101
|
Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neurosci 2016; 37:1413-1427. [PMID: 28011744 DOI: 10.1523/jneurosci.2462-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.
Collapse
|
102
|
Surmacki JM, Ansel-Bollepalli L, Pischiutta F, Zanier ER, Ercole A, Bohndiek SE. Label-free monitoring of tissue biochemistry following traumatic brain injury using Raman spectroscopy. Analyst 2016; 142:132-139. [PMID: 27905576 PMCID: PMC6049045 DOI: 10.1039/c6an02238c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/27/2016] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major cause of death and long-term disability. At present, we lack methods to non-invasively track tissue biochemistry and hence select appropriate interventions for patients. We hypothesized that detailed label-free vibrational chemical analysis of focal TBI could provide such information. We assessed the early spatial and temporal changes in tissue biochemistry that are associated with brain injury in mice. Numerous differences were observed in the spectra of the contusion core and pericontusional tissue between 2 and 7 days. For example, a strong signal from haem was seen in the contusion core at 2 days due to haemorrhage, which subsequently resolved. More importantly, elevated cholesterol levels were demonstrated by 7 days, which may be a marker of important cell repair processes. Principal component analysis revealed an early 'acute' component dominated by haemorrhage and a delayed component reflecting changes in protein and lipid composition. Notably we demonstrated changes in Raman signature with time even in the contralateral hemisphere when compared to sham control mice. Raman spectroscopy therefore shows promise as a probe that is sensitive to important pathobiological processes in TBI and could be applied in future both in the experimental setting, as well as in the clinic.
Collapse
Affiliation(s)
- Jakub Maciej Surmacki
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK. and Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Laura Ansel-Bollepalli
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK. and Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS - Istituto de Ricerche Farmacologiche Mario Negri, Via G. La Masa 19, 20156 Milano, Italy.
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto de Ricerche Farmacologiche Mario Negri, Via G. La Masa 19, 20156 Milano, Italy.
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sarah Elizabeth Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK. and Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
103
|
Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiol Dis 2016; 96:284-293. [DOI: 10.1016/j.nbd.2016.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023] Open
|
104
|
Beerling E, Oosterom I, Voest E, Lolkema M, van Rheenen J. Intravital characterization of tumor cell migration in pancreatic cancer. INTRAVITAL 2016; 5:e1261773. [PMID: 28243522 PMCID: PMC5226006 DOI: 10.1080/21659087.2016.1261773] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/04/2023]
Abstract
Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior.
Collapse
Affiliation(s)
- Evelyne Beerling
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, the Netherlands
| | - Ilse Oosterom
- University Medical Center Utrecht , Utrecht, the Netherlands
| | - Emile Voest
- Cancer Genomics Netherlands, The Netherlands Cancer Institute , Amsterdam, the Netherlands
| | - Martijn Lolkema
- University Medical Center Utrecht , Utrecht, the Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
105
|
Abstract
Historically, the brain has been considered an immune-privileged organ separated from the peripheral immune system by the blood-brain barrier. However, immune responses do occur in the brain in neurological conditions in which the integrity of the blood-brain barrier is compromised, exposing the brain to peripheral antigens and endogenous danger signals. While most of the associated pathological processes occur in the central nervous system, it is now clear that peripheral immune cells, especially mononuclear phagocytes, that infiltrate into the injury site play a key role in modulating the progression of primary brain injury development. As inflammation is a necessary and critical component for the subsequent injury resolution process, understanding the contribution of mononuclear phagocytes on the regulation of inflammatory responses may provide novel approaches for potential therapies. Furthermore, predisposed comorbid conditions at the time of stroke cause the alteration of stroke-induced immune and inflammatory responses and subsequently influence stroke outcome. In this review, we summarize a role for microglia and monocytes/macrophages in acute ischemic stroke in the context of normal and metabolically compromised conditions.
Collapse
Affiliation(s)
- Eunhee Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Sunghee Cho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA.
| |
Collapse
|
106
|
Orsini F, Chrysanthou E, Dudler T, Cummings WJ, Takahashi M, Fujita T, Demopulos G, De Simoni MG, Schwaeble W. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J Neuroinflammation 2016; 13:213. [PMID: 27577570 PMCID: PMC5006610 DOI: 10.1186/s12974-016-0684-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. This work defines the contributions of each of the three LP-associated enzymes-mannan-binding lectin-associated serine protease (MASP)-1, MASP-2, and MASP-3-to ischemic brain injury in experimental mouse models of stroke. METHODS Focal cerebral ischemia was induced in wild-type (WT) mice or mice deficient for defined complement components by transient middle cerebral artery occlusion (tMCAO) or three-vessel occlusion (3VO). The inhibitory MASP-2 antibody was administered systemically 7 and 3.5 days before and at reperfusion in WT mice in order to assure an effective MASP-2 inhibition throughout the study. Forty-eight hours after ischemia, neurological deficits and infarct volumes were assessed. C3 deposition and microglia/macrophage morphology were detected by immunohistochemical, immunofluorescence, and confocal analyses. RESULTS MASP-2-deficient mice (MASP-2(-/-)) and WT mice treated with an antibody that blocks MASP-2 activity had significantly reduced neurological deficits and histopathological damage after transient ischemia and reperfusion compared to WT or control-treated mice. Surprisingly, MASP-1/3(-/-) mice were not protected, while mice deficient in factor B (fB(-/-)) showed reduced neurological deficits compared to WT mice. Consistent with behavioral and histological data, MASP-2(-/-) had attenuated C3 deposition and presented with a significantly higher proportion of ramified, surveying microglia in contrast to the hypertrophic pro-inflammatory microglia/macrophage phenotype seen in the ischemic brain tissue of WT mice. CONCLUSIONS This work demonstrates the essential role of the low-abundant MASP-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy
| | - Elvina Chrysanthou
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.,Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.,MRC Toxicology Unit, Leicester, LE1 9HN, UK
| | - Thomas Dudler
- OMEROS Corporation, 201 Elliott Ave W, Seattle, WA, 98119, USA
| | | | - Minoru Takahashi
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute and Department of Immunology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | | | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa, 19-20156, Milan, Italy.
| | - Wilhelm Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, MSB, University Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
107
|
Stocchetti N, Zanier ER. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:148. [PMID: 27323708 PMCID: PMC4915181 DOI: 10.1186/s13054-016-1318-1] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Traditionally seen as a sudden, brutal event with short-term impairment, traumatic brain injury (TBI) may cause persistent, sometimes life-long, consequences. While mortality after TBI has been reduced, a high proportion of severe TBI survivors require prolonged rehabilitation and may suffer long-term physical, cognitive, and psychological disorders. Additionally, chronic consequences have been identified not only after severe TBI but also in a proportion of cases previously classified as moderate or mild. This burden affects the daily life of survivors and their families; it also has relevant social and economic costs. Outcome evaluation is difficult for several reasons: co-existing extra-cranial injuries (spinal cord damage, for instance) may affect independence and quality of life outside the pure TBI effects; scales may not capture subtle, but important, changes; co-operation from patients may be impossible in the most severe cases. Several instruments have been developed for capturing specific aspects, from generic health status to specific cognitive functions. Even simple instruments, however, have demonstrated variable inter-rater agreement. The possible links between structural traumatic brain damage and functional impairment have been explored both experimentally and in the clinical setting with advanced neuro-imaging techniques. We briefly report on some fundamental findings, which may also offer potential targets for future therapies. Better understanding of damage mechanisms and new approaches to neuroprotection-restoration may offer better outcomes for the millions of survivors of TBI.
Collapse
Affiliation(s)
- Nino Stocchetti
- Department of Physiopathology and Transplantation, Milan University, Milan, Italy.,Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via F Sforza, 35, 20122, Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via Giuseppe La Masa 19, 20156, Milan, Italy.
| |
Collapse
|
108
|
Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, Sammali E, Pischiutta F, De Simoni MG. Fractalkine Receptor Deficiency Is Associated with Early Protection but Late Worsening of Outcome following Brain Trauma in Mice. J Neurotrauma 2015; 33:1060-72. [PMID: 26180940 DOI: 10.1089/neu.2015.4041] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An impaired ability to regulate microglia activation by fractalkine (CX3CL1) leads to microglia chronic sub-activation. How this condition affects outcome after acute brain injury is still debated, with studies showing contrasting results depending on the timing and the brain pathology. Here, we investigated the early and delayed consequences of fractalkine receptor (CX3CR1) deletion on neurological outcome and on the phenotypical features of the myeloid cells present in the lesions of mice with traumatic brain injury (TBI). Wild type (WT) and CX3CR1(-/-) C57Bl/6 mice were subjected to sham or controlled cortical impact brain injury. Outcome was assessed at 4 days and 5 weeks after TBI by neuroscore, neuronal count, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Compared with WT mice, CX3CR1(-/-) TBI mice showed a significant reduction of sensorimotor deficits and lower cellular damage in the injured cortex 4 days post-TBI. Conversely, at 5 weeks, they showed a worsening of sensorimotor deficits and pericontusional cell death. Microglia (M) and macrophage (μ) activation and polarization were assessed by quantitative immunohistochemistry for CD11b, CD68, Ym1, and inducible nitric oxide synthase (iNOS)-markers of M/μ activation, phagocytosis, M2, and M1 phenotypes, respectively. Morphological analysis revealed a decreased area and perimeter of CD11b(+) cells in CX3CR1(-/-) mice at 4 days post-TBI, whereas, at 5 weeks, both parameters were significantly higher, compared with WT mice. At 4 days, CX3CR1(-/-) mice showed significantly decreased CD68 and iNOS immunoreactivity, while at 5 weeks post-injury, they showed a selective increase of iNOS. Gene expression on CD11b(+) sorted cells revealed an increase of interleukin 10 and insulin-like growth factor 1 (IGF1) at 1 day and a decrease of IGF1 4 days and 5 weeks post-TBI in CX3CR1(-/-), compared with WT mice. These data show an early protection followed by a chronic exacerbation of TBI outcome in the absence of CX3CR1. Thus, longitudinal effects of myeloid cell manipulation at different stages of pathology should be investigated to understand how and when their modulation may offer therapeutic chances.
Collapse
Affiliation(s)
- Elisa R Zanier
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy
| | - Federica Marchesi
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy
| | - Fabrizio Ortolano
- 2 Neuroscience ICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan, Italy
| | - Carlo Perego
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy
| | - Maedeh Arabian
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy .,3 Department of Physiology, Faculty of Medicine, Tehran University of Medical Science , Tehran, Iran
| | - Tommaso Zoerle
- 2 Neuroscience ICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan, Italy
| | - Eliana Sammali
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy .,4 Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan, Italy
| | - Francesca Pischiutta
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy
| | - Maria-Grazia De Simoni
- 1 Department of Neuroscience, IRCCS-Istituto di Recerche Farmacologiche Mario Negri , Milan, Italy
| |
Collapse
|
109
|
Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG. The ischemic environment drives microglia and macrophage function. Front Neurol 2015; 6:81. [PMID: 25904895 PMCID: PMC4389404 DOI: 10.3389/fneur.2015.00081] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Cells of myeloid origin, such as microglia and macrophages, act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization), myeloid cells acquire protective functions (M2) and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affect microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity, and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate and the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis, and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies, such as stem cell treatment, may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute brain injury.
Collapse
Affiliation(s)
- Stefano Fumagalli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy ; Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - Carlo Perego
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|