101
|
Willems NMBK, Langenbach GEJ, Stoop R, den Toonder JMJ, Mulder L, Zentner A, Everts V. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:15-21. [PMID: 25063086 DOI: 10.1016/j.msec.2014.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 04/07/2014] [Accepted: 05/06/2014] [Indexed: 01/22/2023]
Abstract
The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2M ribose at 37°C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness.
Collapse
Affiliation(s)
- Nop M B K Willems
- Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Geerling E J Langenbach
- Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Reinout Stoop
- Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden, The Netherlands
| | - Jaap M J den Toonder
- Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lars Mulder
- Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andrej Zentner
- Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Vincent Everts
- Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
102
|
Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm 2014; 2014:975872. [PMID: 24771986 PMCID: PMC3977495 DOI: 10.1155/2014/975872] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a major public health burden that is expected to further increase as the global population ages. In the last twenty years, advanced glycation end products (AGEs) have been shown to be critical mediators both in the pathogenesis and development of osteoporosis and other chronic degenerative diseases related to aging. The accumulation of AGEs within the bone induces the formation of covalent cross-links with collagen and other bone proteins which affects the mechanical properties of tissue and disturbs bone remodelling and deterioration, underlying osteoporosis. On the other hand, the gradual deterioration of the immune system during aging (defined as immunosenescence) is also characterized by the generation of a high level of oxidants and AGEs. The synthesis and accumulation of AGEs (both localized within the bone or in the systemic circulation) might trigger a vicious circle (in which inflammation and aging merged in the word "Inflammaging") which can establish and sustain the development of osteoporosis. This narrative review will update the molecular mechanisms/pathways by which AGEs induce the functional and structural bone impairment typical of osteoporosis.
Collapse
Affiliation(s)
- Roberta Sanguineti
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Alessandra Puddu
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospitals, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospitals, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 6 Viale Benedetto XV, 16132 Genoa, Italy
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Giorgio Luciano Viviani
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
103
|
Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel KH, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 2014; 15:R24. [PMID: 24490752 PMCID: PMC4053864 DOI: 10.1186/gb-2014-15-2-r24] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 02/03/2014] [Indexed: 01/03/2023] Open
Abstract
Background Human aging is associated with DNA methylation changes at specific sites in the genome. These epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age. Results We perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites in blood. We demonstrate that most of these age-associated methylation changes are reversed in induced pluripotent stem cells (iPSCs). Methylation levels at three age-related CpGs - located in the genes ITGA2B, ASPA and PDE4C - were subsequently analyzed by bisulfite pyrosequencing of 151 blood samples. This epigenetic aging signature facilitates age predictions with a mean absolute deviation from chronological age of less than 5 years. This precision is higher than age predictions based on telomere length. Variation of age predictions correlates moderately with clinical and lifestyle parameters supporting the notion that age-associated methylation changes are associated more with biological age than with chronological age. Furthermore, patients with acquired aplastic anemia or dyskeratosis congenita - two diseases associated with progressive bone marrow failure and severe telomere attrition - are predicted to be prematurely aged. Conclusions Our epigenetic aging signature provides a simple biomarker to estimate the state of aging in blood. Age-associated DNA methylation changes are counteracted in iPSCs. On the other hand, over-estimation of chronological age in bone marrow failure syndromes is indicative for exhaustion of the hematopoietic cell pool. Thus, epigenetic changes upon aging seem to reflect biological aging of blood.
Collapse
|
104
|
Yang DH, Chiang TI, Chang IC, Lin FH, Wei CC, Cheng YW. Increased levels of circulating advanced glycation end-products in menopausal women with osteoporosis. Int J Med Sci 2014; 11:453-60. [PMID: 24688308 PMCID: PMC3970097 DOI: 10.7150/ijms.8172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/05/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Advanced glycation end-products (AGEs) can accumulate in organs and tissues during ageing and diabetes. Increased levels of AGEs are found in the bone tissue of patients with osteoporosis. The purpose of this study was to evaluate circulating AGEs in patients with osteoporosis. METHODS We evaluated plasma AGEs, osteoporosis-related biomarkers, and bone mass in 82 menopausal women with osteoporosis or osteopenia, 16 young women with osteopenia, and 43 healthy women without osteoporosis or osteopenia. RESULTS Higher levels of serum AGEs were found in the osteoporosis or osteopenia group compared to healthy women (P < 0.0001). A negative correlation was observed between serum AGEs and lumbar spine bone density (BMD of lumbar spine, r = -0.249, P = 0.028; T-score of lumbar spine, r = -0.261, P = 0.021). Women with a increased level of serum AGEs (> 8.12 U/mL) had a 5.34-fold risk of osteopenia regarding lumbar spine T-score and a 3.31-fold risk of osteopenia regarding the hip T-score. CONCLUSION Serum AGEs could be used to monitor the severity and progression of osteoporosis. An increased serum level of AGEs was associated with impaired bone formation and was a risk factor for the development of osteoporosis. Targeting AGEs may represent a novel therapeutic approach for primary or secondary osteoporosis.
Collapse
Affiliation(s)
- Deng-Ho Yang
- 1. Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; ; 2. Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Taichung Armed-Forces General Hospital, Taichung, Taiwan
| | - Tsay-I Chiang
- 3. Department of Orthopedic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan; ; 4. Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - I-Chang Chang
- 3. Department of Orthopedic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan; ; 5. School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Huang Lin
- 6. School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Wei
- 1. Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; ; 7. Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung Taiwan
| | - Ya-Wen Cheng
- 1. Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; ; 8. Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
105
|
Wang X, Yu S, Hu JP, Wang CY, Wang Y, Liu HX, Liu YL. Streptozotocin-induced diabetes increases amyloid plaque deposition in AD transgenic mice through modulating AGEs/RAGE/NF-κB pathway. Int J Neurosci 2013; 124:601-8. [PMID: 24228859 DOI: 10.3109/00207454.2013.866110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND An increasing number of studies have demonstrated of that diabetes mellitus (DM) is associated with an increased prevalence of Alzheimer disease (AD), the underlying mechanisms are still obscure. METHODS We developed a streptozotocin (STZ)-induced diabetic AD transgenic mouse model and evaluated the effect of hyperglycemia on senile plaque formation. RESULTS Our data showed that administration of STZ increased the level of blood glucose and increased the advanced glycation end products (AGEs) in brain tissue, and further enhanced the expression levels of the receptor for AGEs (RAGE) and the nuclear factor-kappa B (NF-κB) in the brain, and accelerated the senile plaque formation in the transgenic mice. Our results showed that STZ-induced insulin-deficient hyperglycemia caused the pathophysiology of AD in APP/PS1 transgenic mice by modulating the AGEs/RAGE/NF-κB pathway. CONCLUSIONS Our study suggests that there is a close linkage of DM and cerebral amyloidosis in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xu Wang
- 1Department of Histology and Embryology, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | | | | | | | | | | | | |
Collapse
|
106
|
Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BONEKEY REPORTS 2013; 2:447. [PMID: 24501681 DOI: 10.1038/bonekey.2013.181] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023]
Abstract
The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, affiliated with Weill Medical College of Cornell University , New York, NY, USA ; Department of Biophysics and Systems Biology, Weill Medical College of Cornell University , New York, NY, USA
| |
Collapse
|
107
|
Nedić O, Rattan SIS, Grune T, Trougakos IP. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res 2013; 47 Suppl 1:28-38. [PMID: 23692178 DOI: 10.3109/10715762.2013.806798] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed.
Collapse
Affiliation(s)
- O Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
108
|
Ardeljan D, Chan CC. Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 2013; 37:68-89. [PMID: 23933169 PMCID: PMC3830684 DOI: 10.1016/j.preteyeres.2013.07.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
109
|
Whitson HE, Arnold AM, Yee LM, Mukamal KJ, Kizer JR, Djousse L, Ix JH, Siscovick D, Tracy RP, Thielke SM, Hirsch C, Newman AB, Zieman S. Serum carboxymethyl-lysine, disability, and frailty in older persons: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2013; 69:710-6. [PMID: 24127427 DOI: 10.1093/gerona/glt155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Advanced glycation endproducts are biologically active compounds that accumulate in disordered metabolism and normal aging. Carboxymethyl-lysine (CML), a ubiquitous human advanced glycation endproduct, has been associated with age-related conditions and mortality. Our objective was to ascertain the relationship between CML and geriatric outcomes (disability and frailty) in a large cohort of older men and women. METHODS In 1996-1997, serum CML was measured in 3,373 Cardiovascular Health Study participants (mean age 78.1 ± 4.8 years). Disability, defined as difficulty in any of six activities of daily living, was assessed every 6-12 months for 14 years. Frailty was defined according to five standard criteria at the 1996-1997 visit. Cox proportional hazard models estimated the relationship between CML and incident disability (N = 2,643). Logistic regression models estimated the relationship between CML and prevalent frailty. RESULTS Adjusting for multiple potential confounders, higher CML was associated with incident disability (hazard ratio per standard deviation [225 ng/mL] increase: 1.05, 95% CI 1.01-1.11). In men, odds of frailty increased with higher CML values (odds ratio = 1.30 per standard deviation, 95% CI 1.14-1.48), but the relationship was attenuated by adjustment for cognitive status, kidney function, and arthritis. CML was not associated with frailty in women. CONCLUSIONS Higher serum CML levels in late life are associated with incident disability and prevalent frailty. Further work is needed to understand CML's value as a risk stratifier, biomarker, or target for interventions that promote healthy aging.
Collapse
Affiliation(s)
- Heather E Whitson
- Department of Medicine, Duke University, Durham, North Carolina. Durham VA Medical Center, GRECC, Durham, North Carolina.
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle
| | - Laura M Yee
- Department of Biostatistics, University of Washington, Seattle
| | - Kenneth J Mukamal
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jorge R Kizer
- Department of Medicine, and Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Luc Djousse
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joachim H Ix
- Departments of Medicine & Prevention and Family Medicine, University of California, San Diego. Nephrology Section, Veterans Affairs San Diego Healthcare System, California
| | | | | | - Stephen M Thielke
- Puget Sound VA Medical Center, Seattle, Wahington. Department of Psychiatry, University of Washington, Seattle
| | - Calvin Hirsch
- Department of Medicine, University of California Davis
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pennsylvania
| | - Susan Zieman
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
110
|
Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int 2013; 24:2441-7. [PMID: 23471564 PMCID: PMC4550204 DOI: 10.1007/s00198-013-2319-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED It is important to establish the relationship between pentosidine and advanced glycation endproducts (AGEs) in bone. We found the relationship between pentosidine and AGEs and their magnitude of accumulation were dependent on bone's surface-to-volume ratio. Results illustrate the importance of measuring pentosidine and AGEs separately in cancellous and cortical bone. INTRODUCTION Accumulation of collagen cross-links (AGEs) produced by non-enzymatic glycation deteriorates bone's mechanical properties and fracture resistance. Although a single AGE, pentosidine, is commonly used as a representative marker, it is unclear whether it quantitatively reflects total fluorescent AGEs in bone. The goal of this study was to establish the relationship between pentosidine and total AGEs in cancellous and cortical bone. METHODS Pentosidine and total AGEs were quantified in 170 human bone samples. Total fluorescent AGEs were measured in 28 additional cancellous and cortical bone specimens of the same apparent volume that were incubated in control or in vitro glycation solutions. Correlations between pentosidine and total AGEs and differences between cortical and cancellous groups were determined. RESULTS Pentosidine was correlated with total AGEs in cancellous bone (r = 0.53, p < 0.0001) and weakly correlated in cortical bone (r = 0.23, p < 0.05). There was more pentosidine (p < 0.01) and total AGEs (p < 0.001) in cancellous than in cortical bone. The in vitro glycation substudy showed that cancellous bone accumulated more AGEs than cortical bone (p < 0.05). CONCLUSION The relationship between pentosidine and total AGEs and their magnitude of accumulation differed in cancellous and cortical bone of the same apparent volume, and were dependent on the surface-to-volume ratios of each sample. It is important to consider the bone types as two separate entities, and it is crucial to quantify total AGEs in addition to pentosidine to allow for more comprehensive analysis of the effects of non-enzymatic glycation in bone.
Collapse
Affiliation(s)
- Lamya Karim
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 Eighth Street, Troy, NY 12180
| | - Simon Y. Tang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 Eighth Street, Troy, NY 12180
| | - Grażyna E. Sroga
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 Eighth Street, Troy, NY 12180
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 Eighth Street, Troy, NY 12180
| |
Collapse
|
111
|
García-Martín A, Reyes-García R, García-Castro JM, Muñoz-Torres M. Diabetes and osteoporosis: Action of gastrointestinal hormones on the bone. Rev Clin Esp 2013; 213:293-7. [PMID: 26530941 DOI: 10.1016/j.rce.2013.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 11/26/2022]
Abstract
A 62-year-old woman consulted for evaluation of treatment for her type 2 diabetes diagnosed four years ago. He had been received treatment with metformin 850mg twice, with no chronic associated complications. She had hypertension and dyslipidemia. She was being treated with candesartan/hydrochlorothiazide 32/12.5mg and atorvastatin 40mg. Her weight was 92kg and height 162cm (BMI, 35.1kg/m(2)). The last analysis showed fasting glucose 168mg/dl and glycated hemoglobin 7.5%, Microalbuminuria was negative. Blood pressure and lipid profile were within the therapeutic range. Two years ago she suffered a nontraumatic Colle's fracture in her left arm for which she was taking a daily calcium and vitamin D supplement and weekly alendronate. In summary, this is an obese female patient with type 2 diabetes mellitus and inadequate metabolic control, She also has a history of fragility fracture. How should this patient be evaluated and treated?
Collapse
Affiliation(s)
- A García-Martín
- Unidad de Metabolismo Óseo, Servicio de Endocrinología, Hospital Universitario San Cecilio, Granada, España; Sección de Endocrinología, Hospital Comarcal del Noroeste, Murcia, España.
| | - R Reyes-García
- Unidad de Metabolismo Óseo, Servicio de Endocrinología, Hospital Universitario San Cecilio, Granada, España; Unidad de Endocrinología, Hospital General Universitario Rafael Méndez, Murcia, España
| | - J M García-Castro
- Servicio de Medicina Interna, Hospital La Inmaculada, Almería, España
| | - M Muñoz-Torres
- Unidad de Metabolismo Óseo, Servicio de Endocrinología, Hospital Universitario San Cecilio, Granada, España
| |
Collapse
|
112
|
Diabetes and osteoporosis: Action of gastrointestinal hormones on the bone. Rev Clin Esp 2013. [DOI: 10.1016/j.rceng.2013.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
113
|
Di Somma C, Rubino M, Faggiano A, Vuolo L, Contaldi P, Tafuri N, Andretti M, Savastano S, Colao A. Spinal deformity index in patients with type 2 diabetes. Endocrine 2013; 43:651-8. [PMID: 23229683 DOI: 10.1007/s12020-012-9848-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/25/2012] [Indexed: 01/22/2023]
Abstract
The objective of this study is to investigate bone metabolism, density, and quality in patients with diabetes type 2 using DEXA and spinal deformity index (SDI), a surrogate index of bone quality. Fifty-six patients with type 2 diabetes were studied; exclusion criteria were diseases and medications that affect bone and mineral metabolism. Mean age was 65 ± 7 years. Mean diabetes duration was 10 ± 7 years and mean HbA1C was 6.6 ± 0.5 %. BMI was 30 ± 4. Fifty-six sex, age, and BMI matched served as controls. All subjects underwent a clinical and biochemical examination. Spinal and femoral neck BMD were measured by DEXA, and a spine radiography was performed to assess vertebral fractures and to calculate SDI. Mean serum 25-OH vitamin D levels were 19.6 ± 3.7 ng/ml in patients and 30 ± 14 ng/ml in controls (p < 0.01). PTH serum levels were 47.9 ± 40 pg/ml in patients versus 37 ± 5.3 pg/ml in controls (p < 0.01). At lumbar spine there was a significant difference between patients and controls only for T-score (p = <0.01), while at femoral neck there was a difference in BMD (p < 0.01) and in T-score (p < 0.01). Radiological vertebral fractures were found in 46 % of patients and 17 % of controls (p < 0.05). SDI was higher in patients than in controls (p < 0.05). The percentage of fractures with T-score BMD greater than -2.5 was 69 % in patients and 10 % in controls (p < 0.05). As a conclusion, BMD was similar in patients and in controls, while SDI value was higher in patients; therefore, SDI was more specific than BMD for the diagnosis of osteoporosis due to metabolic diseases.
Collapse
|
114
|
Abstract
Atypical femoral fractures have attracted a great deal of attention and controversy in the osteoporosis community because of their association with prolonged bisphosphonate therapy. The purpose of this article is to review the epidemiologic evidence linking bisphosphonates to atypical fractures and to highlight the potential pathologic mechanisms involved in such fractures. A management plan is provided based on the available evidence.
Collapse
Affiliation(s)
- Anas Saleh
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | |
Collapse
|
115
|
Barkaoui A, Hambli R. Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Engin 2013; 17:1590-601. [PMID: 23439084 DOI: 10.1080/10255842.2012.758255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hierarchical structures in bio-composites such as bone tissue have many scales or levels and synergic interactions between the different levels. They also have a highly complex architecture in order to fulfil their biological and mechanical functions. In this study, a new three-dimensional (3D) model based on the finite elements (FEs) method was used to model the relationship between the hierarchical structure and the properties of the constituents at the sub-structure scale (mineralised collagen microfibrils) and to investigate their apparent nanomechanical properties. The results of the proposed FE simulations show that the elastic properties of microfibrils depend on different factors such as the number of cross-links, the mechanical properties and the volume fraction of phases. The results obtained under compression loading at a small deformation < 2% show that the microfibrils have a Young's modulus (Ef) ranging from 0.4 to 1.16 GPa and a Poisson's ratio ranging from 0.26 to 0.3. These results are in excellent agreement with experimental data (X-ray, AFM and MEMS) and molecular simulations.
Collapse
Affiliation(s)
- Abdelwahed Barkaoui
- a PRISME Laboratory, EA4229, University of Orleans , Polytech' Orléans, 8, Rue Léonard de Vinci 45072, Orléans , France
| | | |
Collapse
|
116
|
Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone 2013. [PMID: 23178516 DOI: 10.1016/j.bone.2012.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-enzymatic glycation (NEG) and advanced glycation endproducts (AGEs) may contribute to bone fragility in various diseases, ageing, and other conditions by modifying bone collagen and causing degraded mechanical properties. In this study, we sought to further understand how collagen modification in an in vitro non-enzymatic ribation model leads to loss of cortical bone toughness. Previous in vitro studies using non-enzymatic ribation reported loss of ductility in the cortical bone. Increased crosslinking is most commonly blamed for these changes; however, some studies report positive correlations between measures of total collagen crosslinking and work-to-fracture/toughness measurements whilst correlations between general NEG and measures of ductility are often negative. Fifteen bone beam triplets were cut from bovine metatarsi. Each provided one native non-incubated control, one incubated control and one ribated specimen. Incubation involved simulated body fluid±ribose for fourteen days at 37°C. Pentosidine and pyridinoline crosslinks were measured using HPLC. Three-point bending tests quantified mechanical properties. Fracture surfaces were examined using scanning electron microscopy. The effects of ribation on bone collagen molecular stability and intermolecular connectivity were investigated using differential scanning calorimetry and hydrothermal isometric tension testing. Ribation caused increased non-enzymatic collagen modification and pentosidine content (16mmol/mol collagen) and inferior post-yield mechanical behaviour, especially post-yield strain and flexural toughness. Fracture surfaces were smoother with less collagen fibril deformation or tearing than observed in controls. In the ribated group only, pentosidine content and thermomechanical measures of crosslinking were positively correlated with measures of strain accommodation and energy absorption before failure. Non-enzymatic ribation and the resulting modifications reduce cortical bone pseudo-plasticity through a reduced capacity for post-yield strain accommodation. However, the positive correlations we have found suggest that increased crosslinking may not provide a complete explanation for this embrittlement.
Collapse
Affiliation(s)
- Thomas L Willett
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, 100 College Street, Toronto, Ontario, Canada M5G 1L5.
| | | | | | | | | |
Collapse
|
117
|
Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 2013; 9:4635-44. [PMID: 22902816 DOI: 10.1016/j.actbio.2012.08.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth.
Collapse
|
118
|
Delgado-Andrade C, Roncero-Ramos I, Carballo J, Rufián-Henares JÁ, Seiquer I, Navarro MP. Composition and functionality of bone affected by dietary glycated compounds. Food Funct 2013; 4:549-56. [DOI: 10.1039/c2fo30187c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
119
|
Valle E, Storace D, Sanguineti R, Carter R, Odetti P, Geor R, Bergero D. Association of the glycoxidative stress marker pentosidine with equine laminitis. Vet J 2012. [PMID: 23206662 DOI: 10.1016/j.tvjl.2012.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ponies suffering from recurrent episodes of laminitis when grazed at pasture (pasture-associated laminitis) exhibit phenotypes similar to those associated with human metabolic syndrome. In humans, evidence suggests that the obesity-related morbidities associated with metabolic syndrome, including diabetes and cardiovascular disease, are caused by an increase in the production of advanced glycoxidation end-products (AGEs). These end-products have been recognised as putative pro-inflammatory mediators and are considered a 'risk factor' for human health. However, the evaluation of AGEs in laminitic ponies has not been explored. The aim of this study was to compare plasma concentrations of the AGE pentosidine (PENT) in ponies presenting with clinical features of equine metabolic syndrome (EMS) with a history of recent laminitis and/or showing signs of laminitis at the time of sampling (LP) with those with no prior history of clinical laminitis (NL). Age, body condition score (BCS) and bodyweight were recorded and blood samples collected for the measurement of plasma concentrations of PENT, glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA) and cortisol. Insulin sensitivity was assessed by the reciprocal of the square root of insulin (RISQI) and the insulin:glucose ratio. Plasma PENT concentrations were twofold higher (P<0.005) in LP than in NL ponies. Significant (P<0.05) correlations were also evident between PENT and insulin, RISQI, TG and age. These preliminary findings are consistent with the hypothesis that glycoxidation in laminitis is associated with EMS.
Collapse
Affiliation(s)
- E Valle
- Department of Animal Production, Epidemiology and Ecology, Faculty of Veterinary Medicine, University of Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
120
|
Garnero P. The contribution of collagen crosslinks to bone strength. BONEKEY REPORTS 2012; 1:182. [PMID: 24363926 DOI: 10.1038/bonekey.2012.182] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
Abstract
Collagen crosslinking is a major post-translational modification of collagen which has important roles in determining the biomechanical competence of bone. Crosslinks can be divided into enzymatic lysil oxidase-mediated and non-enzymatic glycation-induced (advanced glycation end products, AGE) molecules. In addition, collagen in bone can also undergo spontaneous isomerization and racemization of the aspartic acid residues with the C-telopeptide (CTX), leading to the formation of two isomers namely α (newly formed collagen) and β (matured isomerized collagen) CTX. Several in vitro and ex vivo studies, relating the bone content of these crosslinks with bone strength, have shown that they contributed to the mechanical competence of trabecular and cortical bone-mainly on the post-yield properties-in part independent of the bone mineral content. In addition, AGEs such as pentosidine have been reported to alter the formation and propagation of microdamage by making the bone more brittle. The bone content of AGEs and isomerization can also be modified by antiresorptive and anabolic therapies. They may thus explain part of the antifracture efficacy of these treatments. The main challenge consists in the transposition of these in vitro/ex vivo studies to clinical applications for the development of a non-invasive biomarker, as none of currently identified collagen crosslinks (both enzymatic and nonenzymatic) is bone specific. Nevertheless, serum or urine levels of pentosidine and the ratio of α/β CTX have been reported to predict fracture risk in postmenopausal women, in men and in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Patrick Garnero
- INSERM Unit 1033 , Lyon, France . ; Cisbio Bioassays , Codolet, France
| |
Collapse
|
121
|
Momma H, Niu K, Kobayashi Y, Guan L, Sato M, Guo H, Chujo M, Otomo A, Yufei C, Tadaura H, Saito T, Mori T, Miyata T, Nagatomi R. Skin advanced glycation end-product accumulation is negatively associated with calcaneal osteo-sono assessment index among non-diabetic adult Japanese men. Osteoporos Int 2012; 23:1673-81. [PMID: 21901479 PMCID: PMC3353116 DOI: 10.1007/s00198-011-1753-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED This study aims to determine the relationship between advanced glycation end-product (AGE) accumulation in skin tissue and bone strength, assessed by quantitative ultrasound, among healthy adult Japanese men. The results of the study suggest that men with higher AGE accumulation in skin tissue have a lower osteo-sono assessment index. INTRODUCTION AGE accumulate in bone collagen with age and diabetes and decrease the mechanical properties of bone. Although increased AGE levels are associated with fractures among diabetic patients and elderly women, it is unclear whether a relationship between increased AGE levels and bone strength is present in apparently healthy adult males. The aim of this study was to determine the relationship between AGE accumulation in tissue and the mechanical properties of bone among adult Japanese men, using quantitative ultrasound as a surrogate measure of the latter. METHODS Skin autofluorescence (AF), which is a noninvasive method for measuring tissue AGEs, and osteo-sono assessment index (OSI), which is determined by quantitative ultrasound, were measured in 193 adult Japanese men (median age 43 years; interquartile range 37.0-55.0 years). RESULTS Adjusted for age, BMI, calcium intake, physical activity, smoking status, and education level, log-transformed skin AF had a negative association with log-transformed OSI (β = -0.218, P < 0.01). Adjusted geometric means (95% CI) for OSI across the tertiles of skin AF were 2.81 (2.75-2.87) for the lowest tertile, 2.81 (2.74-2.87) for the middle tertile, and 2.66 (2.61-2.73) for the highest tertile; thus, OSI for the highest skin AF appeared to be 5.0% lower than that for the lowest and middle skin AF tertiles (P < 0.01). CONCLUSION Among apparently healthy adult Japanese men, those with higher skin AF had a lower OSI, indicating a relationship between AGE accumulation and bone strength. A long-term prospective study is required to clarify the causality.
Collapse
Affiliation(s)
- H. Momma
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - K. Niu
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Y. Kobayashi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - L. Guan
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M. Sato
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - H. Guo
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - M. Chujo
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - A. Otomo
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - C. Yufei
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - H. Tadaura
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - T. Saito
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - T. Mori
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - T. Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - R. Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| |
Collapse
|
122
|
Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One 2012; 7:e35047. [PMID: 22514706 PMCID: PMC3325937 DOI: 10.1371/journal.pone.0035047] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/12/2012] [Indexed: 01/22/2023] Open
Abstract
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.
Collapse
Affiliation(s)
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail:
| |
Collapse
|
123
|
Yamaguchi T, Sugimoto T. Bone metabolism and fracture risk in type 2 diabetes mellitus. BONEKEY REPORTS 2012; 1:36. [PMID: 23951442 PMCID: PMC3727726 DOI: 10.1038/bonekey.2012.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
Abstract
Osteoporosis and type 2 diabetes mellitus (T2DM), both prevalent in aging and westernized societies, adversely affect the health of elderly people by causing fractures and vascular complications, respectively. Recent experimental and clinical studies show that the disorders are etiologically related through the actions of osteocalcin and adiponectin. Meta-analyses of multiple clinical studies show that the hip fracture risk of T2DM patients is increased 1.4-1.7-fold compared with non-DM controls, even though the patients' bone mineral density (BMD) is not diminished. Vertebral fracture risk of the T2DM patients is also increased, and BMD measurement is not sensitive enough to assess this risk. These findings suggest that bone fragility in T2DM patients depends on bone quality deterioration rather than bone mass reduction. Surrogate markers are therefore needed to supplement the partial effectiveness of BMD testing in assessing the fracture risk of the T2DM patients. Markers related to advanced glycation end products may be candidates. These substances modulate bone quality in DM. Until research establishes the usefulness of surrogate markers, physicians should assess fracture risk in T2DM patients not only by measuring the BMD, but also by taking a fracture history and evaluating prior vertebral fractures using spinal X-rays.
Collapse
Affiliation(s)
- Toru Yamaguchi
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| | - Toshitsugu Sugimoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
124
|
|
125
|
Sroga GE, Karim L, Colón W, Vashishth D. Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Mol Cell Proteomics 2011; 10:M110.006718. [PMID: 21606484 PMCID: PMC3186195 DOI: 10.1074/mcp.m110.006718] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/16/2011] [Indexed: 12/29/2022] Open
Abstract
There is growing evidence supporting the need for a broad scale investigation of the proteins and protein modifications in the organic matrix of bone and the use of these measures to predict fragility fractures. However, limitations in sample availability and high heterogeneity of bone tissue cause unique experimental and/or diagnostic problems. We addressed these by an innovative combination of laser capture microscopy with our newly developed liquid chromatography separation methods, followed by gel electrophoresis and mass spectrometry analysis. Our strategy allows in-depth analysis of very limited amounts of bone material, and thus, can be important to medical sciences, biology, forensic, anthropology, and archaeology. The developed strategy permitted unprecedented biochemical analyses of bone-matrix proteins, including collagen modifications, using nearly nanoscale amounts of exceptionally homogenous bone tissue. Dissection of fully mineralized bone-tissue at such degree of homogeneity has not been achieved before. Application of our strategy established that: (1) collagen in older interstitial bone contains higher levels of an advanced glycation end product pentosidine then younger osteonal tissue, an observation contrary to the published data; (2) the levels of two enzymatic crosslinks (pyridinoline and deoxypiridinoline) were higher in osteonal than interstitial tissue and agreed with data reported by others; (3) younger osteonal bone has higher amount of osteopontin and osteocalcin then older interstitial bone and this has not been shown before. Taken together, these data show that the level of fluorescent crosslinks in collagen and the amount of two major noncollagenous bone matrix proteins differ at the level of osteonal and interstitial tissue. We propose that this may have important implications for bone remodeling processes and bone microdamage formation.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- From the Center for Biotechnology and Interdisciplinary Studies‡
- Department of Biomedical Engineering‖; and
| | - Lamya Karim
- From the Center for Biotechnology and Interdisciplinary Studies‡
- Department of Biomedical Engineering‖; and
| | - Wilfredo Colón
- From the Center for Biotechnology and Interdisciplinary Studies‡
- Department of Chemistry and Biological Chemistry§, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Deepak Vashishth
- From the Center for Biotechnology and Interdisciplinary Studies‡
- Department of Biomedical Engineering‖; and
| |
Collapse
|
126
|
Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci U S A 2011; 108:14416-21. [PMID: 21873221 DOI: 10.1073/pnas.1107966108] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of human cortical bone evolves over multiple length scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at near-millimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone's toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural scales typically below a micrometer and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple length scales. Using in situ small-angle X-ray scattering and wide-angle X-ray diffraction to characterize submicrometer structural changes and synchrotron X-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micrometer scales, we show how these age-related structural changes at differing size scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased nonenzymatic collagen cross-linking, which suppresses plasticity at nanoscale dimensions, and to an increased osteonal density, which limits the potency of crack-bridging mechanisms at micrometer scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by "plastic" deformation at higher structural levels, which occurs by the process of microcracking.
Collapse
|
127
|
Dong XN, Qin A, Xu J, Wang X. In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 2011; 49:174-83. [PMID: 21530698 PMCID: PMC3117937 DOI: 10.1016/j.bone.2011.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/09/2011] [Accepted: 04/13/2011] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6years old), middle-aged (51±3years old) and elderly (76±4years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360nm and emission wave length 470±40nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process.
Collapse
Affiliation(s)
- X. Neil Dong
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, Texas 75799, USA
| | - An Qin
- Department of Orthopaedic Surgery, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodu Wang
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
128
|
Tang SY, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech 2011; 44:330-6. [PMID: 21056419 PMCID: PMC3019296 DOI: 10.1016/j.jbiomech.2010.10.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/22/2023]
Abstract
The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk.
Collapse
Affiliation(s)
- S Y Tang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
129
|
Shiraki M, Kuroda T, Shiraki Y, Tanaka S, Higuchi T, Saito M. Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab 2011; 29:62-70. [PMID: 20458602 DOI: 10.1007/s00774-010-0191-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/05/2010] [Indexed: 01/22/2023]
Abstract
To clarify what kind of risk factors predict incident fractures in patients treated with bisphosphonates, the authors investigated the relationship between baseline characteristics and incident vertebral fracture in Japanese osteoporosis patients undergoing bisphosphonate treatment. This was a multi-center follow-up study conducted at three centers, in which a total of 251 Japanese patients with osteoporosis (mean age 70.5 years) from the three centers were followed for 3.2 ± 2.0 years. Baseline data, including pre-existing fractures, bone mineral density in the lumbar spine (LBMD), bone metabolic markers, urinary pentosidine, and plasma homocysteine, were evaluated. Changes in LBMD, bone turnover markers, and incident fractures after the treatment were followed. Sixty-one patients developed incident vertebral fractures; this group of patients was older and had lower LBMD, a higher prevalent vertebral fracture number, and higher homocysteine and pentosidine levels than patients who did not develop incident vertebral fractures. Changes in LBMD, urinary N-terminal telopeptides of type I collagen (NTX), and bone-derived alkaline phosphatase showed no significant association with the occurrence of vertebral fractures. Cox's proportional hazard model demonstrated that age, prevalent fracture, pentosidine, and homocysteine were independent predictors of the incident vertebral fracture rate under bisphosphonate treatment. Higher baseline levels of pentosidine and homocysteine in osteoporosis patients are potential risk factors for incident vertebral fractures when these patients are treated with bisphosphonates. Further clarification is needed to explain why such patients have higher fracture susceptibility.
Collapse
Affiliation(s)
- Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Abstract
Osteoporosis and type 2 diabetes mellitus (T2DM) are now prevalent in aging and westernized societies, and adversely affect the health of the elderly people by causing fractures and vascular complications, respectively. Recent experimental and clinical studies show that both disorders are etiologically related to each other through the actions of osteocalcin and adiponectin. Meta-analyses of multiple clinical studies show that hip fracture risk of T2DM patients is increased to 1.4 to 1.7-folds, although BMD of the patients is not diminished. Vertebral fracture risk of T2DM patients is also increased, and BMD is not useful for assessing its risk. These findings suggest that bone fragility in T2DM depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. Markers related to advanced glycation end products as well as insulin-like growth factor-I may be such candidates, because these substances were experimentally shown to modulate bone quality in DM. In practice, it is important for physicians to assess fracture risk in T2DM patients by evaluating prior VFs and fracture histories using spine X-ray and interview, respectively, until the usefulness of surrogate markers is established.
Collapse
Affiliation(s)
- Toru Yamaguchi
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan.
| | | |
Collapse
|
131
|
Odetti P, Bergamini E. Biogerontology in Italy. Biogerontology 2010; 12:61-9. [PMID: 21153704 DOI: 10.1007/s10522-010-9312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
In this paper experimental gerontology in Italy is reviewed on the basis of research developed in Academic and non Academic Centres. There are several groups across Italy working actively on basic science of aging producing high impact papers with a significant contribution to biogerontology. Some distinguished Italian scientist working abroad is also mentioned. Interesting issues on longevity and interventions on aging (including caloric restriction) and on aging brain are quoted. Relevant studies encompass the (glyco-)oxidative stress as direct damage mechanism and main process of theory of aging, other research lines include IGF-1, mitochondria DNA, obesity/sarcopenia and exercise and also an animal model for aging studies is reported. Notwithstanding financial restrictions and structure deficit the biogerontology research in Italy could be judged as good, but additional resources are necessary to keep this good rank.
Collapse
Affiliation(s)
- Patrizio Odetti
- Department of Internal Medicine and Medical Specialties-Section of Geriatrics, University of Genova, Genoa, Italy.
| | | |
Collapse
|
132
|
Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2:1247-65. [PMID: 22254007 PMCID: PMC3257625 DOI: 10.3390/nu2121247] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.
Collapse
Affiliation(s)
- Claudia Luevano-Contreras
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
133
|
Yamaguchi T. Bone fragility in type 2 diabetes mellitus. World J Orthop 2010; 1:3-9. [PMID: 22474621 PMCID: PMC3302026 DOI: 10.5312/wjo.v1.i1.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/27/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
The number of patients with osteoporosis or type 2 diabetes mellitus (T2DM) is increasing in aging and westernized societies. Both disorders predispose elderly people to disabling conditions by causing fractures and vascular complications, respectively. It is well documented that bone metabolism and glucose/fat metabolism are etiologically related to each other through osteocalcin action and Wnt signaling. Bone fragility in T2DM, which is not reflected by bone mineral density (BMD), depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. Pentosidine, the endogenous secretory receptor for advanced glycation endproducts, and insulin-like growth factor-I seem to be such candidates, although further studies are required to clarify whether or not these markers could predict the occurrence of new fractures of T2DM patients in a prospective fashion.
Collapse
|
134
|
Merlotti D, Gennari L, Dotta F, Lauro D, Nuti R. Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr Metab Cardiovasc Dis 2010; 20:683-690. [PMID: 20934862 DOI: 10.1016/j.numecd.2010.07.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/22/2010] [Accepted: 07/26/2010] [Indexed: 02/07/2023]
Abstract
Diabetes and osteoporosis are common and complex disorders with an enormous health burden that can be often associated especially in middle-age and elderly individuals. Although there is raising awareness of the higher fractures rates among patients with type 1 (DM1) and 2 (DM2) diabetes, there are few data available on the pathogenetic mechanisms responsible for this increased risk. Importantly, several experimental and clinical observations suggest that bone abnormalities associated with diabetes may differ, at least in part, from those associated with senile or post-menopausal osteoporosis. This implies that specific preventive and therapeutic strategies have to be developed and tested to prevent fractures in DM1 and DM2 patients. It is also likely that shared (i.e. due to glucose-toxicity) as well as different (i.e. due to insulin levels or other hormones) mechanisms may be associated with bone fragility in DM1 and DM2. Moreover, the hypothesis of an endocrine role of the skeleton in the regulation of glucose metabolism and insulin sensitivity has been recently proposed by experimental observations. This review summarizes the recent clinical and experimental advances on glucose tolerance, bone fragility and osteoporosis associated with diabetes.
Collapse
Affiliation(s)
- D Merlotti
- Department of Internal Medicine, Endocrine Metabolic Sciences and Biochemistry, University of Siena, Siena, Italy.
| | | | | | | | | |
Collapse
|
135
|
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 2010; 65:963-75. [PMID: 20478906 PMCID: PMC2920582 DOI: 10.1093/gerona/glq074] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 04/01/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Aging is a complex multifactorial process characterized by accumulation of deleterious changes in cells and tissues, progressive deterioration of structural integrity and physiological function across multiple organ systems, and increased risk of death. METHODS We conducted a review of the scientific literature on the relationship of advanced glycation end products (AGEs) with aging. AGEs are a heterogeneous group of bioactive molecules that are formed by the nonenzymatic glycation of proteins, lipids, and nucleic acids. RESULTS Humans are exposed to AGEs produced in the body, especially in individuals with abnormal glucose metabolism, and AGEs ingested in foods. AGEs cause widespread damage to tissues through upregulation of inflammation and cross-linking of collagen and other proteins. AGEs have been shown to adversely affect virtually all cells, tissues, and organ systems. Recent epidemiological studies demonstrate that elevated circulating AGEs are associated with increased risk of developing many chronic diseases that disproportionally affect older individuals. CONCLUSIONS Based on these data, we propose that accumulation of AGEs accelerate the multisystem functional decline that occurs with aging, and therefore contribute to the aging phenotype. Exposure to AGEs can be reduced by restriction of dietary intake of AGEs and drug treatment with AGE inhibitors and AGE breakers. Modification of intake and circulating levels of AGEs may be a possible strategy to promote health in old age, especially because most Western foods are processed at high temperature and are rich in AGEs.
Collapse
Affiliation(s)
- Richard D Semba
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Smith Building, M015, 400 North Broadway, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
136
|
Willems NMBK, Langenbach GEJ, Everts V, Mulder L, Grünheid T, Bank RA, Zentner A, van Eijden TMGJ. Age-related changes in collagen properties and mineralization in cancellous and cortical bone in the porcine mandibular condyle. Calcif Tissue Int 2010; 86:307-12. [PMID: 20225089 DOI: 10.1007/s00223-010-9339-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
Abstract
Collagen is an important constituent of bone, and it has been suggested that changes in collagen and mineral properties of bone are interrelated during growth. The aim of this study was to quantify age-related changes in collagen properties and the degree of mineralization of bone (DMB). The DMB in cancellous and cortical bone samples from the mandibular condyle of 35 female pigs aged 0-100 weeks was determined using micro-computed tomography. Subsequently, the amount of collagen and the number of pentosidine (Pen), hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were quantified by means of high-performance liquid chromatography. The amount of collagen increased with age in cancellous bone but remained unchanged in cortical bone. The number of Pen and LP cross-links decreased in both bone types. In contrast, the number of HP cross-links decreased only in cancellous bone. The sum of the number of HP and LP cross-links decreased with age in cancellous bone only. The DMB increased in cancellous and cortical bone. It was concluded that the largest changes in the number of mature collagen cross-links and the mineralization in porcine cancellous and cortical bone take place before the age of 40 weeks. The low number of mature cross-links after this age suggests that the bone turnover rate continues to be high and thereby prevents the development of mature cross-links.
Collapse
Affiliation(s)
- Nop M B K Willems
- Department of Orthodontics, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 2010; 21:195-214. [PMID: 19760059 DOI: 10.1007/s00198-009-1066-z] [Citation(s) in RCA: 647] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/01/2009] [Indexed: 12/31/2022]
Abstract
Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyloxidase-mediated enzymatic immature divalent cross-links,mature trivalent pyridinoline and pyrrole cross-links, and glycation- or oxidation-induced non-enzymatic cross-links(advanced glycation end products) such as glucosepane and pentosidine. These types of cross-links differ in the mechanism of formation and in function. Material properties of newly synthesized collagen matrix may differ in tissue maturity and senescence from older matrix in terms of crosslink formation. Additionally, newly synthesized matrix in osteoporotic patients or diabetic patients may not necessarily be as well-made as age-matched healthy subjects. Data have accumulated that collagen cross-link formation affects not only the mineralization process but also microdamage formation. Consequently, collagen cross-linking is thought to affect the mechanical properties of bone. Furthermore,recent basic and clinical investigations of collagen cross-links seem to face a new era. For instance, serum or urine pentosidine levels are now being used to estimate future fracture risk in osteoporosis and diabetes. In this review, we describe age-related changes in collagen cross-links in bone and abnormalities of cross-links in osteoporosis and diabetes that have been reported in the literature.
Collapse
Affiliation(s)
- M Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | |
Collapse
|
138
|
Gineyts E, Munoz F, Bertholon C, Sornay-Rendu E, Chapurlat R. Urinary levels of pentosidine and the risk of fracture in postmenopausal women: the OFELY study. Osteoporos Int 2010; 21:243-50. [PMID: 19421701 DOI: 10.1007/s00198-009-0939-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/10/2009] [Indexed: 01/22/2023]
Abstract
UNLABELLED The aim of the study was to investigate prospectively whether the levels of urinary pentosidine could predict fractures in postmenopausal women from the OFELY cohort. The results of the study suggest that urine pentosidine concentration is not an independent risk factor for fractures in postmenopausal women from a French cohort. INTRODUCTION Pentosidine has been described as an independent risk factor for hip and vertebral fracture in postmenopausal Japanese women. We investigated the prediction of urinary pentosidine on all fragility fracture risk in healthy untreated postmenopausal women from the OFELY cohort. METHODS Urinary pentosidine was assessed at baseline in 396 healthy untreated postmenopausal women aged 63.3 +/- 8.4 years from the OFELY cohort using high-performance liquid chromatography method. Incident clinical fractures were recorded during annual follow-up and confirmed by radiographs, and vertebral fractures were assessed on radiographs performed every 4 years. Multivariate Cox's regression analysis was used to calculate the risk of urinary pentosidine levels after adjustment for age, prevalent fractures, and total hip bone mineral density (BMD). RESULTS During a mean follow-up of 10 years, 88 of the 396 postmenopausal women have undergone incident vertebral (n = 28) and peripheral (n = 60) fractures. Fracture risk was higher in postmenopausal women with pentosidine in the highest quartile (p = 0.02), but it did not remain significant after adjustment for age, BMD, and prevalent fracture. CONCLUSIONS Urine pentosidine concentration is not an independent risk factor of osteoporotic fracture in healthy postmenopausal women from the OFELY cohort.
Collapse
Affiliation(s)
- E Gineyts
- Hôpital Edouard Herriot, pavillon F, INSERM Research Unit 831, 69437, Lyon cedex 03, France.
| | | | | | | | | |
Collapse
|
139
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
140
|
Tang S, Vashishth D. Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 2010; 46:148-54. [PMID: 19747573 PMCID: PMC4398022 DOI: 10.1016/j.bone.2009.09.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/25/2009] [Accepted: 09/03/2009] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The accumulation of advanced glycation end-products (AGEs) in bone has been suggested to adversely affect the fracture resistance of bone with aging, diabetes, and pharmacological treatments. The formation of AGEs increases crosslinking in the organic matrix of bone but it is unknown how elevated levels of AGEs affect the mechanisms of fracture resistance such as microdamage formation. METHODS Human tibial cancellous bone cores were subjected to non-enzymatic glycation (NEG) by in vitro ribosylation and were mechanically loaded to pre- (0.6%) and post- (1.1%) yield apparent level strains. Loaded specimens were stained with lead-uranyl acetate and subjected to microCT-based 3D quantification and characterization of microdamage as either diffuse damage and linear microcracks. Damaged volume per bone volume (DV/BV) and damaged surface per damaged volume (DS/DV) ratios were used to quantify the volume and morphology of the detected microdamage, respectively. RESULTS In vitro ribosylation increased the microdamage morphology parameter (DS/DV) under both pre- (p<0.05; +51%) and post-yield loading (p<0.001; +38%), indicating that the alteration of bone matrix by NEG caused the formation of crack-like microdamage morphologies. Under post-yield loading, the NEG-mediated increase in DS/DV was coupled with the reductions in microdamage formation (DV/BV; p<0.001) and toughness (p<0.001). DISCUSSION Using a novel microCT technique to characterize and quantify microdamage, this study shows that the accumulation of AGEs in the bone matrix significantly alters the quantity and morphology of microdamage production and results in reduced fracture resistance.
Collapse
Affiliation(s)
| | - D. Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
141
|
Abstract
Bone does not turn over uniformly, and becomes susceptible to post-translational modification by non-enzymatic glycation (NEG). NEG of bone causes the formation of advanced glycation end-products (AGEs) and this process is accelerated with aging, diabetes and antiresorptive postmenopausal osteoporosis therapy. Due to the elevated incidence of fracture associated with aging and diabetes, several studies have attempted to measure and evaluate AGEs as biomarkers for fracture risk. Here current methods of estimating AGEs in bone by liquid chromatography and fluorometric assay are summarized and the relationships between AGEs and fracture properties at whole bone, apparent tissue and matrix levels are discussed.
Collapse
Affiliation(s)
- Deepak Vashishth
- Department of Biomedical Engineering, Center of Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
142
|
Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 2009; 94:2380-6. [PMID: 19383780 PMCID: PMC2708944 DOI: 10.1210/jc.2008-2498] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/09/2009] [Indexed: 12/12/2022]
Abstract
CONTEXT Type 2 diabetes is associated with higher fracture risk at a given bone mineral density. Advanced glycation endproducts (AGEs) accumulate in bone collagen with age and diabetes and may weaken bone. OBJECTIVE The aim was to determine whether urine pentosidine, an AGE, was associated with fractures in older adults with and without diabetes. DESIGN We performed an observational cohort study. SETTING We used data from the Health, Aging and Body Composition prospective study of white and black, well-functioning men and women ages 70-79 yr. PARTICIPANTS Participants with (n = 501) and without (n = 427) diabetes were matched on gender, race, and study site. PREDICTOR Urine pentosidine was assayed from frozen stored baseline specimens. MAIN OUTCOME MEASURES Incident clinical fractures and baseline vertebral fractures were measured. RESULTS Despite higher bone mineral density, clinical fracture incidence (14.8 vs. 12.6%) and vertebral fracture prevalence (2.3 vs. 2.9%) were not lower in those with diabetes (P > 0.05). In multivariable models, pentosidine was associated with increased clinical fracture incidence in those with diabetes [relative hazard, 1.42; 95% confidence interval (CI), 1.10, 1.83, for 1 sd increase in log pentosidine] but not in those without diabetes (relative hazard, 1.08; 95% CI, 0.79, 1.49; P value for interaction = 0.030). In those with diabetes, pentosidine was associated with increased vertebral fracture prevalence (adjusted odds ratio, 5.93; 95% CI, 2.08, 16.94, for 1 sd increase in log pentosidine) but not in those without diabetes (adjusted odds ratio, 0.74; 95% CI, 0.30, 1.83; P value for interaction = 0.005). CONCLUSIONS Higher pentosidine levels are a risk factor for fracture in older adults with diabetes and may account in part for reduced bone strength in type 2 diabetes.
Collapse
Affiliation(s)
- Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94107-1762, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
|
144
|
Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int 2009; 20:887-94. [PMID: 18850239 PMCID: PMC2733909 DOI: 10.1007/s00198-008-0754-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/05/2008] [Indexed: 11/30/2022]
Abstract
SUMMARY One year of high-dose bisphosphonate (BPs) therapy in dogs allowed the increased accumulation of advanced glycation end-products (AGEs) and reduced postyield work-to-fracture of the cortical bone matrix. The increased accumulation of AGEs in these tissues may help explain altered bone matrix quality due to the administration of BPs in animal models INTRODUCTION Non-enzymatic glycation (NEG) is a posttranslational modification of the organic matrix that results in the formation of advanced glycation end-products (AGEs). In bone, the accumulation of AGEs play an important role in determining fracture resistance, and elevated levels of AGEs have been shown to adversely affect the bone's propensity to brittle fracture. It was thus hypothesized that the suppression of tissue turnover in cortical bone due to the administration of bisphosphonates would cause increased accumulation of AGEs and result in a more brittle bone matrix. METHODS Using a canine animal model (n = 12), we administered daily doses of a saline vehicle (VEH), alendronate (ALN 0.20, 1.00 mg/kg) or risedronate (RIS 0.10, 0.50 mg/kg). After a 1-year treatment, the mechanical properties, intracortical bone turnover, and the degree of nonenzymatic cross-linking of the organic matrix were measured from the tibial cortical bone tissue of these animals. RESULTS There was a significant accumulation of AGEs at high treatment doses (+49 to + 86%; p < 0.001), but not at doses equivalent to those used for the treatment of postmenopausal osteoporosis, compared to vehicle. Likewise, postyield work-to-fracture of the tissue was significantly reduced at these high doses (-28% to -51%; p < 0.001) compared to VEH. AGE accumulation inversely correlated with postyield work-to-fracture (r (2) = 0.45; p < 0.001), suggesting that increased AGEs may contribute to a more brittle bone matrix. CONCLUSION High doses of bisphosphonates result in the accumulation of AGEs and a reduction in energy absorption of cortical bone. The increased accumulation of AGEs in these tissues may help explain altered bone matrix quality due to the administration of BPs in animal models.
Collapse
Affiliation(s)
- S Y Tang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
145
|
Ji JD, Woo JH, Choi SJ, Lee YH, Song GG. Advanced glycation end-products (AGEs): a novel therapeutic target for osteoporosis in patients with rheumatoid arthritis. Med Hypotheses 2009; 73:201-2. [PMID: 19349124 DOI: 10.1016/j.mehy.2009.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 02/21/2009] [Accepted: 02/25/2009] [Indexed: 12/15/2022]
Abstract
Bone losses in patients with rheumatoid arthritis (RA) include focal marginal joint erosion, juxtaarticular osteopenia, and systemic osteoporosis. Systemic osteoporosis prevalent in RA is associated with increased fracture rates and is a cause of very high morbidity and mortality. A couple of reports showed that advanced glycation end-products (AGEs) influence osteoclasts (bone resorption) and osteoblasts (bone formation), so AGEs may be have an important role in the pathogenesis of osteoporotic bone diseases. Recently, it was demonstrated that AGEs is increased in patients with RA and the concentration of AGEs correlates with the disease activity of RA. We present a hypothesis that AGEs may be involved in the pathogenesis of osteoporosis in patients with RA and the AGE crosslink breaker alagebrium will be a powerful therapeutic agent for osteoporosis in patients with RA.
Collapse
Affiliation(s)
- Jong Dae Ji
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul 136-705, South Korea.
| | | | | | | | | |
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW To assess bone turnover both at the biochemical and organ level in patients with type 2 diabetes (T2D) and the effects of the thiazolidinediones. RECENT FINDINGS Studies have shown a decreased bone formation and an increased risk of fractures in patients with T2D. Changes in bone strength from glycation of collagen and negative calcium balance from calcium loss in the urine due to hyperglycaemia may also be seen. The thiazolidinediones affect bone turnover by increasing the formation of adipocytes instead of the bone-forming osteoblasts from the common mesenchymal stem cell. A decreased bone formation with decreased bone density and an increased risk of fractures has been observed among users of thiazolidinediones. Differences exist between type 1 diabetes (T1D) and T2D with a much higher increase in the risk of hip fractures in T1D than in T2D compared with the general population. The often higher body mass index in T2D than in T1D appears to explain some of the differences in risk of fractures. SUMMARY Diabetes is a hitherto overlooked risk factor for osteoporosis and fractures. Thiazolidinediones may increase risk of fractures and should not be used by patients at risk of fractures. More research is needed.
Collapse
Affiliation(s)
- Peter Vestergaard
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus Amtssygehus, Aarhus, Denmark.
| |
Collapse
|
147
|
Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 2008; 19:1251-65. [PMID: 18317862 DOI: 10.1007/s00198-008-0579-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/25/2008] [Indexed: 12/20/2022]
Abstract
Bone mineral density is the gold-standard for assessing bone quantity and diagnosing osteoporosis. Although bone mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Understanding the macro- and nanoscale properties of bone is critical to understanding bone fragility in osteoporosis. Osteoporosis is a disease that affects more than 75 million people worldwide. The gold standard for osteoporosis prognosis, bone mineral density, primarily measures the quantity of bone in the skeleton, overlooking more subtle aspects of bone's properties. Bone quality, a measure of bone's architecture, geometry and material properties, is evaluated via mechanical, structural and chemical testing. Although decreased BMD indicates tissue fragility at the clinical level, changes in the substructure of bone can help indicate how bone quality is altered in osteoporosis. Additionally, mechanical properties which can quantify fragility, or bone's inability to resist fracture, can be changed due to alterations in bone architecture and composition. Recent studies have focused on examination of bone on the nanoscale, suggesting the importance of understanding the interactions of the mineral crystals and collagen fibrils and how they can alter bone quality. It is therefore important to understand alterations in bone that occur at the macro-, micro- and nanoscopic levels to determine what parameters contribute to decreased bone quality in diseased tissue.
Collapse
Affiliation(s)
- M E Ruppel
- Department of Biomedical Engineering, State University of New York-Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
148
|
Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann N Y Acad Sci 2008; 1126:128-33. [PMID: 18448806 DOI: 10.1196/annals.1433.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are incorporated in all membranes of mammalian and plant cells and are extremely sensitive to oxygen. This property is used in nature to respond to any changes in cell membrane structure. In the first step of a response, lipid hydroperoxide molecules are generated. An increasing impact switches the enzymatic reaction to a nonenzymatic one by generation of lipid peroxyl radicals, which attack sugars by oxidation. In the course of these reactions, hydrogen peroxyl radicals are generated, resembling lipid peroxyl radicals in their reactivity. The reactions induced by these radicals are not under genetic control, they attack nearly all types of biological molecules (such as proteins, lipids, and sugars), and are responsible for the deleterious cell alterations in aging and age-related diseases (such as diabetes, Alzheimer's disease, or atherosclerosis) and probably also in autoimmune diseases, which involve sugars at the cell membranes. Lipid peroxidation processes are induced by heating fats, meat, and other nutritional products. The oxidation products generated by consumption of heated food cause damage of mammalian cells. The deleterious reactions can be partly reduced by consumption of plants and/or algae. These contain, among other well-known antioxidants, furan fatty acids, which are important scavengers of peroxyl radicals.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Institute of Organic Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
149
|
Insogna K. Can serum pentosidine levels predict risk of vertebral fracture in patients with type 2 diabetes mellitus? ACTA ACUST UNITED AC 2008; 4:366-7. [PMID: 18461065 DOI: 10.1038/ncpendmet0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 03/17/2008] [Indexed: 01/22/2023]
Affiliation(s)
- Karl Insogna
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8020, USA.
| |
Collapse
|
150
|
Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P. Pentosidine Effects on Human Osteoblastsin Vitro. Ann N Y Acad Sci 2008; 1126:166-72. [DOI: 10.1196/annals.1433.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|