflammation. Inflammation of the CNS is called neuroinflammation, which has been implicated in most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Much evidence indicates that these different conditions share a common inflammatory mechanism: the activation of the inflammasome complex in peripheral monocytes and in microglia, with the consequent production of high quantities of the pro-inflammatory cytokines IL-1β and IL-18. Inflammasomes are a group of multimeric signaling complexes that include a sensor Nod-like receptor (NLR) molecule, the adaptor protein ASC, and caspase-1. The NLRP3 inflammasome is currently the best-characterized inflammasome. Multiple signals, which are potentially provided in combination and include endogenous danger signals and pathogens, trigger the formation of an active inflammasome, which, in turn, will stimulate the cleavage and the release of bioactive cytokines including IL-1β and IL-18. In this review, we will summarize results implicating the inflammasome as a pivotal player in the pathogenesis of neurodegenerative diseases and discuss how compounds that hamper the activation of the NLRP3 inflammasome could offer novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
- Correspondence:
| | - Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milano, Italy; (F.L.R.); (I.M.); (M.S.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
| |
Collapse
|
140
|
Sandhu JK, Kulka M. Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22031093. [PMID: 33499208 PMCID: PMC7865982 DOI: 10.3390/ijms22031093] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia, resident immune cells of the central nervous system (CNS), play a pivotal role in immune surveillance and maintenance of neuronal health. Mast cells are also important resident immune cells of the CNS but they are underappreciated and understudied. Both microglia and mast cells are endowed with an array of signaling receptors that recognize microbes and cellular damage. As cellular sensors and effectors in the CNS, they respond to many CNS perturbations and have been implicated in neuroinflammation and neurodegeneration. Mast cells contain numerous secretory granules packaged with a plethora of readily available and newly synthesized compounds known as 'mast cell mediators'. Mast cells act as 'first responders' to a pathogenic stimuli and respond by degranulation and releasing these mediators into the extracellular milieu. They alert other glial cells, including microglia to initiate neuroinflammatory processes that culminate in the resolution of injury. However, failure to resolve the pathogenic process can lead to persistent activation, release of pro-inflammatory mediators and amplification of neuroinflammatory responses, in turn, resulting in neuronal dysfunction and demise. This review discusses the current understanding of the molecular conversation between mast cells and microglia in orchestrating immune responses during two of the most prevalent neurodegenerative diseases, namely Alzheimer's disease and Parkinson's disease. Here we also survey the potential emerging therapeutic approaches targeting common pathways in mast cells and microglia to extinguish the fire of inflammation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| |
Collapse
|
141
|
Anderson FL, von Herrmann KM, Andrew AS, Kuras YI, Young AL, Scherzer CR, Hickey WF, Lee SL, Havrda MC. Plasma-borne indicators of inflammasome activity in Parkinson's disease patients. NPJ PARKINSONS DISEASE 2021; 7:2. [PMID: 33398042 PMCID: PMC7782812 DOI: 10.1038/s41531-020-00147-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms and loss of dopaminergic neurons of the substantia nigra. Inflammation and cell death are recognized aspects of PD suggesting that strategies to monitor and modify these processes may improve the management of the disease. Inflammasomes are pro-inflammatory intracellular pattern recognition complexes that couple these processes. The NLRP3 inflammasome responds to sterile triggers to initiate pro-inflammatory processes characterized by maturation of inflammatory cytokines, cytoplasmic membrane pore formation, vesicular shedding, and if unresolved, pyroptotic cell death. Histologic analysis of tissues from PD patients and individuals with nigral cell loss but no diagnosis of PD identified elevated expression of inflammasome-related proteins and activation-related “speck” formation in degenerating mesencephalic tissues compared with controls. Based on previous reports of circulating inflammasome proteins in patients suffering from heritable syndromes caused by hyper-activation of the NLRP3 inflammasome, we evaluated PD patient plasma for evidence of inflammasome activity. Multiple circulating inflammasome proteins were detected almost exclusively in extracellular vesicles indicative of ongoing inflammasome activation and pyroptosis. Analysis of plasma obtained from a multi-center cohort identified elevated plasma-borne NLRP3 associated with PD status. Our findings are consistent with others indicating inflammasome activity in neurodegenerative disorders. Findings suggest mesencephalic inflammasome protein expression as a histopathologic marker of early-stage nigral degeneration and suggest plasma-borne inflammasome-related proteins as a potentially useful class of biomarkers for patient stratification and the detection and monitoring of inflammation in PD.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Katharine M von Herrmann
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Angeline S Andrew
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Yuliya I Kuras
- APDA Center for Advanced Parkinson Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
| | - Alison L Young
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
| | - William F Hickey
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Stephen L Lee
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
142
|
Sebastian-Valverde M, Wu H, Al Rahim M, Sanchez R, Kumar K, De Vita RJ, Pasinetti GM. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J Biol Chem 2021; 296:100597. [PMID: 33781745 PMCID: PMC8095128 DOI: 10.1016/j.jbc.2021.100597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes are macromolecular complexes involved in the host response to external and endogenous danger signals. Inflammasome-mediated sterile inflammation plays a central role in several human conditions such as autoimmune diseases, type-2 diabetes, and neurodegenerative disorders, indicating inflammasomes could be appealing therapeutic targets. Previous work has demonstrated that inhibiting the ATPase activity of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3), disrupts inflammasome assembly and function. However, there is a necessity to find new potent compounds with therapeutic potential. Here we combine computational modeling of the target and virtual screening to discover a group of novel compounds predicted to inhibit NLRP3. We characterized the best compounds and determined their potency, specificity, and ability to inhibit processes downstream from NLRP3 activation. Moreover, we analyzed in mice the competence of a lead candidate to reduce lipopolysaccharide-induced inflammation. We also validated the active pharmacophore shared among all the NLRP3 inhibitors, and through computational docking, we clarify key structural features for compound positioning within the inflammasome ATP-binding site. Our study sets the basis for rational design and optimization of inflammasome-targeting probes and drugs.
Collapse
Affiliation(s)
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J De Vita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
143
|
Otani K, Shichita T. Cerebral sterile inflammation in neurodegenerative diseases. Inflamm Regen 2020; 40:28. [PMID: 33292860 PMCID: PMC7722432 DOI: 10.1186/s41232-020-00137-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Therapeutic strategies for regulating neuroinflammation are expected in the development of novel therapeutic agents to prevent the progression of central nervous system (CNS) pathologies. An understanding of the detailed molecular and cellular mechanisms of neuroinflammation in each CNS disease is necessary for the development of therapeutics. Since the brain is a sterile organ, neuroinflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) is triggered by cerebral cellular damage or the abnormal accumulation of inflammatogenic molecules in CNS tissue through the activation of innate and acquired immunity. Inflammation and CNS pathologies worsen each other through various cellular and molecular mechanisms, such as oxidative stress or the accumulation of inflammatogenic molecules induced in the damaged CNS tissue. In this review, we summarize the recent evidence regarding sterile immune responses in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kento Otani
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| |
Collapse
|
144
|
Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat Commun 2020; 11:6252. [PMID: 33288742 PMCID: PMC7721731 DOI: 10.1038/s41467-020-19957-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers have revolutionized scientific research on neurodegenerative diseases, in particular Alzheimer's disease, transformed drug trial design, and are also increasingly improving patient management in clinical practice. A few key cerebrospinal fluid biomarkers have been robustly associated with neurodegenerative diseases. Several novel biomarkers are very promising, especially blood-based markers. However, many biomarker findings have had low reproducibility despite initial promising results. In this perspective, we identify possible sources for low reproducibility of studies on fluid biomarkers for neurodegenerative diseases, with a focus on Alzheimer's disease. We suggest guidelines for researchers and journal editors, with the aim to improve reproducibility of findings.
Collapse
|
145
|
Liu Y, Yu L, Xu Y, Tang X, Wang X. Substantia nigra Smad3 signaling deficiency: relevance to aging and Parkinson's disease and roles of microglia, proinflammatory factors, and MAPK. J Neuroinflammation 2020; 17:342. [PMID: 33198771 PMCID: PMC7670688 DOI: 10.1186/s12974-020-02023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Smad3 signaling is indicated to regulate microglia activity. Parkinson’s disease (PD) neurodegeneration is shown to be associated with aging and neuroinflammation. However, it remains unclear about the relationship among Smad3 signaling, aging, neuroinflammation, and PD. Methods Rats were treated with SIS3 (a specific inhibitor of Smad3, intranigal injection) and/or lipopolysaccharide (intraperitoneal injection). We investigated the effect of SIS3 and lipopolysaccharide and their mechanism of action on motor behavior and nigrostriatal dopaminergic system in the rats. Furthermore, we explored the effect of SIS3 and LPS and their potential signaling mechanism of action on inflammatory response by using primary microglial cultures. Finally, we investigated the relationship among aging, Smad3 signaling, and neuroinflammation using animals of different ages. Results Both SIS3 and lipopolysaccharide induced significant behavior deficits and nigrostriatal dopaminergic neurodegeneration in the rats compared with the vehicle-treated (control) rats. Significantly increased behavior deficits and nigrostriatal dopaminergic neurodegeneration were observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the rats treated with vehicle, SIS3, or lipopolysaccharide. Furthermore, both SIS3 and lipopolysaccharide induced significant microglia activation and proinflammatory factor (IL-1β, IL-6, iNOS, and ROS) level increase in the SN of rats compared with the control rats. Significantly enhanced microglial inflammatory response was observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the other three groups. For our in vitro study, both SIS3 and lipopolysaccharide induced significant proinflammatory factor level increase in primary microglia cultures compared with the control cultures. Significantly increased inflammatory response was observed in the cultures co-treated with SIS3 and lipopolysaccharide compared with the other three groups. MAPK (ERK/p38) contributed to microglial inflammatory response induced by co-treatment with SIS3 and lipopolysaccharide. Interestingly, there was decrease in Smad3 and pSmad3 expression (protein) and enhancement of neuroinflammation in the mouse SN with aging. Proinflammatory factor levels were significantly inversely correlated with Smad3 and pSmad3 expression. Conclusion Our study strongly indicates the involvement of SN Smad3 signaling deficiency in aging and PD neurodegeneration and provides a novel molecular mechanism underlying the participation of aging in PD and helps to elucidate the mechanisms for the combined effect of multiple factors in PD.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China.
| |
Collapse
|
146
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
147
|
Gritsenko A, Green JP, Brough D, Lopez-Castejon G. Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 2020; 55:15-25. [PMID: 32883606 PMCID: PMC7571497 DOI: 10.1016/j.cytogfr.2020.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The NLRP3 inflammasome is a vital part of the innate immune response, whilst its aberrant activation drives the progression of a number of non-communicable diseases. Thus, NLRP3 inflammasome assembly must be tightly controlled at several checkpoints. The priming step of NLRP3 inflammasome activation is associated with increased NLRP3 gene expression, as well as post-translational modifications that control NLRP3 levels and licence the NLRP3 protein for inflammasome assembly. Increasing life expectancy in modern society is accompanied by a growing percentage of elderly individuals. The process of aging is associated with chronic inflammation that drives and/or worsens a range of age related non-communicable conditions. The NLRP3 inflammasome is known to contribute to pathological inflammation in many settings, but the mechanisms that prime NLRP3 for activation throughout aging and related co-morbidities have not been extensively reviewed. Here we dissect the biochemical changes that occur during aging and the pathogenesis of age related diseases and analyse the mechanisms by which they prime the NLRP3 inflammasome, thus exacerbating inflammation.
Collapse
Affiliation(s)
- Anna Gritsenko
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jack P Green
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
148
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
149
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
150
|
Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson's Disease. Int J Neuropsychopharmacol 2020; 23:pyaa060. [PMID: 32761175 PMCID: PMC7745250 DOI: 10.1093/ijnp/pyaa060] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammasome-induced neuroinflammation is a major pathogenic mechanism underlying the degeneration of nigral dopaminergic neurons in Parkinson's disease (PD). Baicalein is a flavonoid isolated from the traditional Chinese medicinal herbal Scutellaria baicalensis Georgi with known anti-inflammatory and neuroprotective efficacy in models of neurodegenerative diseases, including PD. However, its effects on inflammasome-induced neuroinflammation during PD remain unclear. METHODS We used N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like pathology in mice. Behavioral assessments including the pole test, rotarod test and open filed test were conducted to evaluate the effects of baicalein on MPTP-induced motor dysfunction. The efficacies of baicalein against MPTP-induced dopaminergic neuron loss and glial cell activation in the substantia nigra compact (SNc) were examined by immunohistochemistry, effects on proinflammatory cytokines by qPCR and enzyme-linked immunosorbent assay (ELISA), effects on inflammasome pathway activation by immunoblotting and flow cytometry. RESULTS Administration of baicalein reversed MPTP-induced motor dysfunction, loss of dopaminergic neurons, and pro-inflammatory cytokine elevation. Baicalein also inhibited NLRP3 and caspase-1 activation and suppressed gasdermin D (GSDMD)-dependent pyroptosis. Additionally, baicalein inhibited the activation and proliferation of disease-associated proinflammatory microglia. CONCLUSIONS These findings suggest that baicalein can reverse MPTP-induced neuroinflammation in mice by suppressing NLRP3/caspase-1/GSDMD pathway. Our study provides potential insight of baicalein in PD therapy.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|