101
|
Voon DC, Huang RY, Jackson RA, Thiery JP. The EMT spectrum and therapeutic opportunities. Mol Oncol 2017; 11:878-891. [PMID: 28544151 PMCID: PMC5496500 DOI: 10.1002/1878-0261.12082] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022] Open
Abstract
Carcinomas are phenotypically arrayed along an epithelial–mesenchymal transition (EMT) spectrum, a developmental program currently exploited to understand the acquisition of drug resistance through a re‐routing of growth factor signaling. This review collates the current approaches employed in developing therapeutics against cancer‐associated EMT, and provides an assessment of their respective strengths and drawbacks. We reflect on the close relationship between EMT and chemoresistance against current targeted therapeutics, with a special focus on the epigenetic mechanisms that link these processes. This prompts the hypothesis that carcinoma‐associated EMT shares a common epigenetic pathway to cellular plasticity as somatic cell reprogramming during tissue repair and regeneration. Indeed, their striking resemblance suggests that EMT in carcinoma is a pathological adaptation of an intrinsic program of cellular plasticity that is crucial to tissue homeostasis. We thus propose a revised approach that targets the epigenetic mechanisms underlying pathogenic EMT to arrest cellular plasticity regardless of upstream cancer‐driving mutations.
Collapse
Affiliation(s)
- Dominic C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Ruby Y Huang
- Department of Obstetrics & Gynaecology, National University Hospital, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jean P Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Inserm Unit 1186 Comprehensive Cancer Center, Institut Gustave Roussy, Villejuif, France.,CNRS UMR 7057 Matter and Complex Systems, University Paris Denis Diderot, Paris, France
| |
Collapse
|
102
|
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174:1533-1554. [PMID: 28332701 PMCID: PMC5446579 DOI: 10.1111/bph.13792] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Andreas Petry
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Joachim M Gerhold
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Agnes Görlach
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
103
|
Abstract
In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation. Additionally, many regulatory mechanisms of this process have been identified. Technological advances in mapping and tracing the oxidized forms of 5mC allow further dissection of their functions. Furthermore, the biological functions of active DNA demethylation in various biological contexts have also been revealed. In this Review, we summarize the recent advances and highlight key unanswered questions.
Collapse
|
104
|
Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 2017; 9:1025-1033. [PMID: 28937680 DOI: 10.1038/nchem.2778] [Citation(s) in RCA: 450] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/03/2017] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.
Collapse
|
105
|
Ciesielski P, Jóźwiak P, Wójcik-Krowiranda K, Forma E, Cwonda Ł, Szczepaniec S, Bieńkiewicz A, Bryś M, Krześlak A. Differential expression of ten-eleven translocation genes in endometrial cancers. Tumour Biol 2017; 39:1010428317695017. [PMID: 28349832 DOI: 10.1177/1010428317695017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ten-eleven translocation proteins are α-ketoglutarate-dependent dioxygenases involved in the conversion of 5-methylcytosines (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine, and 5-carboxylcytosine that play a significant role in DNA demethylation. Deregulation of TET genes expression and changes in the level of 5-hmC are thought to be associated with the onset and progression of several types of cancer, but there are no such data related to endometrial cancer. The aim of the work was to investigate the messenger RNA expression levels of TET1, TET2, and TET3 in relation to clinicopathological characteristics of endometrial cancer as well as the correlation between expression of TET genes and the level of 5-hmC/5-mC. The prognostic significance of TETs expression for overall survival was established. We found that TET1 and TET2 messenger RNA expression was lower and TET3 was higher in cancers compared to normal tissues. Positive correlation between 5-hmC and the relative expression of TET1 and TET2 was found, but no correlation was observed in the case of TET3. Decreased expression of TET1 and TET2 was significantly associated with increased lymph node metastasis and International Federation of Gynecology and Obstetrics stage. Kaplan-Meier analysis indicated that low TET1 expression predicted poor overall survival (p = 0.038). Multivariate analysis identified the TET1 expression in endometrial cancer as an independent prognostic factor. Our results suggest that decreased expression of TET1 correlates with tumor progression and may serve as a potential prognostic biomarker in endometrial cancer.
Collapse
Affiliation(s)
- Piotr Ciesielski
- 1 Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Paweł Jóźwiak
- 1 Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | | | - Ewa Forma
- 1 Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Łukasz Cwonda
- 2 Clinical Division of Gynecological Oncology, Medical University of Lodz, Łódź, Poland
| | - Sylwia Szczepaniec
- 2 Clinical Division of Gynecological Oncology, Medical University of Lodz, Łódź, Poland
| | - Andrzej Bieńkiewicz
- 2 Clinical Division of Gynecological Oncology, Medical University of Lodz, Łódź, Poland
| | - Magdalena Bryś
- 1 Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Anna Krześlak
- 1 Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
106
|
Epigenetic regulation of skeletal muscle metabolism. Clin Sci (Lond) 2017; 130:1051-63. [PMID: 27215678 DOI: 10.1042/cs20160115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states.
Collapse
|
107
|
Jiang W, Liu P, Li X. G9A performs important roles in the progression of breast cancer through upregulating its targets. Oncol Lett 2017; 13:4127-4132. [PMID: 28599414 PMCID: PMC5453034 DOI: 10.3892/ol.2017.5977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/13/2017] [Indexed: 01/14/2023] Open
Abstract
Breast cancer (BC) is the most common type of malignancy in females worldwide, however, its underlying mechanisms remain poorly understood. The present study aimed to investigate the mechanisms behind the development and progression of BC and identify potential biomarkers for it. The chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) dataset GSM1642516 and gene expression dataset GSE34925 were downloaded from the Gene Expression Omnibus database. Affy and oligo packages were used for the background correction and normalization of the gene expression dataset. Based on Limma package and the criteria of a fold change >1.41 or <0.71, and a false discovery rate adjusted P-value <0.05, differentially-expressed genes (DEGs) in euchromatic histone lysine methyltransferase 2 (G9A) -knockout (KO) breast samples compared with control samples were identified. The Database for Annotation, Visualization and Integrated Analysis was used for the functional enrichment analysis of the DEGs. Bowtie 2 and model-based analysis of ChIP-Seq version 14 (macs14) were used for the mapping of raw reads and the identification of G9A binding sites (peaks), respectively. In addition, overlapping genes between the DEGs and genes in the peaks located in −3000 to 3000 bp centered in the transcription start sites (conpeaks) were screened out and microRNAs (miRNAs) believed to regulate those overlaps were identified through the TargetScan database. A total of 217 DEGs were identified in G9A-KO samples, which were mainly involved in the biological processes and pathways associated with the inflammatory response and cancer progression. A total of 10,422 peaks, containing 1,210 conpeaks involving 1,138 genes, were identified. Among the 1,138 genes, 15 were overlapped with the DEGs, and 35 miRNAs were identified to regulate those overlaps. Insulin-induced gene 1 was regulated by 9 genes in the miRNA-gene regulation network, which may indicate its importance in the progression of BC. The present study identified potential biomarkers of BC that may be useful in the diagnosis and treatment of patients with the disease.
Collapse
Affiliation(s)
- Wenhua Jiang
- Department of Radiotherapy, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Pengfei Liu
- Department of Lymphoma, Sino-US Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, Tianjin's National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiaodong Li
- Department of Radiotherapy, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
108
|
Morandi A, Taddei ML, Chiarugi P, Giannoni E. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Front Oncol 2017; 7:40. [PMID: 28352611 PMCID: PMC5348536 DOI: 10.3389/fonc.2017.00040] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence , Florence , Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Centre for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence , Italy
| |
Collapse
|
109
|
Tian YP, Zhu YM, Sun XH, Lai MD. Multiple Functions of Ten-eleven Translocation 1 during Tumorigenesis. Chin Med J (Engl) 2017; 129:1744-51. [PMID: 27411465 PMCID: PMC4960967 DOI: 10.4103/0366-6999.185873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Aberrant expression of ten-eleven translocation 1 (TET1) plays a critical role in tumor development and progression. We systematically summarized the latest research progress on the role and mechanisms of TET1 in cancer biology. Data Sources: Relevant articles published in English from 1980 to April 2016 were selected from the PubMed database. The terms “ten-eleven translocation 1,” “5mC,” “5hmC,” “microRNA,” “hypoxia,” and “embryonic stem cell” were used for the search. Study Selection: Articles focusing on the role and mechanism of TET1 in tumor were reviewed, including clinical and basic research articles. Results: TET proteins, the key enzymes converting 5-methylcytosine to 5-hydroxymethylcytosine, play vital roles in DNA demethylation regulation. Recent studies have shown that loss of TET1 is associated with tumorigenesis and can be used as a potential biomarker for cancer therapy, which indicates that TET1 serves as tumor suppressor gene. Moreover, besides its dioxygenase activity, TET1 could induce epithelial-mesenchymal transition and act as a coactivator to regulate gene transcription, such as developmental regulator in embryonic stem cells (ESCs) and hypoxia-responsive gene in cancer. The regulation of TET1 is also correlated with microRNA in a posttranscriptional modification process. Hence, it is complex but critical to comprehend the mechanisms of TET1 in the biology of ESCs and cancer. Conclusions: TET1 not only serves as a demethylation enzyme but also plays multiple roles during tumorigenesis and progression. More studies should be carried out to elucidate the exact mechanisms of TET1 and its associations with cancer before considering it as a therapeutic tool.
Collapse
Affiliation(s)
- Yi-Ping Tian
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Key Laboratory of Disease Proteomics of Zhejiang Province, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiao-Hui Sun
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Mao-De Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Key Laboratory of Disease Proteomics of Zhejiang Province, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
110
|
Lv QY, Xie BY, Yang BY, Ning CC, Shan WW, Gu C, Luo XZ, Chen XJ, Zhang ZB, Feng YJ. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER. J Cancer 2017; 8:894-902. [PMID: 28382153 PMCID: PMC5381179 DOI: 10.7150/jca.17064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022] Open
Abstract
Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.
Collapse
Affiliation(s)
- Qiao-Ying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Ying Xie
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Bing-Yi Yang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Cheng-Cheng Ning
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Wei-Wei Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Chao Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xue-Zhen Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiao-Jun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Zhen-Bo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University school of medicine, Shanghai, 201620, China
| | - You-Ji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University school of medicine, Shanghai, 201620, China
| |
Collapse
|
111
|
Tian Y, Pan F, Sun X, Gan M, Lin A, Zhang D, Zhu Y, Lai M. Association of TET1 expression with colorectal cancer progression. Scand J Gastroenterol 2017; 52:312-320. [PMID: 27846738 DOI: 10.1080/00365521.2016.1253767] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The ten-eleven translocation (TET) proteins, as methylcytosine dioxygenases, catalyze 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). The altered expression of TET1 disrupts the balance between DNA methylation and demethylation. This alteration has been reported to be associated with carcinogenesis in various malignancies. The aim of the present study was to investigate changes in expression and the role of TET1 in colorectal cancer (CRC). MATERIAL AND METHODS A total of 109 CRC patients who underwent radical surgical colon resection were enrolled. The QuantiGene Plex Assay was used to detect the expression of TET1 in CRC tissues and matching adjacent normal tissues. We analyzed the associations between TET1 expression levels and various clinicopathologic features of CRC. TET1 overexpression and depletion cells were constructed to investigate its biological role in CRC. RESULTS Compared to normal tissues, the expression level of TET1 in CRC was significantly lower. The ratio of TET1 in CRC tissues to that in adjacent normal tissues (C/N-TET1) was an independent overall survival predictive factor. Moreover, in vitro studies showed that TET1 could inhibit cell growth and promote cell metastasis and invasion. CONCLUSIONS These findings indicated that TET1 played a multifaceted role in the pathogenesis of CRC, and thereby resulting in multiple effects on tumor progression.
Collapse
Affiliation(s)
- Yiping Tian
- a Department of Pathology , Zhejiang University School of Medicine , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China.,c Pathology Department , Zhejiang Cancer Hospital , Hangzhou , China
| | - Feixia Pan
- d Department of Epidemiology and Biostatistics , Zhejiang University School of Public Health , Hangzhou , China
| | - Xiaohui Sun
- d Department of Epidemiology and Biostatistics , Zhejiang University School of Public Health , Hangzhou , China
| | - Meifu Gan
- e Department of Pathology , Taizhou Hospital , Linhai , China
| | - Aifen Lin
- f Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University , Linhai , China
| | - Dandan Zhang
- a Department of Pathology , Zhejiang University School of Medicine , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| | - Yimin Zhu
- c Pathology Department , Zhejiang Cancer Hospital , Hangzhou , China
| | - Maode Lai
- a Department of Pathology , Zhejiang University School of Medicine , Hangzhou , China.,b Key Laboratory of Disease Proteomics of Zhejiang Province , Hangzhou , China
| |
Collapse
|
112
|
Han X, Zhou Y, You Y, Lu J, Wang L, Hou H, Li J, Chen W, Zhao L, Li X. TET1 promotes cisplatin-resistance via demethylating the vimentin promoter in ovarian cancer. Cell Biol Int 2017; 41:405-414. [PMID: 28150354 DOI: 10.1002/cbin.10734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 12/23/2022]
Abstract
The development of chemo-resistance impairs the outcome of the first line platinum-based chemotherapies for ovarian cancer. Deregulation of DNA methylation/demethylation provides a critical mechanism for the occurrence of chemo-resistance. The ten-eleven translocation (TET) family of dioxygenases including TET1/2/3 plays an important part in DNA demethylation, but their roles in cisplatin resistance have not been elucidated. Using cisplatin-sensitive and cisplatin-resistant ovarian cancer cell models, we found that TET1 was significantly upregulated in cisplatin-resistant CP70 cells compared with that in cisplatin-sensitive A2780 cells. Ectopic expression of TET1 in A2780 cells promoted cisplatin resistance and decreased cytotoxicity induced by cisplatin, while inhibition of TET1 by siRNA transfection in CP70 cells attenuated cisplatin resistance and enhanced cytotoxicity of cisplatin. Increased TET1 induced re-expression of vimentin through active DNA demethylation, and cause partial epithelial-to-mesenchymal (EMT) in A2780 cells. Contrarily, knocking down of TET1 in CP70 cells reduced vimentin expression and reversed EMT process. Immunohistochemical analysis of TET1 in human ovarian cancer tissues revealed that TET1 existed in nucleus and cytoplasm in ovarian cancer tissues. And the expression of nuclear TET1 was positively correlated with residual tumor and chemotherapeutic response. Thus, TET1 expression causes resistance to cisplatin and one of the targets of TET1 action is vimentin in ovarian cancer.
Collapse
Affiliation(s)
- Xi Han
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuanyuan Zhou
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuanyi You
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jiaojiao Lu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Lijie Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jing Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Wei Chen
- Center for Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|
113
|
Misregulation of DNA Methylation Regulators in Cancer. DNA AND HISTONE METHYLATION AS CANCER TARGETS 2017. [DOI: 10.1007/978-3-319-59786-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
114
|
Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci 2016; 73:4643-4660. [PMID: 27460000 PMCID: PMC11108467 DOI: 10.1007/s00018-016-2313-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial developmental process by which epithelial cells undergo a mesenchymal phenotypic change. During EMT, epigenetic mechanisms including DNA methylation and histone modifications are involved in the regulation of EMT-related genes. The epigenetic gene silencing of the epithelial marker E-cadherin has been well characterized. In particular, three major transcriptional repressors of E-cadherin, Snail, ZEB, and Twist families, also known as EMT-inducing transcription factors (EMT-TFs), play a crucial role in this process by cooperating with multiple epigenetic modifiers. Furthermore, recent studies have identified the novel epigenetic modifiers that control the expression of EMT-TFs, and these modifiers have emerged as critical regulators of cancer development and as novel therapeutic targets for human cancer. In this review, the diverse functions of EMT-TFs in cancer progression, the cooperative mechanisms of EMT-TFs with epigenetic modifiers, and epigenetic regulatory roles for the expression of EMT-TFs will be discussed.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
115
|
Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci 2016; 73:4493-4515. [PMID: 27392607 PMCID: PMC5459373 DOI: 10.1007/s00018-016-2303-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process for morphogenesis and organ development which reversibly enables polarized epithelial cells to lose their epithelial characteristics and to acquire mesenchymal properties. It is now evident that the aberrant activation of EMT is also a critical mechanism to endow epithelial cancer cells with migratory and invasive capabilities associated with metastatic competence. This dedifferentiation program is mediated by a small cohort of pleiotropic transcription factors which orchestrate a complex array of epigenetic mechanisms for the wide-spread changes in gene expression. Here, we review major epigenetic mechanisms with an emphasis on histone modifications and discuss their implications in EMT and tumor progression. We also highlight mechanisms underlying transcription regulation concerted by various chromatin-modifying proteins and EMT-inducing transcription factors at different molecular layers. Owing to the reversible nature of epigenetic modifications, a thorough understanding of their functions in EMT will not only provide new insights into our knowledge of cancer progression and metastasis, but also facilitate the development of diagnostic and therapeutic strategies for human malignancy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jia Fang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
116
|
Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, Ryan PH, Khurana Hershey GK, Ji H. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol 2016; 137:797-805.e5. [PMID: 26684294 PMCID: PMC4783231 DOI: 10.1016/j.jaci.2015.10.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Asthma is a complex disorder influenced by genetics and the environment. Recent findings have linked abnormal DNA methylation in T cells with asthma; however, the potential dysregulation of methylation in airway epithelial cells is unknown. Studies of mouse models of asthma have observed greater levels of 5-hydroxymethylcytosine (5-hmC) and ten-eleven translocation 1 (TET1) expression in lungs. TET proteins are known to catalyze methylation through modification of 5-methylcytosine to 5-hmC. OBJECTIVE We sought to examine the association of TET1 methylation with asthma and traffic-related air pollution (TRAP). METHODS TET1 methylation levels from DNA derived from nasal airway epithelial cells collected from 12 African American children with physician-diagnosed asthma and their nonasthmatic siblings were measured by using Illumina 450K arrays. Regions of interest were verified by means of locus-specific pyrosequencing in 35 sibling pairs and replicated in an independent population (n = 186). Exposure to TRAP in participants' early life and at current home addresses was estimated by using a land-use regression model. Methylation studies in saliva, PBMCs, and human bronchial epithelial cells were done to support our findings. RESULTS Loss of methylation at a single CpG site in the TET1 promoter (cg23602092) and increased global 5-hmC levels were significantly associated with asthma. In contrast, TRAP exposure at participants' current homes significantly increased methylation at the same site. Patterns were consistent across tissue sample types. 5-Aza-2'-deoxycytidine and diesel exhaust particle exposure in human bronchial epithelial cells was associated with altered TET1 methylation and expression and global 5-hmC levels. CONCLUSIONS Our findings suggest a possible role of TET1 methylation in asthmatic patients and response to TRAP.
Collapse
Affiliation(s)
- Hari K Somineni
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Ashley Ulm
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Noelle Jurcak
- School of Medicine, Johns Hopkins University, Baltimore, Md
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | | | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
117
|
Chen HF, Wu KJ. Epigenetics, TET proteins, and hypoxia in epithelial-mesenchymal transition and tumorigenesis. Biomedicine (Taipei) 2016; 6:1. [PMID: 26869355 PMCID: PMC4751095 DOI: 10.7603/s40681-016-0001-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia in tumors is primarily a pathophysiologic consequence of structurally and functionally disturbed microcirculation with inadequate supply of oxygen. Tumor hypoxia is strongly associated with tumor propagation, malignant progression, and resistance to therapy. Aberrant epigenetic regulation plays a crucial role in the process of hypoxia-driven malignant progression. Convert of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5hmC and TET proteins was altered in various types of cancers. There is a strong correlation between loss of 5hmC and cancer development but research to date indicates that loss of TET activity is associated with the cancer phenotype but it is not clear whether TET proteins function as tumor suppressors or oncogenes. While loss of TET1 and TET2 expression is associated with solid cancers, implying a tumor suppressor role, TET1 exhibits a clear oncogenic role in the context of genomic rearrangements such as in MLL-fusion rearranged leukemia. Interestingly, hypoxia increases global 5hmC levels and upregulates TET1 expression in a HIF1α-dependent manner. Recently, hypoxia-induced TET1 has been demonstrated to play another important role for regulating hypoxia-responsive gene expression and epithelial-mesenchymal transition (EMT) by serving as a transcription co-activator. Furthermore, hypoxia-induced TET1 also regulates glucose metabolism and hypoxia-induced EMT through enhancing the expression of insulin induced gene 1 (INSIG1). The roles and mechanisms of action of 5hmC and TET proteins in ES cell biology and during embryonic development, as well as in cancer biology, will be the main focus in this review.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
118
|
Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes. J Clin Med 2016; 5:jcm5020024. [PMID: 26861406 PMCID: PMC4773780 DOI: 10.3390/jcm5020024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation (TET) proteins induces major epigenetic changes and controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine)-specific dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which also serves as a co-activator of HIF-1α transcriptional regulation to modulate HIF-1α downstream target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor for tumor progression, hypoxia-activated prodrugs (HAPs) may provide a favorable therapeutic approach to lessen hypoxia-induced malignancy.
Collapse
|
119
|
Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr Opin Genet Dev 2016; 36:16-26. [DOI: 10.1016/j.gde.2016.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/28/2022]
|
120
|
Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment? Cancer Lett 2016; 380:359-68. [PMID: 26791236 DOI: 10.1016/j.canlet.2015.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 02/06/2023]
Abstract
Changes in the tumor microenvironment (TME) can trigger the activation of otherwise non-malignant cells to become highly aggressive and motile. This is evident during initial tumor growth when the poor vascularization in tumors generates hypoxic regions that trigger the latent embryonic program, epithelial-to-mesenchymal transition (EMT), in epithelial carcinoma cells (e-cars) leading to highly motile mesenchymal-like carcinoma cells (m-cars), which also acquire cancer stem cell properties. After that, specific bidirectional interactions take place between m-cars and the cellular components of TME at different stages of metastasis. These interactions include several vicious positive feedback loops in which m-cars trigger a phenotypic switch, causing normal stromal cells to become pro-tumorigenic, which then further promote the survival, motility, and proliferation of m-cars. Accordingly, there is not a single culprit accounting for metastasis. Instead both m-cars and the TME dynamically interact, evolve and promote metastasis. In this review, we discuss the current status of the known interactions between m-cars and the TME during different stages of metastasis and how these interactions promote the metastatic activity of highly malignant m-cars by promoting their invasive mesenchymal phenotype and CSC properties.
Collapse
|
121
|
Alivand MR, Sabouni F, Soheili ZS. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells. Curr Eye Res 2016; 41:1245-54. [DOI: 10.3109/02713683.2015.1095933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammad Reza Alivand
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetic, Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sabouni
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
122
|
Tet1 and Tet2 Protect DNA Methylation Canyons against Hypermethylation. Mol Cell Biol 2015; 36:452-61. [PMID: 26598602 PMCID: PMC4719427 DOI: 10.1128/mcb.00587-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a dynamic epigenetic modification with an important role in cell fate specification and reprogramming. The Ten eleven translocation (Tet) family of enzymes converts 5-methylcytosine to 5-hydroxymethylcytosine, which promotes passive DNA demethylation and functions as an intermediate in an active DNA demethylation process. Tet1/Tet2 double-knockout mice are characterized by developmental defects and epigenetic instability, suggesting a requirement for Tet-mediated DNA demethylation for the proper regulation of gene expression during differentiation. Here, we used whole-genome bisulfite and transcriptome sequencing to characterize the underlying mechanisms. Our results uncover the hypermethylation of DNA methylation canyons as the genomic key feature of Tet1/Tet2 double-knockout mouse embryonic fibroblasts. Canyon hypermethylation coincided with disturbed regulation of associated genes, suggesting a mechanistic explanation for the observed Tet-dependent differentiation defects. Based on these results, we propose an important regulatory role of Tet-dependent DNA demethylation for the maintenance of DNA methylation canyons, which prevents invasive DNA methylation and allows functional regulation of canyon-associated genes.
Collapse
|
123
|
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 2015; 7:1150-1184. [PMID: 26516408 PMCID: PMC4620423 DOI: 10.4252/wjsc.v7.i9.1150] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.
Collapse
|
124
|
Strand SH, Hoyer S, Lynnerup AS, Haldrup C, Storebjerg TM, Borre M, Orntoft TF, Sorensen KD. High levels of 5-hydroxymethylcytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clin Epigenetics 2015; 7:111. [PMID: 26478752 PMCID: PMC4608326 DOI: 10.1186/s13148-015-0146-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer (PC) can be stratified into distinct molecular subtypes based on TMPRSS2-ERG gene fusion status, but its potential prognostic value remains controversial. Likewise, routine clinicopathological features cannot clearly distinguish aggressive from indolent tumors at the time of diagnosis; thus, new prognostic biomarkers are urgently needed. The DNA methylation variant 5-hydroxymethylcytosine (5hmC, an oxidized derivative of 5-methylcytosine) has recently emerged as a new diagnostic and/or prognostic biomarker candidate for several human malignancies. However, this remains to be systematically investigated for PC. In this study, we determined 5hmC levels in 311 PC (stratified by ERG status) and 228 adjacent non-malignant (NM) prostate tissue specimens by immunohistochemical analysis of a tissue microarray, representing a large radical prostatectomy (RP) cohort with long clinical follow-up. We investigated possible correlations between 5hmC and routine clinicopathological variables and assessed the prognostic potential of 5hmC by Kaplan-Meier and uni- and multivariate Cox regression analyses in ERG+ (n = 178) vs. ERG− (n = 133) PCs using biochemical recurrence (BCR) as endpoint. Results We observed a borderline significant (p = 0.06) reduction in 5hmC levels in PC compared to NM tissue samples, which was explained by a highly significant (p < 0.001) loss of 5hmC in ERG− PCs. ERG status was not predictive of BCR in this cohort (p = 0.73), and no significant association was found between BCR and 5hmC levels in ERG+ PCs (p = 0.98). In contrast, high 5hmC immunoreactivity was a significant adverse predictor of BCR after RP in ERG− PCs, independent of Gleason score, pathological tumor stage, surgical margin status, and pre-operative prostate-specific antigen (PSA) level (hazard ratio (HR) (95 % confidence interval (CI)): 1.62 (1.15–2.28), p = 0.006). Conclusions This is the first study to demonstrate a prognostic potential for 5hmC in PC. Our findings highlight the importance of ERG stratification in PC biomarker studies and suggest that epigenetic mechanisms involving 5hmC are important for the development and/or progression of ERG− PC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0146-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siri H Strand
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Soren Hoyer
- Department of Histopathology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Sofie Lynnerup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark ; Department of Histopathology, Aarhus University Hospital, Aarhus, Denmark ; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Christa Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Maj Storebjerg
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark ; Department of Histopathology, Aarhus University Hospital, Aarhus, Denmark ; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Torben F Orntoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Karina D Sorensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
125
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|