101
|
Çimen I, Kocatürk B, Koyuncu S, Tufanlı Ö, Onat UI, Yıldırım AD, Apaydın O, Demirsoy Ş, Aykut ZG, Nguyen UT, Watkins SM, Hotamışlıgil GS, Erbay E. Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci Transl Med 2016; 8:358ra126. [DOI: 10.1126/scitranslmed.aaf9087] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
|
102
|
Namgaladze D, Brüne B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1796-1807. [PMID: 27614008 DOI: 10.1016/j.bbalip.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
103
|
Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.mchd-0021-2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NOD-like receptor (NLR) proteins, as much as Toll-like receptor proteins, play a major role in modulating myeloid cells in their immune functions. There is still, however, limited knowledge on the expression and function of several of the mammalian NLR proteins in myeloid lineages. Still, the function of pyrin domain-containing NLR proteins and NLRC4/NAIP as inflammasome components that drive interleukin-1β (IL-1β) and IL-18 maturation and secretion upon pathogen stimulation is well established. NOD1, NOD2, NLRP3, and NLRC4/NAIP act as bona fide pattern recognition receptors (PRRs) that sense microbe-associated molecular patterns (MAMPs) but also react to endogenous danger-associated molecular patterns (DAMPs). Ultimately, activation of these receptors achieves macrophage activation and maturation of dendritic cells to drive antigen-specific adaptive immune responses. Upon infection, sensing of invading pathogens and likely of DAMPs that are released in response to tissue injury is a process that involves multiple PRRs in both myeloid and epithelial cells, and these act in concert to design tailored, pathogen-adapted immune responses by induction of different cytokine profiles, giving rise to appropriate lymphocyte polarization.
Collapse
|
104
|
Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b+ macrophages. J Nutr Biochem 2016; 34:61-72. [DOI: 10.1016/j.jnutbio.2016.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/19/2022]
|
105
|
Martínez-Micaelo N, González-Abuín N, Pinent M, Ardévol A, Blay M. Dietary fatty acid composition is sensed by the NLRP3 inflammasome: omega-3 fatty acid (DHA) prevents NLRP3 activation in human macrophages. Food Funct 2016; 7:3480-7. [PMID: 27405925 DOI: 10.1039/c6fo00477f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Nod-like receptor protein 3 (NLRP3) inflammasome is considered to be a pivotal host platform responsible for sensing of exogenous and endogenous danger signals, including those generated as a result of metabolic dysregulation, and for the subsequent, IL-1β-mediated orchestration of inflammatory and innate immunity responses. In this way, although the molecular link between diet-induced obesity and inflammasome activation is still unclear, free fatty acids (FFA) have been proposed as a triggering event. We report that dietary fatty acid (FA) composition is sensed by the NLRP3 inflammasome in human macrophages. For this purpose, we have analysed three roles of FA supplementation: as a priming signal for ATP-activated macrophages, in determining where the administration of dietary FAs interferes with LPS-mediated inflammasome activation and by inducing inflammasome activation per se. In this study, we confirm that saturated (SFAs) activated the NLRP3 inflammasome and stimulated the secretion of the IL-1β cytokine, while PUFAs were mainly inhibitors. Moreover, in general, DHA (n-3 PUFA) was more effective in preventing inflammasome activation than arachidonic acid (n-6 PUFA).
Collapse
Affiliation(s)
- N Martínez-Micaelo
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
106
|
Robblee MM, Kim CC, Porter Abate J, Valdearcos M, Sandlund KLM, Shenoy MK, Volmer R, Iwawaki T, Koliwad SK. Saturated Fatty Acids Engage an IRE1α-Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells. Cell Rep 2016; 14:2611-23. [PMID: 26971994 DOI: 10.1016/j.celrep.2016.02.053] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
Diets rich in saturated fatty acids (SFAs) produce a form of tissue inflammation driven by "metabolically activated" macrophages. We show that SFAs, when in excess, induce a unique transcriptional signature in both mouse and human macrophages that is enriched by a subset of ER stress markers, particularly IRE1α and many adaptive downstream target genes. SFAs also activate the NLRP3 inflammasome in macrophages, resulting in IL-1β secretion. We found that IRE1α mediates SFA-induced IL-1β secretion by macrophages and that its activation by SFAs does not rely on unfolded protein sensing. We show instead that the ability of SFAs to stimulate either IRE1α activation or IL-1β secretion can be specifically reduced by preventing their flux into phosphatidylcholine (PC) or by increasing unsaturated PC levels. Thus, IRE1α is an unrecognized intracellular PC sensor critical to the process by which SFAs stimulate macrophages to secrete IL-1β, a driver of diet-induced tissue inflammation.
Collapse
Affiliation(s)
- Megan M Robblee
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Charles C Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jess Porter Abate
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Martin Valdearcos
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Karin L M Sandlund
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Meera K Shenoy
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Romain Volmer
- Universite de Toulouse, INP, ENVT, UMR1225, IHAP, 31076 Toulouse, France; INRA, UMR1225, IHAP, 31076 Toulouse, France
| | - Takao Iwawaki
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Suneil K Koliwad
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
107
|
Sui YH, Luo WJ, Xu QY, Hua J. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. World J Gastroenterol 2016; 22:2533-2544. [PMID: 26937141 PMCID: PMC4768199 DOI: 10.3748/wjg.v22.i8.2533] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/17/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.
METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Primary hepatocytes were treated with either saturated fatty acids (SFAs) or PUFAs as well as combined with lipopolysaccharide (LPS). The expression of NOD-like receptor protein 3 (NLRP3) inflammasome, peroxisome proliferator-activated receptor-γ and nuclear factor-kappa B (NF-κB) was determined by real-time PCR and Western blot. The activity of Caspase-1 and interleukine-1β production were measured.
RESULTS: High-fat diet-induced hepatic steatosis was sufficient to induce and activate hepatic NLRP3 inflammasome. SFA palmitic acid (PA) directly activated NLRP3 inflammasome and increased sensitization to LPS-induced inflammasome activation in hepatocytes. In contrast, PUFA docosahexaenoic acid (DHA) had the potential to inhibit NLRP3 inflammasome expression in hepatocytes and partly abolished LPS-induced NLRP3 inflammasome activation. Furthermore, a high-fat diet increased but PUFA-enriched diet decreased sensitization to LPS-induced hepatic NLRP3 inflammasome activation in vivo. Moreover, PA increased but DHA decreased phosphorylated NF-κB p65 protein expression in hepatocytes.
CONCLUSION: Hepatic NLRP3 inflammasome activation played an important role in the development of non-alcoholic fatty liver disease. Dietary SFAs and PUFAs oppositely regulated the activity of NLRP3 inflammasome through direct activation or inhibition of NF-κB.
Collapse
|
108
|
Caspar-Bauguil S, Kolditz CI, Lefort C, Vila I, Mouisel E, Beuzelin D, Tavernier G, Marques MA, Zakaroff-Girard A, Pecher C, Houssier M, Mir L, Nicolas S, Moro C, Langin D. Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages. Diabetologia 2015; 58:2627-36. [PMID: 26245186 DOI: 10.1007/s00125-015-3719-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/09/2015] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Activation of macrophages by fatty acids (FAs) is a potential mechanism linking obesity to adipose tissue (AT) inflammation and insulin resistance. Here, we investigated the effects of FAs released during adipocyte lipolysis on AT macrophages (ATMs). METHODS Human THP-1 macrophages were treated with media from human multipotent adipose-derived stem (hMADS) adipocytes stimulated with lipolytic drugs. Macrophages were also treated with mixtures of FAs and an inhibitor of Toll-like receptor 4, since this receptor is activated by saturated FAs. Levels of mRNA and the secretion of inflammation-related molecules were measured in macrophages. FA composition was determined in adipocytes, conditioned media and macrophages. The effect of chronic inhibition or acute activation of fat cell lipolysis on ATM response was investigated in vivo in mice. RESULTS Whereas palmitic acid alone activates THP-1, conditioned media from hMADS adipocyte lipolysis had no effect on IL, chemokine and cytokine gene expression, and secretion by macrophages. Mixtures of FAs representing de novo lipogenesis or habitual dietary conditions also had no effect. FAs derived from adipocyte lipolysis were taken up by macrophages and stored as triacylglycerol droplets. In vivo, chronic treatment with an antilipolytic drug did not modify gene expression and number of ATMs in mice with intact or defective Tlr4. Stimulation of adipocyte lipolysis increased storage of neutral lipids by macrophages without change in number and phenotype. CONCLUSIONS/INTERPRETATION Our data suggest that adipocyte lipolysis does not activate inflammatory pathways in ATMs, which instead may act as scavengers of FAs.
Collapse
Affiliation(s)
- Sylvie Caspar-Bauguil
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Catherine-Ines Kolditz
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Corinne Lefort
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Isabelle Vila
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Marie-Adeline Marques
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Alexia Zakaroff-Girard
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
- Inserm, UMR1048, Cytometry Facility, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- Inserm, UMR1048, Team 1, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Christiane Pecher
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
- Inserm, UMR1048, Cytometry Facility, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Marianne Houssier
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Lucile Mir
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Sarah Nicolas
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Cédric Moro
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- Inserm, UMR1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Obesity Research Laboratory, Team 4, CHU Rangueil, 1 avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 4, France.
- University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
109
|
Epidermal Fatty Acid binding protein promotes skin inflammation induced by high-fat diet. Immunity 2015; 42:953-964. [PMID: 25992864 DOI: 10.1016/j.immuni.2015.04.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/12/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
Defining specific cellular and molecular mechanisms in most obesity-related diseases remains an important challenge. Here we report a serendipitous finding that consumption of a high-fat diet (HFD) greatly increased the occurrence of skin lesions in C57BL/6 mice. We demonstrated that HFD induced the accumulation of a specific type of CD11c(+) macrophages in skin preceding detectable lesions. These cells primed skin to induce IL-1β and IL-18 signaling, which further promoted the cytokines IFN-γ- and IL-17-mediated skin inflammation. Mechanistically, epidermal fatty acid binding protein (E-FABP) was significantly upregulated in skin of obese mice, which coupled lipid droplet formation and NLRP3 inflammasome activation. Deficiency of E-FABP in obese mice decreased recruitment of CD11c(+) macrophages in skin tissues, reduced production of IL-1β and IL-18, and consequently dampened activation of effector T cells. Furthermore, E-FABP-deficient mice are completely resistant to HFD-induced skin lesions. Collectively, E-FABP represents a molecular sensor triggering HFD-induced skin inflammation.
Collapse
|
110
|
Song F, Ma Y, Bai XY, Chen X. The Expression Changes of Inflammasomes in the Aging Rat Kidneys. J Gerontol A Biol Sci Med Sci 2015. [PMID: 26219846 DOI: 10.1093/gerona/glv078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Inflammasomes are important components of innate immune system in the body. However, the function of inflammasomes and their underlying mechanisms in renal aging remain unclear. In this study, for the first time, we systematically investigated the role of the inflammasomes and the inflammatory responses activated by inflammasomes during kidney aging. We found that during kidney aging, the expression levels of the molecules associated with the activation of inflammasomes, including toll-like receptor-4 and interleukin-1 receptor (IL-1R), were significantly increased; their downstream signaling pathway molecule interleukin-1 receptor-associated kinase-4 (IRAK4) was markedly activated (Phospho-IRAK4 was obviously increased); the nuclear factor-κB (NF-κB) signaling pathway was activated (the activated NF-κB pathway molecules Phospho-IKKβ, Phospho-IκBα, and Phospho-NF-κBp65 were significantly elevated); the levels of the inflammasome components NOD-like receptor P3 (NLRP3), NLRC4, and pro-caspase-1 were prominently upregulated; and the proinflammatory cytokines IL-1β and IL-18 were notably increased in the kidneys of 24-month-old (elderly group) rats. These results showed that inflammasomes are markedly activated during the renal aging process and might induce inflamm-aging by promoting the maturation and secretion of the proinflammatory cytokines IL-1β and IL-18.
Collapse
Affiliation(s)
- Fei Song
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Yuxiang Ma
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China. Department of Internal Medicine, Beijing Chuiyangliu Hospital, Beijing 100022, China
| | - Xue-Yuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China.
| |
Collapse
|
111
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
112
|
Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21:677-87. [PMID: 26121197 DOI: 10.1038/nm.3893] [Citation(s) in RCA: 2449] [Impact Index Per Article: 244.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023]
Abstract
The inflammasomes are innate immune system receptors and sensors that regulate the activation of caspase-1 and induce inflammation in response to infectious microbes and molecules derived from host proteins. They have been implicated in a host of inflammatory disorders. Recent developments have greatly enhanced our understanding of the molecular mechanisms by which different inflammasomes are activated. Additionally, increasing evidence in mouse models, supported by human data, strongly implicates an involvement of the inflammasome in the initiation or progression of diseases with a high impact on public health, such as metabolic disorders and neurodegenerative diseases. Finally, recent developments pointing toward promising therapeutics that target inflammasome activity in inflammatory diseases have been reported. This review will focus on these three areas of inflammasome research.
Collapse
Affiliation(s)
- Haitao Guo
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin B Callaway
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P-Y Ting
- 1] The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
113
|
Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, Benito M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol 2015; 14:75. [PMID: 26055507 PMCID: PMC4475625 DOI: 10.1186/s12933-015-0237-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several translational studies have identified the differential role between saturated and unsaturated fatty acids at cardiovascular level. However, the molecular mechanisms that support the protective role of oleate in cardiovascular cells are poorly known. For these reasons, we studied the protective role of oleate in the insulin resistance and in the atherosclerotic process at cellular level such as in cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). METHODS The effect of oleate in the cardiovascular insulin resistance, vascular dysfunction, inflammation, proliferation and apoptosis of VSMCs were analyzed by Western blot, qRT-PCR, BrdU incorporation and cell cycle analysis. RESULTS Palmitate induced insulin resistance. However, oleate not only did not induce cardiovascular insulin resistance but also had a protective effect against insulin resistance induced by palmitate or TNFα. One mechanism involved might be the prevention by oleate of JNK-1/2 or NF-κB activation in response to TNF-α or palmitate. Oleate reduced MCP-1 and ICAM-1 and increased eNOS expression induced by proinflammatory cytokines in ECs. Furthermore, oleate impaired the proliferation induced by TNF-α, angiotensin II or palmitate and the apoptosis induced by TNF-α or thapsigargin in VSMCs. CONCLUSIONS Our data suggest a differential role between oleate and palmitate and support the concept of the cardioprotector role of oleate as the main lipid component of virgin olive oil. Thus, oleate protects against cardiovascular insulin resistance, improves endothelial dysfunction in response to proinflammatory signals and finally, reduces proliferation and apoptosis in VSMCs that may contribute to an ameliorated atherosclerotic process and plaque stability.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Blotting, Western
- Cell Line
- Cell Proliferation/drug effects
- Chemokine CCL2/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Inflammation
- Insulin Resistance
- Intercellular Adhesion Molecule-1/drug effects
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/drug effects
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/drug effects
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oleic Acid/pharmacology
- Palmitates/pharmacology
- Palmitic Acid/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Necrosis Factor-alpha/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Liliana Perdomo
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Yolanda F Otero
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
| |
Collapse
|
114
|
Abstract
OBJECTIVES A growing body of evidence emerges that obesity, metabolic syndrome, type 2 diabetes and cardiovascular disease are intimately related to chronic inflammation. METHODS A narrative review summarizing the most recent data of the literature describing the pathological implications of inflammation in obese patients with cardiometabolic disorders. RESULTS Besides high-sensitive C-reactive protein, various circulating or in situ inflammatory markers have been identified, presumably reflecting the presence of inflammation in various key-organs (visceral adipose tissue, skeletal muscle, pancreatic islets, liver, intestine, arterial wall). Available data support the concept that targeting inflammation, not only reduces systemic inflammatory markers, but also improves insulin sensitivity and ameliorates glucose control in insulin-resistant patients, thus potentially reducing the risk of cardiovascular complications. CONCLUSION These observations confirm the role of inflammation in cardiometabolic diseases and support the development of pharmacological strategies that aim at reducing inflammation, especially in patients with type 2 diabetes.
Collapse
|
115
|
Im DS. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur J Pharmacol 2015; 785:36-43. [PMID: 25987421 DOI: 10.1016/j.ejphar.2015.03.094] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/15/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), which are plentiful in fish oil, have been known for decades to be beneficial functional nutrients in different disease states. GPR120 is a G protein-coupled receptor for long-chain unsaturated fatty acids, including n-3 PUFAs, and was recently renamed free fatty acid receptor 4 (FFA4). Studies on FFA4-deficient mice and the development of specific pharmacological tools have started to unravel the functions of FFA4 associated with the actions of n-3 PUFAs in obesity, type 2 diabetes, and inflammation-related diseases. Here, the state of the art regarding the roles and functions of FFA4 and n-3 PUFA in macrophages are reviewed from the pharmacological perspective. In particular, the functions of n-3 PUFA on the anti-inflammatory M2 phenotypes of macrophages in different organs, such as, adipose tissues and liver, are discussed along with future research directions.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
116
|
Haneklaus M, O'Neill LAJ. NLRP3 at the interface of metabolism and inflammation. Immunol Rev 2015; 265:53-62. [DOI: 10.1111/imr.12285] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Moritz Haneklaus
- School of Biochemistry & Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry & Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
117
|
Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 2015; 59:1249-63. [DOI: 10.1002/mnfr.201400569] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Marine S. Da Silva
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| |
Collapse
|
118
|
Shikama Y, Aki N, Hata A, Nishimura M, Oyadomari S, Funaki M. Palmitate-stimulated monocytes induce adhesion molecule expression in endothelial cells via IL-1 signaling pathway. J Cell Physiol 2015; 230:732-42. [PMID: 25201247 DOI: 10.1002/jcp.24797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Increased intake of saturated fatty acids (SFAs), such as palmitate (Pal), is linked to a higher risk of type 2 diabetes and cardiovascular disease. Although recent studies have investigated the direct effects of SFAs on inflammatory responses in vascular endothelial cells, it remains unknown whether SFAs also induce these responses mediated by circulating cells. In this study, especially focused on adhesion molecules and monocytes, we investigated the indirect effects of Pal on expression and release of ICAM-1 and E-selectin in vascular endothelial cells. Phorbol 12-myristate 13-acetate (PMA)-treated THP-1 (pTHP-1) cells and human monocytes were stimulated with various free fatty acids (FFAs). SFAs, but not unsaturated fatty acids (UFAs), increased interleukin (IL)-1β secretion and decreased IL-1 receptor antagonist (IL-1Ra) secretion, resulting in an increase in the IL-1β/IL-1Ra secretion ratio. UFAs dose-dependently inhibited the increase in IL-1β secretion and decrease in IL-1Ra secretion induced by Pal. Moreover, in human aortic and vein endothelial cells, expression and release of ICAM-1 and E-selectin were induced by treatment with conditioned medium collected from Pal-stimulated pTHP-1 cells and human monocytes, but not by Pal itself. The up-regulated expression and release of adhesion molecules by the conditioned medium were mostly abolished by recombinant human IL-1Ra supplementation. These results suggest that the Pal-induced increase in the ratio of IL-1β/IL-1Ra secretion in monocytes up-regulates endothelial adhesion molecules, which could enhance leukocyte adhesion to endothelium. This study provides further evidence that IL-1β neutralization through receptor antagonism may be useful for preventing the onset and development of cardiovascular disease.
Collapse
Affiliation(s)
- Yosuke Shikama
- Clinical Research Center for Diabetes, Tokushima University Hospital, Kuramoto-cho, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
119
|
York JM, Castellanos KJ, Cabay RJ, Fantuzzi G. Inhibition of the nucleotide-binding domain, leucine-rich containing family, pyrin-domain containing 3 inflammasome reduces the severity of experimentally induced acute pancreatitis in obese mice. Transl Res 2014; 164:259-69. [PMID: 25152324 PMCID: PMC4180798 DOI: 10.1016/j.trsl.2014.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/23/2014] [Indexed: 12/24/2022]
Abstract
Acute pancreatitis (AP), although most often a mild and self-limiting inflammatory disease, worsens to a characteristically necrotic severe acute pancreatitis (SAP) in about 20% of cases. Obesity, affecting more than one-third of American adults, is a risk factor for the development of SAP, but the exact mechanism of this association has not been identified. Coincidental with chronic low-grade inflammation, activation of the nucleotide-binding domain, leucine-rich containing family, pyrin-domain containing 3 (NLRP3) inflammasome increases with obesity. Lean mice genetically deficient in specific components of the NLRP3 inflammasome are protected from experimentally induced AP, indicating a direct involvement of this pathway in AP pathophysiology. We hypothesized that inhibition of the NLRP3 inflammasome with the sulfonylurea drug glyburide would reduce disease severity in obese mice with cerulein-induced SAP. Treatment with glyburide led to significantly reduced relative pancreatic mass and water content and less pancreatic damage and cell death in genetically obese ob/ob mice with SAP compared with vehicle-treated obese SAP mice. Glyburide administration in ob/ob mice with cerulein-induced SAP also resulted in significantly reduced serum levels of interleukin 6, lipase, and amylase and led to lower production of lipopolysaccharide-stimulated interleukin 1β release in cultured peritoneal cells, compared with vehicle-treated ob/ob mice with SAP. Together, these data indicate involvement of the NLRP3 inflammasome in obesity-associated SAP and expose the possible utility of its inhibition in prevention or treatment of SAP in obese individuals.
Collapse
Affiliation(s)
- Jason M York
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Ill.
| | - Karla J Castellanos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Ill
| | - Robert J Cabay
- Department of Pathology, University of Illinois at Chicago, Chicago, Ill
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Ill
| |
Collapse
|
120
|
Legrand-Poels S, Esser N, L'homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 2014; 92:131-41. [PMID: 25175736 DOI: 10.1016/j.bcp.2014.08.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet or synthesized endogenously. In addition to serving as an important source of energy, they produce a variety of both beneficial and detrimental effects. They play essential roles as structural components of all cell membranes and as signaling molecules regulating metabolic pathways through binding to nuclear or membrane receptors. However, under conditions of FFAs overload, they become toxic, inducing ROS production, ER stress, apoptosis and inflammation. SFAs (saturated fatty acids), unlike UFAs (unsaturated fatty acids), have recently been proposed as triggers of the NLRP3 inflammasome, a molecular platform mediating the processing of IL-1β in response to infection and stress conditions. Interestingly, UFAs, especially ω-3 FAs, inhibit NLRP3 inflammasome activation in various settings. We focus on emerging models of NLRP3 inflammasome activation with a special emphasis on the molecular mechanisms by which FFAs modulate the activation of this complex. Taking into consideration the current literature and FFA properties, we discuss the putative involvement of mitochondria and the role of cardiolipin, a mitochondrial phospholipid, proposed to be sensed by NLRP3 after release, exposure and/or oxidation. Finally, we review how this SFA-mediated NLRP3 inflammasome activation contributes to the development of both insulin resistance and deficiency associated with obesity/type 2 diabetes. In this context, we highlight the potential clinical use of ω-3 FAs as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Sylvie Legrand-Poels
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium.
| | - Nathalie Esser
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium; University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Laurent L'homme
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium
| | - André Scheen
- University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Nicolas Paquot
- University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Jacques Piette
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium
| |
Collapse
|
121
|
Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014; 105:141-50. [PMID: 24798950 DOI: 10.1016/j.diabres.2014.04.006] [Citation(s) in RCA: 1368] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
It is recognized that a chronic low-grade inflammation and an activation of the immune system are involved in the pathogenesis of obesity-related insulin resistance and type 2 diabetes. Systemic inflammatory markers are risk factors for the development of type 2 diabetes and its macrovascular complications. Adipose tissue, liver, muscle and pancreas are themselves sites of inflammation in presence of obesity. An infiltration of macrophages and other immune cells is observed in these tissues associated with a cell population shift from an anti-inflammatory to a pro-inflammatory profile. These cells are crucial for the production of pro-inflammatory cytokines, which act in an autocrine and paracrine manner to interfere with insulin signaling in peripheral tissues or induce β-cell dysfunction and subsequent insulin deficiency. Particularly, the pro-inflammatory interleukin-1β is implicated in the pathogenesis of type 2 diabetes through the activation of the NLRP3 inflammasome. The objectives of this review are to expose recent data supporting the role of the immune system in the pathogenesis of insulin resistance and type 2 diabetes and to examine various mechanisms underlying this relationship. If type 2 diabetes is an inflammatory disease, anti-inflammatory therapies could have a place in prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie Esser
- Virology and Immunology Unit, GIGA-Research, University of Liege, Liege, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liege, Liege, Belgium.
| | - Sylvie Legrand-Poels
- Virology and Immunology Unit, GIGA-Research, University of Liege, Liege, Belgium
| | - Jacques Piette
- Virology and Immunology Unit, GIGA-Research, University of Liege, Liege, Belgium
| | - André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liege, Liege, Belgium
| | - Nicolas Paquot
- Virology and Immunology Unit, GIGA-Research, University of Liege, Liege, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liege, Liege, Belgium
| |
Collapse
|
122
|
Maruyama H, Takahashi M, Sekimoto T, Shimada T, Yokosuka O. Linoleate appears to protect against palmitate-induced inflammation in Huh7 cells. Lipids Health Dis 2014; 13:78. [PMID: 24885871 PMCID: PMC4038110 DOI: 10.1186/1476-511x-13-78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/01/2014] [Indexed: 02/07/2023] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) may protect against metabolic diseases. Although the benefits of the n-3 family of PUFA have been well investigated in nonalcoholic steatohepatitis (NASH), little is known about the effect of the n-6 family. This study examined the effect of linoleate, a member of the n-6 family, on regulation of the palmitate-induced inflammatory cytokine interleukin-8 (IL8) in hepatocytes. Methods Huh7 cells and HepG2 cells were cultured with and without free fatty acid treatment (palmitate and linoleate, alone or in combination, 100–1000 μM). Inflammatory pathways, lipid accumulation, apoptosis and cell viability were monitored. Results Dose- and time-related changes of IL8 mRNA expression were examined and 9 h treatment with 500 μM palmitate showed the greatest elevation of IL8. Co-treatment with 500 μM palmitate and 400 μM linoleate significantly suppressed IL8 production below that with palmitate alone in both cells (both mRNA and protein). A quantitative measurement for lipid accumulation showed no significant difference between palmitate-treated cells (1.69 ± 0.21), linoleate-treated cells (1.61 ± 0.16) and palmitate and linoleate-treated cells (1.73 ± 0.22, NS, n = 7). The co-treatment with 400 μM linoleate inhibited phospho-c-Jun N-terminal kinase (pJNK) activation and IkBα reduction caused by 500 μM palmitate treatment. Treatment with 400 μM linoleate alone led to IL8 production (5.48 fold change), similar to co-treatment, with no influence on the expression of pJNK/IkBα. The cell viability was similar between treatment with 500 μM palmitate and with both 500 μM palmitate and 400 μM linoleate, showing no significant changes in the expression of cleaved caspase-3. Conclusions Linoleate is a potent regulator of the proinflammatory cytokine IL8 via the JNK and nuclear factor kappa B pathways that are involved in the pathophysiology of NASH, suggesting a future recommendation of dietary management.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuou-ku 260-8670, Chiba, Japan.
| | | | | | | | | |
Collapse
|