101
|
Pemmaraju N, Kantarjian H, Ravandi F, Cortes J. FLT3 inhibitors in the treatment of acute myeloid leukemia: the start of an era? Cancer 2011; 117:3293-304. [PMID: 21319142 DOI: 10.1002/cncr.25908] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/09/2010] [Accepted: 12/03/2010] [Indexed: 12/19/2022]
Abstract
Despite recent modest improvements in the chemotherapy regimens used to treat acute myeloid leukemia (AML), many patients diagnosed with AML ultimately die of the disease. Commonly occurring genetic alterations have been identified that strongly affect the prognosis for patients with AML. These alterations represent possible targets for investigational therapies that could act to specifically halt the aberrant growth of AML cells while limiting damage to normal cells. One such gene is the Fms-like tyrosine kinase 3 (FLT3) gene, which is mutated in approximately 30% of adult patients with AML and has a significant impact on prognosis. In particular, internal tandem duplications in FLT3 confer a poor prognosis to this large subgroup of patients with AML. Agents that target FLT3 are in development for the treatment of patients who have AML and offer a potential paradigm change in the current standard treatment of AML. For this report, the authors reviewed the prognostic significance of genetic alterations observed in AML with a focus on the therapeutic implications of targeting FLT3. The introduction of such agents may be the next major step toward the era of personalized therapy in AML.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
102
|
Mochmann LH, Bock J, Ortiz-Tánchez J, Schlee C, Bohne A, Neumann K, Hofmann WK, Thiel E, Baldus CD. Genome-wide screen reveals WNT11, a non-canonical WNT gene, as a direct target of ETS transcription factor ERG. Oncogene 2011; 30:2044-56. [PMID: 21242973 DOI: 10.1038/onc.2010.582] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
E26 transforming sequence-related gene (ERG) is a transcription factor involved in normal hematopoiesis and is dysregulated in leukemia. ERG mRNA overexpression was associated with poor prognosis in a subset of patients with T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Herein, a genome-wide screen of ERG target genes was conducted by chromatin immunoprecipitation-on-chip (ChIP-chip) in Jurkat cells. In this screen, 342 significant annotated genes were derived from this global approach. Notably, ERG-enriched targets included WNT signaling genes: WNT11, WNT2, WNT9A, CCND1 and FZD7. Furthermore, chromatin immunoprecipitation (ChIP) of normal and primary leukemia bone marrow material also confirmed WNT11 as a target of ERG in six of seven patient samples. A larger sampling of patient diagnostic material revealed that ERG and WNT11 mRNA were co-expressed in 80% of AML (n=30) and 40% in T-ALL (n=30) bone marrow samples. Small interfering RNA (siRNA)-mediated knockdown of ERG confirmed downregulation of WNT11 transcripts. Conversely, in a tet-on ERG-inducible assay, WNT11 transcripts were co-stimulated. A WNT pathway agonist, 6-bromoindirubin-3-oxime (BIO), was used to determine the effect of cell growth on the ERG-inducible cells. The addition of BIO resulted in an ERG-dependent proliferative growth advantage over ERG-uninduced cells. Finally, ERG induction prompted morphological transformation whereby round unpolarized K562 cells developed elongated protrusions and became polarized. This morphological transformation could effectively be inhibited with BIO and with siRNA knockdown of WNT11. In conclusion, ERG transcriptional networks in leukemia converge on WNT signaling targets. Specifically, WNT11 emerged as a direct target of ERG. Potent ERG induction promoted morphological transformation through WNT11 signals. The findings in this study unravel new ERG-directed molecular signals that may contribute to the resistance of current therapies in acute leukemia patients with poor prognosis characterized by high ERG mRNA expression.
Collapse
Affiliation(s)
- L H Mochmann
- Department of Hematology and Oncology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Damm F, Oberacker T, Thol F, Surdziel E, Wagner K, Chaturvedi A, Morgan M, Bomm K, Göhring G, Lübbert M, Kanz L, Fiedler W, Schlegelberger B, Heil G, Schlenk RF, Döhner K, Döhner H, Krauter J, Ganser A, Heuser M. Prognostic importance of histone methyltransferase MLL5 expression in acute myeloid leukemia. J Clin Oncol 2011; 29:682-9. [PMID: 21205756 DOI: 10.1200/jco.2010.31.1118] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess the prognostic importance of mixed lineage leukemia 5 (MLL5) expression in acute myeloid leukemia (AML). PATIENTS AND METHODS MLL5 transcript levels from 509 patients with AML who were treated in multicenter trials AML SHG 0199 and AML SHG 0295 and 48 healthy volunteers were analyzed by real-time reverse-transcription polymerase chain reaction in the context of other molecular markers (NPM1, FLT3, CEBPA, IDH1/IDH2, NRAS, KIT, MN1, BAALC, ERG, and WT1). RESULTS Patients with high (n = 127) compared with low (n = 382) MLL5 expression had a higher complete response rate in multivariate analysis (odds ratio, 1.87; 95% CI, 1.08 to 3.24; P = .026). In multivariate analysis, high MLL5 expression was a favorable prognostic marker for overall survival (OS; hazard ratio [HR], 0.66; 95% CI, 0.49 to 0.89; P = .007) and relapse-free survival (RFS; HR, 0.72; 95% CI, 0.52 to 1.01; P = .057). Patient characteristics, cytogenetic aberrations, and gene mutations were similarly distributed between patients with high and low MLL5 expression except for a higher platelet count in those with high MLL5 expression. MLL5 expression independently predicted prognosis in cytogenetically normal AML patients (n = 268; OS: HR, 0.53; 95% CI, 0.33 to 086; P = .011; RFS: HR, 0.61; 95% CI, 0.38 to 0.99; P = .05) and in patients with core-binding factor leukemias (n = 81; OS: HR, 0.12; 95% CI, 0.02 to 0.91; P = .04; RFS: HR, 0.18; 95% CI, 0.04 to 0.77; P = .02). The prognostic importance of high MLL5 expression was independently validated in 167 patients treated in the AMLSG 07/04 trial (OS: HR, 0.5; 95% CI, 0.27 to 0.92; P = .023; RFS: HR, 0.49; 95% CI, 0.25 to 0.96; P = .033). CONCLUSION High MLL5 expression levels are associated with a favorable outcome and may improve risk and treatment stratification in AML.
Collapse
Affiliation(s)
- Frederik Damm
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Lemež P, Klamová H, Zemanová Z, Marinov I, Fuchs O, Schwarz J, Březinová J, Provazníková D, Kostečka A, Marková J, Michalová K, Jelínek J. Unusually long survival of a 67-year-old patient with near-tetraploid acute myeloid leukemia m0 without erythroblastic and megakaryocytic dysplasia. Acta Haematol 2011; 126:129-34. [PMID: 21701158 DOI: 10.1159/000328199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
Patients with near-tetraploid acute myeloid leukemia (NT-AML) typically have poor survival. We present the case of a 67-year-old Caucasian male with NT-AML M0 who had an unusually long first complete remission of 51 months and an overall survival of 80 months. The only characteristic distinguishing him from other previously described patients with NT-AML was the absence of erythroblastic and/or megakaryocytic dysplasia (EMD) at diagnosis. Molecular-genetic testing for AML fusion transcripts associated with a favorable prognosis (PML/RARα,AML1/ETO, and CBFβ/MYH11) were negative, as were other prognostic markers like MLL-PTD,FLT3-ITD, or mutations of FLT3-D835,NPM1, or CEBPA. Expression studies of ERG,MN1, and EVI1 revealed overexpression of ERG only. The absence of EMD may be a useful prognostic/diagnostic feature of this new rare subtype of NT-AML.
Collapse
Affiliation(s)
- Petr Lemež
- Department of Hematology-Blood Transfusion, Hospital Jihlava, Jihlava, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH, Paschka P, Baldus CD, Liu S, Garzon R, Powell BL, Kolitz JE, Carroll AJ, Caligiuri MA, Larson RA, Marcucci G, Bloomfield CD. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28:5257-64. [PMID: 21079133 DOI: 10.1200/jco.2010.29.2953] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate the prognostic significance of expression levels of a single microRNA, miR-181a, in the context of established molecular markers in cytogenetically normal acute myeloid leukemia (CN-AML), and to gain insight into the leukemogenic role of miR-181a. PATIENTS AND METHODS miR-181a expression was measured in pretreatment marrow using Ohio State University Comprehensive Cancer Center version 3.0 arrays in 187 younger (<60 years) adults with CN-AML. Presence of other molecular prognosticators was assessed centrally. A gene-expression profile associated with miR-181a expression was derived using microarrays and evaluated by Gene-Ontology analysis. RESULTS Higher miR-181a expression associated with a higher complete remission (CR) rate (P=.04), longer overall survival (OS; P=.01) and a trend for longer disease-free survival (DFS; P=.09). The impact of miR-181a was most striking in poor molecular risk patients with FLT3-internal tandem duplication (FLT3-ITD) and/or NPM1 wild-type, where higher miR-181a expression associated with a higher CR rate (P=.009), and longer DFS (P<.001) and OS (P<.001). In multivariable analyses, higher miR-181a expression was significantly associated with better outcome, both in the whole patient cohort and in patients with FLT3-ITD and/or NPM1 wild-type. These results were also validated in an independent set of older (≥60 years) patients with CN-AML. A miR-181a-associated gene-expression profile was characterized by enrichment of genes usually involved in innate immunity. CONCLUSION To our knowledge, we provide the first evidence that the expression of a single microRNA, miR-181a, is associated with clinical outcome of patients with CN-AML and may refine their molecular risk classification. Targeted treatments that increase endogenous levels of miR-181a might represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Schwind
- The Ohio State University, Comprehensive Cancer Center, Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma. Sarcoma 2010; 2011. [PMID: 20953407 PMCID: PMC2952797 DOI: 10.1155/2011/276463] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/06/2010] [Indexed: 12/17/2022] Open
Abstract
The origin of Ewing's sarcoma is a subject of much debate. Once thought to be derived from primitive neuroectodermal cells, many now believe it to arise from a mesenchymal stem cell (MSC). Expression of the EWS-FLI1 fusion gene in MSCs changes cell morphology to resemble Ewing's sarcoma and induces expression of neuroectodermal markers. In murine cells, transformation to sarcomas can occur. In knockdown experiments, Ewing's sarcoma cells develop characteristics of MSCs and the ability to differentiate into mesodermal lineages. However, it cannot be concluded that MSCs are the cell of origin. The concept of an MSC still needs to be rigorously defined, and there may be different subpopulations of mesenchymal pluripotential cells. Furthermore, EWS-FLI1 by itself does not transform human cells, and cooperating mutations appear to be necessary. Therefore, while it is possible that Ewing's sarcoma may originate from a primitive mesenchymal cell, the idea needs to be refined further.
Collapse
|
107
|
BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116:5660-9. [PMID: 20841507 DOI: 10.1182/blood-2010-06-290536] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BAALC and ERG expression levels are prognostic markers in younger (< 60 years) cytogenetically normal acute myeloid leukemia (CN-AML) adults; their prognostic impact in older (≥ 60 years) patients requires further investigation. We evaluated pretreatment expression of BAALC and ERG in 158 de novo patients treated on cytarabine/daunorubicin-based protocols. The patients were also characterized for other established molecular prognosticators. Low BAALC and ERG expression levels were associated with better outcome in univariable and multivariable analyses. Expression levels of both BAALC and ERG were the only factors significantly associated with overall survival upon multivariable analysis. To gain biological insights, we derived gene expression signatures associated with BAALC and ERG expression in older CN-AML patients. Furthermore, we derived the first microRNA expression signatures associated with the expression of these 2 genes. In low BAALC expressers, genes associated with undifferentiated hematopoietic precursors and unfavorable outcome predictors were down-regulated, whereas HOX genes and HOX-gene-embedded microRNAs were up-regulated. Low ERG expressers presented with down-regulation of genes involved in the DNA-methylation machinery, and up-regulation of miR-148a, which targets DNMT3B. We conclude that in older CN-AML patients, low BAALC and ERG expression associates with better outcome and distinct gene and microRNA expression signatures that could aid in identifying new targets and novel therapeutic strategies for older patients.
Collapse
|
108
|
Sashida G, Bazzoli E, Menendez S, Liu Y, Nimer SD. The oncogenic role of the ETS transcription factors MEF and ERG. Cell Cycle 2010; 9:3457-9. [PMID: 20814243 DOI: 10.4161/cc.9.17.13000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several ETS transcription factors, including MEF/ELF4 and ERG, can function as oncogenes and are overexpressed in human cancer. MEF cooperates in tumorigenesis in retroviral insertional mutagenesis-based mouse models of cancer and MEF is overexpressed in human lymphoma and ovarian cancer tissues via unknown mechanisms. ERG (Ets related gene) overexpression or increased activity has been found in various human cancers, including sarcomas, acute myeloid leukemia and prostate cancer, where the ERG gene is rearranged due to chromosomal translocations. We have been examining how MEF functions as an oncogene and recently showed that MEF can cooperate with H-Ras(G12V) and can inhibit both p53 and p16 expression thereby promoting transformation. In fact, in cells lacking p53, the absence of Mef abrogates H-Ras(G12V)-induced transformation of mouse embryonic fibroblasts, at least in part due to increased p16 expression. We discuss the known mechanisms by which the ETS transcription factors MEF and ERG contribute to the malignant transformation of cells.
Collapse
Affiliation(s)
- Goro Sashida
- Molecular Pharmacology and Chemistry Program of the Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, NY, USA
| | | | | | | | | |
Collapse
|
109
|
Motyckova G, Stone RM. The role of molecular tests in acute myelogenous leukemia treatment decisions. Curr Hematol Malig Rep 2010; 5:109-17. [PMID: 20425404 DOI: 10.1007/s11899-010-0049-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prognosis for patients with acute myelogenous leukemia (AML) is dependent on age, karyotype, and the genetics of the neoplastic cell. The molecular markers with prognostic impact include mutations in FLT3, NPM1, MLL, WT1, c-KIT, and expression levels of BAALC, NM1, ERG, and CXCR4. Gene expression profiles and microRNA expression patterns in AML may prove highly useful in defining the prognosis of AML. Cytogenetic and, increasingly, molecular findings are used in determining the best therapy for AML patients, especially the choice of whether to perform allogeneic stem cell transplantation.
Collapse
|
110
|
Wald D, Vermaat JM, Peleg G, Tse W. Genetic abnormalities in acute myelogenous leukemia with normal cytogenetics. Curr Hematol Malig Rep 2010; 3:83-8. [PMID: 20425451 DOI: 10.1007/s11899-008-0013-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acute myelogenous leukemia (AML) results from a differentiation block of hematopoietic progenitor cells along with uncontrolled proliferation. The cytogenetic abnormality at initial diagnosis is the single most important prognostic factor classifying AML patients into three prognostic categories: favorable, intermediate, and poor risk. Currently, favorable-risk AML patients are usually treated with contemporary chemotherapy, and poor-risk AML patients receive allogeneic stem cell transplantation if suitable stem cell donors exist. The approximately 40% of AML patients without identifiable cytogenetic abnormalities (NC AML) are classified as intermediate risk. The optimal therapeutic strategies for these patients are largely unclear. Emerging data recently suggested that molecular study of the mutations of NPM1, FLT3, MLL, and CEBPalpha and alterations in expression levels of BAALC, MN1, and ERG may identify poor-risk patients with NC AML. Further prospective studies are needed to confirm whether NC AML patients with poor risk have improved clinical outcomes after more aggressive therapy.
Collapse
Affiliation(s)
- David Wald
- Department of Medicine, Division of Hematology/Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
111
|
Hämäläinen M, Juvonen V, Häikiö S, Lakkala T, Johansson J, Pelliniemi TT, Salmi TT, Remes K, Kairisto V. ETS-related gene ERG expression in AML patients is significantly associated with NPM1 mutation status. Eur J Haematol 2010; 85:361-2. [PMID: 20546020 DOI: 10.1111/j.1600-0609.2010.01483.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
112
|
Identification of E74-like factor 1 (ELF1) as a transcriptional regulator of the Hox cofactor MEIS1. Exp Hematol 2010; 38:798-8, 808.e1-2. [PMID: 20600580 DOI: 10.1016/j.exphem.2010.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Myeloid ectropic viral integration site 1 (MEIS1) is a Hox cofactor known for its role in development and is strongly linked to normal and leukemic hematopoiesis. Although previous studies have focused on identifying protein partners of MEIS1 and its transcriptionally regulated targets, little is known about the upstream transcriptional regulators of this tightly regulated gene. Understanding the regulation of MEIS1 is important to understanding normal hematopoiesis and leukemogenesis. MATERIALS AND METHODS Here we describe our studies focusing on the evolutionary conserved putative MEIS1 promoter region. Phylogenetic sequence analysis and reporter assays in MEIS1-expressing (K562) and nonexpressing (HL60) leukemic cell line models were used to identify key regulatory regions and potential transcription factor binding sites within the candidate promoter region followed by functional and expression studies of one identified regulator in both cell lines and primary human cord blood and leukemia samples. RESULTS Chromatin status of MEIS1 promoter region is associated with MEIS1 expression. Truncation and mutation studies coupled with reporter assays revealed that a conserved ETS family member binding site located 289 bp upstream of the annotated human MEIS1 transcription start site is required for promoter activity. Of the three ETS family members tested, only ELF1 was enriched on the MEIS1 promoter as assessed by both electrophoretic mobility shift assay and chromatin immunoprecipitation experiments in K562. This finding was confirmed in MEIS1-expressing primary human samples. Moreover, small interfering RNA-mediated knockdown of ELF1 in K562 cells was associated with a decreased MEIS1 expression. CONCLUSIONS We conclude that the ETS transcription factor ELF1 is an important positive regulator of MEIS1 expression.
Collapse
|
113
|
Abstract
Children with Down syndrome have an increased risk for developing both acute myeloid as well as lymphoblastic leukemia. These leukemias differ in presenting characteristics and underlying biology when compared with leukemias occurring in non-Down syndrome children. Myeloid leukemia in children with Down syndrome is preceded by a preleukemic clone (transient leukemia or transient myeloproliferative disorder), which may disappear spontaneously, but may also need treatment in case of severe symptoms. Twenty percent of children with transient leukemia subsequently develop myeloid leukemia. This transition offers a unique model to study the stepwise development of leukemia and of gene dosage effects mediated by aneuploidy.
Collapse
|
114
|
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of leukemias that result from clonal transformation of hematopoietic precursors through the acquisition of chromosomal rearrangements and multiple gene mutations. As a result of highly collaborative clinical research by pediatric cooperative cancer groups worldwide, disease-free survival has improved significantly during the past 3 decades. Further improvements in outcomes of children who have AML probably will reflect continued progress in understanding the biology of AML and the concomitant development of new molecularly targeted agents for use in combination with conventional chemotherapy drugs.
Collapse
|
115
|
Mizushima Y, Taki T, Shimada A, Yui Y, Hiraumi Y, Matsubara H, Watanabe M, Watanabe KI, Kamitsuji Y, Hayashi Y, Tsukimoto I, Kobayashi R, Horibe K, Tawa A, Nakahata T, Adachi S. Prognostic significance of the BAALC isoform pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: a study by the Japanese Childhood AML Cooperative Study Group. Int J Hematol 2010; 91:831-7. [DOI: 10.1007/s12185-010-0585-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 01/18/2023]
|
116
|
Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28:2348-55. [PMID: 20368543 PMCID: PMC2881719 DOI: 10.1200/jco.2009.27.3730] [Citation(s) in RCA: 605] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/27/2010] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To analyze the frequency and associations with prognostic markers and outcome of mutations in IDH genes encoding isocitrate dehydrogenases in adult de novo cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Diagnostic bone marrow or blood samples from 358 patients were analyzed for IDH1 and IDH2 mutations by DNA polymerase chain reaction amplification/sequencing. FLT3, NPM1, CEBPA, WT1, and MLL mutational analyses and gene- and microRNA-expression profiling were performed centrally. Results IDH mutations were found in 33% of the patients. IDH1 mutations were detected in 49 patients (14%; 47 with R132). IDH2 mutations, previously unreported in AML, were detected in 69 patients (19%; 13 with R172 and 56 with R140). R172 IDH2 mutations were mutually exclusive with all other prognostic mutations analyzed. Younger age (< 60 years), molecular low-risk (NPM1-mutated/FLT3-internal tandem duplication-negative) IDH1-mutated patients had shorter disease-free survival than molecular low-risk IDH1/IDH2-wild-type (wt) patients (P = .046). R172 IDH2-mutated patients had lower complete remission rates than IDH1/IDH2wt patients (P = .007). Distinctive microarray gene- and microRNA-expression profiles accurately predicted R172 IDH2 mutations. The highest expressed gene and microRNAs in R172 IDH2-mutated patients compared with the IDH1/IDH2wt patients were APP (previously associated with complex karyotype AML) and miR-1 and miR-133 (involved in embryonal stem-cell differentiation), respectively. CONCLUSION IDH1 and IDH2 mutations are recurrent in CN-AML and have an unfavorable impact on outcome. The R172 IDH2 mutations, previously unreported in AML, characterize a novel subset of CN-AML patients lacking other prognostic mutations and associate with unique gene- and microRNA-expression profiles that may lead to the discovery of novel, therapeutically targetable leukemogenic mechanisms.
Collapse
Affiliation(s)
- Guido Marcucci
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Kati Maharry
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Yue-Zhong Wu
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Michael D. Radmacher
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Krzysztof Mrózek
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Dean Margeson
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Kelsi B. Holland
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Susan P. Whitman
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Heiko Becker
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Sebastian Schwind
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Klaus H. Metzeler
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Bayard L. Powell
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Thomas H. Carter
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Jonathan E. Kolitz
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Meir Wetzler
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Andrew J. Carroll
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Maria R. Baer
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Michael A. Caligiuri
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Richard A. Larson
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| | - Clara D. Bloomfield
- From the Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH; The Cancer and Leukemia Group B Statistical Center, Duke University Medical Center, Durham; Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC; University of Iowa, Iowa City, IA; North Shore University Hospital, Manhasset; Roswell Park Cancer Institute, Buffalo, NY; University of Alabama at Birmingham, Birmingham, AL; University of Maryland, Baltimore, MD; and University of Chicago, Chicago, IL
| |
Collapse
|
117
|
Mutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116:788-92. [PMID: 20442368 DOI: 10.1182/blood-2010-01-262543] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously reported the adverse prognostic impact of Wilms tumor 1 gene (WT1) mutations in younger adult cytogenetically normal acute myeloid leukemia (CN-AML). Here, we investigated 243 older (> or = 60 years) primary CN-AML patients. WT1 mutated (WT1mut) patients (7%) had FLT3-ITD more frequently (P < .001), lower hemoglobin (P = .01), higher white blood cell count (P = .03) and percentage blood blasts (P = .03), and a shorter overall survival (P = .08) than WT1 wild-type (WT1wt) patients. Comparing older and younger WT1mut patients, they had similar pretreatment characteristics and outcome. By contrast, among WT1wt CN-AML, younger patients had a significantly better outcome. A WT1 mutation-associated gene-expression signature, reported here for the first time, included CD96, a leukemia stem cell-specific marker, and genes involved in gene regulation (eg, MLL, PML, and SNRPN) and in proliferative and metabolic processes (eg, INSR, IRS2, and PRKAA1), supporting the role of mutated WT1 in deregulating multiple homeostatic processes. Our results indicate that WT1mut CN-AML represents a distinct entity with poor treatment response across age groups. This study has been registered at www.clinicaltrials.gov as #NCT00900224.
Collapse
|
118
|
Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey C, Yu J, Becker H, Maharry K, Radmacher MD, Li C, Whitman SP, Mishra A, Stauffer N, Eiring AM, Briesewitz R, Baiocchi RA, Chan KK, Paschka P, Caligiuri MA, Byrd JC, Croce CM, Bloomfield CD, Perrotti D, Garzon R, Marcucci G. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 2010; 17:333-47. [PMID: 20385359 PMCID: PMC2917066 DOI: 10.1016/j.ccr.2010.03.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 11/29/2009] [Accepted: 03/17/2010] [Indexed: 12/29/2022]
Abstract
The biologic and clinical significance of KIT overexpression that associates with KIT gain-of-function mutations occurring in subsets of acute myeloid leukemia (AML) (i.e., core binding factor AML) is unknown. Here, we show that KIT mutations lead to MYC-dependent miR-29b repression and increased levels of the miR-29b target Sp1 in KIT-driven leukemia. Sp1 enhances its own expression by participating in a NFkappaB/HDAC complex that further represses miR-29b transcription. Upregulated Sp1 then binds NFkappaB and transactivates KIT. Therefore, activated KIT ultimately induces its own transcription. Our results provide evidence that the mechanisms of Sp1/NFkappaB/HDAC/miR-29b-dependent KIT overexpression contribute to leukemia growth and can be successfully targeted by pharmacological disruption of the Sp1/NFkappaB/HDAC complex or synthetic miR-29b treatment in KIT-driven AML.
Collapse
Affiliation(s)
- Shujun Liu
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- To whom correspondence should be addressed: Shujun Liu and Guido Marcucci, The Ohio State University, 898 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. Phone: 614-293-7597. FAX: 614-293-7527. or
| | - Lai-Chu Wu
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, OH 4321
| | - Jiuxia Pang
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Ramasamy Santhanam
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Sebastian Schwind
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Yue-Zhong Wu
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
| | - Christopher Hickey
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
| | - Jianhua Yu
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Heiko Becker
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Kati Maharry
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Michael D Radmacher
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Chenglong Li
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, OH 4321
| | - Susan P. Whitman
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Anjali Mishra
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Nicole Stauffer
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Anna M. Eiring
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Roger Briesewitz
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Robert A. Baiocchi
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Kenneth K. Chan
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Division of Pharmaceutics of College of Pharmacy, The Ohio State University, Columbus, OH 4321
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael A. Caligiuri
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - John C. Byrd
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Carlo M Croce
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Clara D. Bloomfield
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Danilo Perrotti
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Ramiro Garzon
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Guido Marcucci
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
- Division of Pharmaceutics of College of Pharmacy, The Ohio State University, Columbus, OH 4321
- To whom correspondence should be addressed: Shujun Liu and Guido Marcucci, The Ohio State University, 898 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. Phone: 614-293-7597. FAX: 614-293-7527. or
| |
Collapse
|
119
|
Abstract
Acute myeloid leukaemia (AML) is a complicated, heterogeneous disease and the prognostic factors may be useful in deciding upon appropriate therapy. Cytogenetic testing at diagnosis yields critical prognostic information, but more refinement in prognosis is required. Within cytogenetic subgroups, further important subgroup definitions are possible based on the mutation status and expression analysis of genes such as C-KIT, FLT3, NPM1 and CEBPA, although defining therapies based on such mutations remains controversial.
Collapse
Affiliation(s)
- Richard M Stone
- Harvard Medical School, Dana-Farber Cancer Institute, Boston MA 02115-6084, USA.
| |
Collapse
|
120
|
Jakovljević G, Nakić M, Rogosić S, Kardum-Skelin I, Mrsić-Davidović S, Zadro R, Kruslin B. Pre-B-cell acute lymphoblastic leukemia with bulk extramedullary disease and chromosome 22 (EWSR1) rearrangement masquerading as Ewing sarcoma. Pediatr Blood Cancer 2010; 54:606-9. [PMID: 20049929 DOI: 10.1002/pbc.22365] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report a 2-year-old female with a subcutaneous tumor who was initially misdiagnosed as suffering from Ewing sarcoma with a positive EWSR1 rearrangement and EWS/FLI1 transcript. After finding lymphoblasts in peripheral blood, the diagnosis of acute lymphoblastic leukemia was established. This necessitated further analysis of the subcutaneous tumor. The tissue was positive for immature B-cell markers and an immunoglobulin heavy chain gene rearrangement, which confirmed the final diagnosis of common type acute lymphoblastic leukemia with bulk extramedullary disease. The patient was treated with chemotherapy and was in remission 30 months after the diagnosis.
Collapse
Affiliation(s)
- Gordana Jakovljević
- Department of Hematology and Oncology, Pediatric Clinic, Children's Hospital Zagreb, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
121
|
Zaidi SZ, Owaidah T, Al Sharif F, Ahmed SY, Chaudhri N, Aljurf M. The challenge of risk stratification in acute myeloid leukemia with normal karyotype. Hematol Oncol Stem Cell Ther 2010; 1:141-58. [PMID: 20063545 DOI: 10.1016/s1658-3876(08)50023-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytogenetic aberrations have long been recognized as the most important prognostic variable in acute myeloid leukemia (AML) and are now a major stratification tool for post-remission therapy. Cytogenetics-based stratification improves survival. Patients with AML and normal cytogenetics, the largest single subgroup, have had a very heterogeneous outcome with standard chemotherapy in multiple clinical trials. Hence it is difficult to recommend a "one size fits all" kind of treatment for this heterogeneous population of AML patients. New emerging data from preclinical, retrospective, and large, randomized controlled studies indicate that in addition to cytogenetic abnormalities, many other molecular aberrations are operative in the response to treatment as well as in the risk of relapse. Such molecular markers are being tested for developing targeted therapies and may help in improved stratification of patients in the selection of post-remission therapy. Emerging evidence reveals that at the submicroscopic level, AML with normal cytogenetics may carry poor prognostic genetic lesions or "molecular signatures" as is the case with FLT3 mutations and overexpression of BAALC, ERG or MN1, or may have aberrations that predict better risk as is the case with isolated NPM1 or CEBPA mutations. Later studies have tried to explore the interaction of various prognostically important genes in this group of AML patients. The utility of the evolving data for bedside management of such patients is expected to improve with the wider application of modern tools, using the proposed clinical outcome models, and probably by development of a risk-scoring system based on the relative risk associated with each molecular aberration. The goals include identifying those patients most likely to benefit from upfront allogeneic HSCT and sparing good-prognosis patients from unnecessary transplant-related morbidity. The following is an outline of the most common molecular changes, their impact on the outcome of AML patients with normal cytogenetics and challenges in their wide scale application in risk stratification.
Collapse
Affiliation(s)
- Syed Z Zaidi
- Adult Hematology & SCT Department, Prince Sultan Hematology Oncology Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
122
|
Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115:453-74. [PMID: 19880497 DOI: 10.1182/blood-2009-07-235358] [Citation(s) in RCA: 2557] [Impact Index Per Article: 170.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractIn 2003, an international working group last reported on recommendations for diagnosis, response assessment, and treatment outcomes in acute myeloid leukemia (AML). Since that time, considerable progress has been made in elucidating the molecular pathogenesis of the disease that has resulted in the identification of new diagnostic and prognostic markers. Furthermore, therapies are now being developed that target disease-associated molecular defects. Recent developments prompted an international expert panel to provide updated evidence- and expert opinion–based recommendations for the diagnosis and management of AML, that contain both minimal requirements for general practice as well as standards for clinical trials. A new standardized reporting system for correlation of cytogenetic and molecular genetic data with clinical data is proposed.
Collapse
|
123
|
Verhaak RGW, Valk PJM. Genes predictive of outcome and novel molecular classification schemes in adult acute myeloid leukemia. Cancer Treat Res 2010; 145:67-83. [PMID: 20306246 DOI: 10.1007/978-0-387-69259-3_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The pretreatment karyotype of leukemic blasts is currently the key determinant in therapy decision making in acute myeloid leukemia (AML). The World Health Organization (WHO) has recognized this important information by including, besides clinical, cytological, cytochemical, and immunophenotypical features, recurrent cytogenetic abnormalities in its classification (Table 1). However, although the WHO defines important biologically and clinically relevant entities, the prognostic value of some of the well-defined cytogenetic subgroups is partially masked in the WHO classification. Moreover, in the recent past a number of novel molecular aberrations with marked prognostic value, which are not yet incorporated in the WHO classifications have been identified. These molecular abnormalities include mutations (e.g., in FLT3, c-KIT, and NPM1), partial duplications (e.g., of MLL and FLT3), and abnormal expression of pathogenetic genes (e.g., EVI1, WT1, BCL2, MDR1, BAALC, and ERG). In addition, novel molecular approaches in genomics, like monitoring the expression levels of thousands of genes in parallel using DNA microarray technology, open possibilities for further refinement of prognostication of AML. Gene expression profiling in AML is already well established and has proven to be valuable to recognize various cytogenetic subtypes, discover novel AML subclasses, and predict clinical outcome. The current advances made in molecular understanding of AML will ultimately lead to a further refinement of prognostics of AML.
Collapse
Affiliation(s)
- Roel G W Verhaak
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
124
|
Becker H, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Margeson D, Whitman SP, Wu YZ, Schwind S, Paschka P, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 2009; 28:596-604. [PMID: 20026798 DOI: 10.1200/jco.2009.25.1496] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To analyze the prognostic significance of NPM1 mutations, and the associated gene- and microRNA-expression signatures in older patients with de novo, cytogenetically normal acute myeloid leukemia (CN-AML) treated with intensive chemotherapy. PATIENTS AND METHODS One hundred forty-eight adults age >or= 60 years with de novo CN-AML, enrolled onto Cancer and Leukemia Group B protocols 9720 and 10201, were studied at diagnosis for NPM1, FLT3, CEBPA, and WT1 mutations, and gene- and microRNA-expression profiles. RESULTS Patients with NPM1 mutations (56%) had higher complete remission (CR) rates (84% v 48%; P < .001) and longer disease-free survival (DFS; P = .047; 3-year rates, 23% v 10%) and overall survival (OS; P < .001; 3-year rates, 35% v 8%) than NPM1 wild-type patients. In multivariable analyses, NPM1 mutations remained independent predictors for higher CR rates (P < .001) and longer DFS (P = .004) and OS (P < .001), after adjustment for other prognostic clinical and molecular variables. Unexpectedly, the prognostic impact of NPM1 mutations was mainly observed in patients >or= 70 years. Gene- and microRNA-expression profiles associated with NPM1 mutations were similar across older patient age groups and similar to those in younger (< 60 years) patients with CN-AML. These profiles were characterized by upregulation of HOX genes and their embedded microRNAs and downregulation of the prognostically adverse MN1, BAALC, and ERG genes. CONCLUSION NPM1 mutations have favorable prognostic impact in older patients with CN-AML, especially those age >or= 70 years. The gene- and microRNA-expression profiles suggest that NPM1 mutations constitute a marker defining a biologically homogeneous entity in CN-AML that might be treated with specific and/or targeted therapies across age groups.
Collapse
Affiliation(s)
- Heiko Becker
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Acute myeloid leukemia (AML) in adults is a heterogeneous malignant pathology with a globally unfavorable prognosis. The classification of AML allows identification of subgroups with favorable prognosis. However, besides these specific subgroups, most patients will have an intermediate or unfavorable prognosis often resulting in induction failure, probably due to drug resistance of the leukemic blasts, and more frequently resulting in early relapse after achieving complete remission. This unfavorable situation leads to a strong need to develop new diagnostic and therapeutic options. However, development of these therapies and their efficient use requires a better understanding of the biology and the molecular pathogenesis of AML. Pharmacogenomics focuses on the genetic variation of drug-metabolizing enzymes, targets and transporters, and how these genetic variations interact to produce specific drug-related phenotypes. Potential genetic markers may serve to functionally subclassify patients by their disease and therefore influence the nature and intensity of treatment. This review summarizes important aspects of and recent advances in the field of pharmacogenomics in AML.
Collapse
Affiliation(s)
| | - Meyling H Cheok
- Jean-Pierre Aubert Research Center, INSERM U837, Institute for Cancer Research, 1 Place de Verdun, F-59045 Lille Cedex, France
| |
Collapse
|
126
|
Metzeler KH, Dufour A, Benthaus T, Hummel M, Sauerland MC, Heinecke A, Berdel WE, Büchner T, Wörmann B, Mansmann U, Braess J, Spiekermann K, Hiddemann W, Buske C, Bohlander SK. ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol 2009; 27:5031-8. [PMID: 19752345 DOI: 10.1200/jco.2008.20.5328] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Recently, several novel molecular prognostic markers were identified in cytogenetically normal acute myeloid leukemia (CN-AML). In addition to the well-known influence of FLT3, NPM1, and CEBPA mutations, high transcript levels of the ERG, BAALC, and MN1 genes have been associated with inferior outcomes, but the relative importance of these risk markers remains to be defined. PATIENTS AND METHODS We analyzed ERG, BAALC, and MN1 expression levels in a cohort of 210 patients with CN-AML who received intensive chemotherapy. Expression levels of ERG, BAALC, and MN1 were determined in bone marrow samples by using oligonucleotide microarrays. RESULTS High transcript levels of ERG, BAALC, and MN1 were predictors for inferior overall survival (OS) and a lower rate of complete remissions (CRs). There were significant positive correlations between the expression levels of all three genes. ERG expression levels predicted OS in elderly patients (ie, age 60 years or older) with CN-AML (P = .006) as well as in younger patients (P = .013). In multivariate analyses, high ERG expression was independently associated with a lower CR rate (P = .013), shorter event-free survival (P = .008), and shorter OS (P = .005). Patients who had low ERG levels and absent FLT3 internal tandem duplication (ITD) had a 5-year OS of 44%, and patients who had high ERG expression and FLT3 ITD had a 5-year OS of only 5%. CONCLUSION We analyzed a comprehensive set of molecular risk factors in a large, homogeneous CN-AML patient cohort. In this study, high ERG expression levels emerged as a strong negative prognostic factor and provided prognostic information in addition to established molecular markers.
Collapse
Affiliation(s)
- Klaus H Metzeler
- Department of Internal Medicine III, Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Grosshadern, Ludwig-Maximilians Universität, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Eid MA, Attia M, Abdou S, El-Shazly SF, Elahwal L, Farrag W, Mahmoud L. BAALC and ERG expression in acute myeloid leukemia with normal karyotype: impact on prognosis. Int J Lab Hematol 2009; 32:197-205. [PMID: 19555438 DOI: 10.1111/j.1751-553x.2009.01168.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cytogenetic aberrations are important prognostic factors in acute myeloid leukemia (AML). About 45% of de novo AML lack cytogenetic abnormalities, so identification of predictive molecular markers might improve therapy. We studied the prognostic impact of brain and acute leukemia, cytoplasmic (BAALC) and ETS-related gene (ERG) expression in AML with normal karyotype. Pretreatment bone marrow samples from 30 cytogenetically normal AML patients were analysed for BAALC and ERG expression using real time RT-PCR. The patients were dichotomized at BAALC and ERG mean expression into low and high expression. BAALC showed high expression in 70% of patients and its expression did not correlate with the clinical parameters of patients. ERG was high in 33.3% of patients and its expression was associated with lower ages and higher white cell counts. With follow-up for 2 years, patients with high BAALC and high ERG had low rates of clinical remission (P < 0.005) and inferior overall survival (OS) (P < 0.001 and <0.002 for BAALC and ERG respectively). No significant association was observed between the increase in BAALC and ERG expression (P = 0.398). Multivariable analysis confirmed high BAALC expression as an independent risk factor for OS. Overexpression of BAALC and ERG either separate or concomitant predict adverse clinical outcome and may define important risk factor in cytogenetically normal AML.
Collapse
Affiliation(s)
- M A Eid
- Department of Clinical Pathology, Tanta University, Tanta, Egypt.
| | | | | | | | | | | | | |
Collapse
|
128
|
Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W. Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol 2009; 2:23. [PMID: 19490647 PMCID: PMC2700131 DOI: 10.1186/1756-8722-2-23] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/02/2009] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disorder that results from a block in the differentiation of hematopoietic progenitor cells along with uncontrolled proliferation. In approximately 60% of cases, specific recurrent chromosomal aberrations can be identified by modern cytogenetic techniques. This cytogenetic information is the single most important tool to classify patients at their initial diagnosis into three prognostic categories: favorable, intermediate, and poor risk. Currently, favorable risk AML patients are usually treated with contemporary chemotherapy while poor risk AML patients receive allogeneic stem cell transplantation if suitable stem cell donors exist. The largest subgroup of AML patients (aproximately 40%) have no identifiable cytogenetic abnormalities and are classified as intermediate risk. The optimal therapeutic strategies for these patients are still largely unclear. Recently, it is becoming increasingly evident that it is possible to identify a subgroup of poorer risk patients among those with normal cytogenic AML (NC-AML). Molecular risk stratification for NC-AML patients may be possible due to mutations of NPM1, FLT3, MLL, and CEBPalpha as well as alterations in expression levels of BAALC, MN1, ERG, and AF1q. Further prospective studies are needed to confirm if poorer risk NC-AML patients have improved clinical outcomes after more aggressive therapy.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Cytogenetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genetic Markers/physiology
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Neoplasm, Residual
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Nucleophosmin
- Prognosis
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/physiology
Collapse
Affiliation(s)
- Tara K Gregory
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Wald
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yichu Chen
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Johanna M Vermaat
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yin Xiong
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William Tse
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
129
|
|
130
|
Langer C, Marcucci G, Holland KB, Radmacher MD, Maharry K, Paschka P, Whitman SP, Mrózek K, Baldus CD, Vij R, Powell BL, Carroll AJ, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2009; 27:3198-204. [PMID: 19451432 DOI: 10.1200/jco.2008.20.6110] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To determine the prognostic importance of the meningioma 1 (MN1) gene expression levels in the context of other predictive molecular markers, and to derive MN1 associated gene- and microRNA-expression profiles in cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS MN1 expression was measured in 119 untreated primary CN-AML adults younger than 60 years by real-time reverse-transcriptase polymerase chain reaction. Patients were also tested for FLT3, NPM1, CEBPA, and WT1 mutations, MLL partial tandem duplications, and BAALC and ERG expression. Gene- and microRNA-expression profiles were attained by performing genome-wide microarray assays. Patients were intensively treated on two first-line Cancer and Leukemia Group B clinical trials. Results Higher MN1 expression associated with NPM1 wild-type (P < .001), increased BAALC expression (P = .004), and less extramedullary involvement (P = .01). In multivariable analyses, higher MN1 expression associated with a lower complete remission rate (P = .005) after adjustment for WBC; shorter disease-free survival (P = .01) after adjustment for WT1 mutations, FLT3 internal tandem duplications (FLT3-ITD), and high ERG expression; and shorter survival (P = .04) after adjustment for WT1 and NPM1 mutations, FLT3-ITD, and WBC. Gene- and microRNA-expression profiles suggested that high MN1 expressers share features with high BAALC expressers and patients with wild-type NPM1. Higher MN1 expression also appears to be associated with genes and microRNAs that are active in aberrant macrophage/monocytoid function and differentiation. CONCLUSION MN1 expression independently predicts outcome in CN-AML patients. The MN1 gene- and microRNA-expression signatures suggest biologic features that could be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Christian Langer
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University, Suite A434 Starling-Loving Hall, 320 W 10th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Absalon MJ, Smith FO. Treatment strategies for pediatric acute myeloid leukemia. Expert Opin Pharmacother 2009; 10:57-79. [PMID: 19236182 DOI: 10.1517/14656560802627929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Therapeutic strategies utilized in recently completed Phase III clinical trials in children with de novo acute myeloid leukemia have led to long-term disease-free survival in 50 - 60% of children. This review describes the contributions from early intensification of therapy and postremission intensification using highly myelosuppressive chemotherapy strategies and discusses the controversial roles of allogeneic bone marrow transplantation, maintenance therapy and CNS irradiation. Current strategies focusing on the identification of critical biologic features and measurements of early response to therapy allow for greatly improved risk group stratification. Future improvements in the treatment of children with acute myeloid leukemia will depend on a better understanding of the biology of the disease, targeted therapeutic approaches directed to specific biologic targets, selective use of allogeneic transplantation and innovative clinical trial designs that will allow for the testing of an increasing number of new agents in increasingly small numbers of patients in defined risk groups.
Collapse
Affiliation(s)
- Michael J Absalon
- University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Division of Hematology/Oncology, Cincinnati, OH, USA.
| | | |
Collapse
|
132
|
Strunk CJ, Platzbecker U, Thiede C, Schaich M, Illmer T, Kang Z, Leahy P, Li C, Xie X, Laughlin MJ, Lazarus HM, Gerson SL, Bunting KD, Ehninger G, Tse W. Elevated AF1q expression is a poor prognostic marker for adult acute myeloid leukemia patients with normal cytogenetics. Am J Hematol 2009; 84:308-9. [PMID: 19396856 DOI: 10.1002/ajh.21396] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nearly half of the patients with newly diagnosed acute myeloid leukemia have normal cytogenetics (NC-AML) and are classified as intermediate risk, but their 5-year overall survival (OS) ranges from 24 to 42%. Therefore, molecular biomarkers to identify poor-risk patients are needed. Elevated AF1q expression in the absence of specific poor cytogenetics is associated with poor outcomes in pediatric patients with AML and adult patients with myelodysplastic syndrome. We examined AF1q expression in 290 patients with NC-AML. We found that patients with low AF1q (n = 73) expression (AF1q(low)) have better OS (P = 0.026), disease-free survival (P = 0.1), and complete remission rate (P = 0.06) when compared with patients with high AF1q expression (AF1q(high) n = 217). The patients with AF1q(high) had significantly greater incidence of concurrent tyrosine kinase3 internal tandem duplication. A subgroup of the patients with AF1q(high) who received allogeneic stem cell transplantation (SCT) had a significant better relapse-free survival when compared with patients who received chemotherapy/autologous SCT (P = 0.04). This study suggests that high AF1q expression is a poor prognostic marker for adult patients with NC-AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor
- Blood Proteins/analysis
- Blood Proteins/metabolism
- Combined Modality Therapy
- Cytogenetic Analysis
- Disease-Free Survival
- Female
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Proteins/metabolism
- Prognosis
- Proto-Oncogene Proteins
- Stem Cell Transplantation
- Transplantation, Autologous
- Transplantation, Homologous
- Young Adult
- fms-Like Tyrosine Kinase 3/genetics
Collapse
|
133
|
Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood 2009; 114:148-52. [PMID: 19398719 DOI: 10.1182/blood-2008-11-187724] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have evaluated 9 new molecular markers (ERG, EVI1, MLL-PTD, MN1, PRAME, RHAMM, and WT1 gene-expression levels plus FLT3 and NPM1 mutations) in 121 de novo cytogenetically normal acute myeloblastic leukemias. In the multivariate analysis, high ERG or EVI1 and low PRAME expressions were associated with a shorter relapse-free survival (RFS) and overall survival (OS). A 0 to 3 score was given by assigning a value of 0 to favorable parameters (low ERG, low EVI1, and high PRAME) and 1 to adverse parameters. This model distinguished 4 subsets of patients with different OS (2-year OS of 79%, 65%, 46%, and 27%; P = .001) and RFS (2-year RFS of 92%, 65%, 49%, and 43%; P = .005). Furthermore, this score identified patients with different OS (P = .001) and RFS (P = .013), even within the FLT3/NPM1 intermediate-risk/high-risk subgroups. Here we propose a new molecular score for cytogenetically normal acute myeloblastic leukemias, which could improve patient risk-stratification.
Collapse
|
134
|
Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, Schalken JA. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009; 56:275-86. [PMID: 19409690 DOI: 10.1016/j.eururo.2009.04.036] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/15/2009] [Indexed: 11/28/2022]
Abstract
CONTEXT In 2005, fusions between the androgen-regulated transmembrane protease serine 2 gene, TMPRSS2, and E twenty-six (ETS) transcription factors were discovered in prostate cancer. OBJECTIVE To review advances in our understanding of ETS gene fusions, focusing on challenges affecting translation to clinical application. EVIDENCE ACQUISITION The PubMed database was searched for reports on ETS fusions in prostate cancer. EVIDENCE SYNTHESIS Since the discovery of ETS fusions, novel 5' and 3' fusion partners and multiple splice isoforms have been reported. The most common fusion, TMPRSS2:ERG, is present in approximately 50% of prostate-specific antigen (PSA)-screened localized prostate cancers and in 15-35% of population-based cohorts. ETS fusions can be detected noninvasively in the urine of men with prostate cancer, with a specificity rate in PSA-screened cohorts of >90%. Reports from untreated population-based cohorts suggest an association between ETS fusions and cancer-specific death and metastatic spread. In retrospective prostatectomy cohorts, conflicting results have been published regarding associations between ETS fusions and cancer aggressiveness. In addition to serving as a potential biomarker, tissue and functional studies suggest a specific role for ETS fusions in the transition to carcinoma. Finally, recent results suggest that the 5' and 3' ends of ETS fusions as well as downstream targets may be targeted therapeutically. CONCLUSIONS Recent studies suggest that the first clinical applications of ETS fusions are likely to be in noninvasive detection of prostate cancer and in aiding with difficult diagnostic cases. Additional studies are needed to clarify the association between gene fusions and cancer aggressiveness, particularly those studies that take into account the multifocal and heterogeneous nature of localized prostate cancer. Multiple promising strategies have been identified to potentially target ETS fusions. Together, these results suggest that ETS fusions will affect multiple aspects of prostate cancer diagnosis and management.
Collapse
Affiliation(s)
- Scott A Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
135
|
Malinge S, Izraeli S, Crispino JD. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 2009; 113:2619-28. [PMID: 19139078 PMCID: PMC2661853 DOI: 10.1182/blood-2008-11-163501] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022] Open
Abstract
Children with Down syndrome (DS) show a spectrum of clinical anomalies, including cognitive impairment, cardiac malformations, and craniofacial dysmorphy. Moreover, hematologists have also noted that these children commonly show macrocytosis, abnormal platelet counts, and an increased incidence of transient myeloproliferative disease (TMD), acute megakaryocytic leukemia (AMKL), and acute lymphoid leukemia (ALL). In this review, we summarize the clinical manifestations and characteristics of these leukemias, provide an update on therapeutic strategies and patient outcomes, and discuss the most recent advances in DS-leukemia research. With the increased knowledge of the way in which trisomy 21 affects hematopoiesis and the specific genetic mutations that are found in DS-associated leukemias, we are well on our way toward designing improved strategies for treating both myeloid and lymphoid malignancies in this high-risk population.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 21/genetics
- Disease Models, Animal
- Disease Progression
- Down Syndrome/blood
- Down Syndrome/complications
- Down Syndrome/genetics
- GATA1 Transcription Factor/genetics
- Gene Expression Regulation, Leukemic
- Genetic Predisposition to Disease
- Hematopoiesis, Extramedullary/genetics
- Humans
- Incidence
- Janus Kinases/genetics
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/epidemiology
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/genetics
- Liver/embryology
- Liver/pathology
- Mice
- MicroRNAs/genetics
- Mutation
- Myeloproliferative Disorders/congenital
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/epidemiology
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/genetics
- Neoplasm Proteins/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Preleukemia/congenital
- Preleukemia/drug therapy
- Preleukemia/epidemiology
- Preleukemia/etiology
- Preleukemia/genetics
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Sébastien Malinge
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
136
|
Bacher U, Kohlmann A, Haferlach T. Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br J Haematol 2009; 145:555-68. [PMID: 19344393 DOI: 10.1111/j.1365-2141.2009.07656.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression profiling (GEP) enables the simultaneous investigation of the expression of tens of thousands of genes and was successfully introduced in leukaemia research a decade ago. Aiming to better understand the diversity of genetic aberrations in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL), pioneer studies investigated and confirmed the predictability of many cytogenetic and molecular subclasses in AML and ALL. In addition, GEP can define new prognostic subclasses within distinct leukaemia subgroups, as illustrated in AML with normal karyotype. Another approach is the development of treatment-specific sensitivity assays, which might contribute to targeted therapy studies. Finally, GEP might enable the detection of new molecular targets for therapy in patients with acute leukaemia. Meanwhile, large multicentre studies, e.g. the Microarray Innovations in LEukaemia (MILE) study, prepare for a standardised introduction of GEP in leukaemia diagnostic algorithms, aiming to translate this novel methodology into clinical routine for the benefit of patients with the complex disorders of AML and ALL.
Collapse
Affiliation(s)
- Ulrike Bacher
- Department of Stem Cell Transplantation, University Cancer Center Hamburg, Hamburg
| | | | | |
Collapse
|
137
|
Ayala RM, Martínez-López J, Albízua E, Diez A, Gilsanz F. Clinical significance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute myeloid leukemia. Am J Hematol 2009; 84:79-86. [PMID: 19097174 DOI: 10.1002/ajh.21332] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the biological correlation and prognostic impact of Gata-1, Gata-2, EKLF, and c-MPL transcript level in a group of 41 acute myeloid leukemia (AML) patients. Gata-1 overexpression was related to advanced age and a low percentage of bone marrow blasts and was associated with the expression of CD34 antigen and lymphoid T markers. The negative impact of Gata-1 expression on the probability of achieving complete remission has been confirmed. Gata-2 overexpression was associated with a low percentage of blasts in BM and males. Expression of c-MPL was associated with CD34+ AML and M2 FAB AML subtype. A higher expression of EKLF was found in secondary AML versus primary AML. Nevertheless, patients expressing EKLF had a longer overall survival and event free survival than those patients that did not express EKLF. Our study has identified expression of EKLF as a factor with a favorable impact on prognosis in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Bone Marrow/pathology
- Chromosome Aberrations
- Disease-Free Survival
- Erythropoiesis/genetics
- GATA1 Transcription Factor/analysis
- GATA1 Transcription Factor/physiology
- GATA2 Transcription Factor/analysis
- GATA2 Transcription Factor/physiology
- Gene Expression Regulation, Neoplastic
- Humans
- Kruppel-Like Transcription Factors/analysis
- Kruppel-Like Transcription Factors/physiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Proteins/physiology
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/metabolism
- Neoplasms, Second Primary/mortality
- Neoplasms, Second Primary/pathology
- Prognosis
- Receptors, Thrombopoietin/analysis
- Receptors, Thrombopoietin/physiology
- Survival Analysis
- Young Adult
Collapse
Affiliation(s)
- Rosa M Ayala
- Servicio de Hematologia, Hospital Universitario 12 de Octubre, Madrid, España.
| | | | | | | | | |
Collapse
|
138
|
Mikulasovich M, LeBlanc A, Scalise A, Manwani D, Keyzner A, Najfeld V. Duplication and triplication of der(21)t(8;21)(q22;q22) in acute myeloid leukemia. ACTA ACUST UNITED AC 2009; 188:83-7. [PMID: 19100510 DOI: 10.1016/j.cancergencyto.2008.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023]
Abstract
We report on two patients with complicons resulting in duplication der(21)t(8;21)(q22;q22), triplication in the form of isochromosome of der(21)t(8;21), and four copies of ETO-AML1 fusion. Duplication of der(21) was present at diagnosis as a minor cell population in one patient, while the presence of isoderivative (21)t(8;21) characterized the relapse cells of the second patient. Due to the rarity of these cases, literature search of other reported cases of complicons may be taken as evidence that duplication and triplication of ETO-AML1 may be a poor prognostic indicator, regardless of whether it is present at diagnosis or relapse.
Collapse
Affiliation(s)
- Michael Mikulasovich
- Tumor Cytogenetics Laboratory, The Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 1002, USA
| | | | | | | | | | | |
Collapse
|
139
|
Clinical implications of molecular genetic aberrations in acute myeloid leukemia. J Cancer Res Clin Oncol 2009; 135:491-505. [PMID: 19125300 DOI: 10.1007/s00432-008-0524-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 01/05/2023]
Abstract
The role of different cytogenetic changes has been extensively evaluated in patients with acute myeloid leukemia (AML), and cytogenetic analysis of AML blasts is essential to form prognostic subgroups in order to stratify for the extent of therapy. Nevertheless, 40-45% of AML patients lack such cytogenetic markers, i.e., cytogenetically normal AML (CN-AML). In the past decade, different molecular aberrations were identified in AML and especially CN-AML can now be discriminated into certain prognostic subgroups. This review considers the latest advances to define the prognostic impact of molecular aberrations in AML and gives insights how such molecular markers can be applied for analysis of minimal residual disease. Furthermore, therapeutic implications as well as the potential role of new methodological techniques in analyzing expression patterns of AML blasts are discussed.
Collapse
|
140
|
Hidden abnormalities and novel classification of t(15;17) acute promyelocytic leukemia (APL) based on genomic alterations. Blood 2008; 113:1741-8. [PMID: 19109227 DOI: 10.1182/blood-2007-12-130260] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematopoietic malignant disease characterized by the chromosomal translocation t(15;17), resulting in the formation of the PML-RARA gene. Here, 47 t(15;17) APL samples were analyzed with high-density single-nucleotide polymorphism microarray (50-K and 250-K SNP-chips) using the new algorithm AsCNAR (allele-specific copy-number analysis using anonymous references). Copy-number-neutral loss of heterozygosity (CNN-LOH) was identified at chromosomes 10q (3 cases), 11p (3 cases), and 19q (1 case). Twenty-eight samples (60%) did not have an obvious alteration (normal-copy-number [NC] group). Nineteen samples (40%) showed either one or more genomic abnormalities: 8 samples (17%) had trisomy 8 either with or without an additional duplication, deletion, or CNN-LOH (+8 group); and 11 samples (23%) had genomic abnormalities without trisomy 8 (other abnormalities group). These chromosomal abnormalities were acquired somatic mutations. Interestingly, FLT3-ITD mutations (11/47 cases) occurred only in the group with no genomic alteration (NC group). Taken together, these results suggest that the pathway of development of APL differs in each group: FLT3-ITD, trisomy 8, and other genomic changes. Here, we showed for the first time hidden abnormalities and novel disease-related genomic changes in t(15;17) APL.
Collapse
|
141
|
Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, Hofmann WK, Baldus CD. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 2008; 33:817-22. [PMID: 19108891 DOI: 10.1016/j.leukres.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 12/31/2022]
Abstract
Expression of ERG is of prognostic significance in acute myeloid leukemia (AML) and T-lymphoblastic leukemia (T-ALL) pointing to its role in leukemogenesis. To unravel its transcriptional regulation we analyzed the expression of ERG specific isoforms. Expression of the two main isoforms ERG2 and ERG3 was found in AML and normal CD34+ cells, whereas T-ALL blasts only expressed ERG isoforms harboring exon 5 (ERG3) lacking expression of ERG2. Bisulfite sequencing revealed hypermethylation of a CpG island within the ERG2 promoter region in T-ALL. Treatment of the T-lymphoblastic cell line BE13 with decitabine led to re-expression of ERG2 and pyrosequencing showed concordant DNA hypomethylation, thus confirming a methylation regulated expression of ERG2. Moreover, the identification of a new ERG isoform (ERG3Deltaex12) suggests the association with different interaction partners and adds to the complexity of downstream pathways mediated by the expression of specific ERG transcripts in acute leukemia.
Collapse
Affiliation(s)
- Arend Bohne
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, Paschka P, Whitman SP, Langer C, Baldus CD, Liu CG, Ruppert AS, Powell BL, Carroll AJ, Caligiuri MA, Kolitz JE, Larson RA, Bloomfield CD. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 2008; 26:5078-87. [PMID: 18809607 PMCID: PMC2652095 DOI: 10.1200/jco.2008.17.5554] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 06/13/2008] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To evaluate the prognostic significance of CEBPA mutations in the context of established molecular markers in cytogenetically normal (CN) acute myeloid leukemia (AML) and gain biologic insights into leukemogenesis of the CN-AML molecular high-risk subset (FLT3 internal tandem duplication [ITD] positive and/or NPM1 wild type) that has a significantly higher incidence of CEBPA mutations than the molecular low-risk subset (FLT3-ITD negative and NPM1 mutated). PATIENTS AND METHODS One hundred seventy-five adults age less than 60 years with untreated primary CN-AML were screened before treatment for CEBPA, FLT3, MLL, WT1, and NPM1 mutations and BAALC and ERG expression levels. Gene and microRNA (miRNA) expression profiles were obtained for the CN-AML molecular high-risk patients. RESULTS CEBPA mutations predicted better event-free (P = .007), disease-free (P = .014), and overall survival (P < .001) independently of other molecular and clinical prognosticators. Among patients with CEBPA mutations, 91% were in the CN-AML molecular high-risk group. Within this group, CEBPA mutations predicted better event-free (P < .001), disease-free (P = .004), and overall survival (P = .009) independently of other molecular and clinical characteristics and were associated with unique gene and miRNA expression profiles. The major features of these profiles were upregulation of genes (eg, GATA1, ZFPM1, EPOR, and GFI1B) and miRNAs (ie, the miR-181 family) involved in erythroid differentiation and downregulation of homeobox genes. CONCLUSION Pretreatment testing for CEBPA mutations identifies CN-AML patients with different outcomes, particularly in the molecular high-risk group, thus improving molecular risk-based classification of this large cytogenetic subset of AML. The gene and miRNA expression profiling provided insights into leukemogenesis of the CN-AML molecular high-risk group, indicating that CEBPA mutations are associated with partial erythroid differentiation.
Collapse
Affiliation(s)
- Guido Marcucci
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, Litle VR, Pennathur A, Luketich JD, Godfrey TE. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36:6535-6547. [PMID: 18927117 PMCID: PMC2582617 DOI: 10.1093/nar/gkn697] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 12/21/2022] Open
Abstract
Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events in lung adenocarcinoma. We found that 2369 of the 17 800 core Refseq genes appear to have alternative transcripts that are differentially expressed in lung adenocarcinoma versus normal. According to their known functions the largest subset of these genes (30.8%) is believed to be cancer related. Detailed analysis was performed for several genes using PCR, quantitative RT-PCR and DNA sequencing. We found overexpression of ERG variant 2 but not variant 1 in lung tumors and overexpression of CEACAM1 variant 1 but not variant 2 in lung tumors but not in breast or colon tumors. We also identified a novel, overexpressed variant of CDH3 and verified the existence and overexpression of a novel variant of P16 transcribed from the CDKN2A locus. These findings demonstrate how analysis of alternative pre-mRNA processing can shed additional light on differences between tumors and normal tissues as well as between different tumor types. Such studies may lead to the development of additional tools for tumor diagnosis, prognosis and therapy.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Exons
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm
- Genetic Variation
- Genome, Human
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Regulator ERG
Collapse
Affiliation(s)
- Liqiang Xi
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew Feber
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vanita Gupta
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maoxin Wu
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew D. Bergemann
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rodney J. Landreneau
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Virginia R. Litle
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Arjun Pennathur
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James D. Luketich
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tony E. Godfrey
- Department of Pathology, Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, NY 10029 and Heart, Lung and Esophageal Surgery Institute, and Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
144
|
Radich JP. Molecular Classification of Acute Myeloid Leukemia: Are We There Yet? J Clin Oncol 2008; 26:4539-41. [DOI: 10.1200/jco.2008.16.4293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jerald P. Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
145
|
Abstract
In acute myeloid leukemia (AML), aberrant signal transduction enhances the survival and proliferation of hematopoietic progenitor cells. Activation of signal transduction in AML may occur through a variety of genetic alterations affecting different signaling molecules, such as the FLT3 and KIT receptor tyrosine kinases (RTKs) and members of the RAS family of guanine nucleotide-binding proteins. These mutant signaling proteins are attractive therapeutic targets; however, developing targeted therapies for each genotypic variant and determining the relationships between different genotypes and critical functional dependencies of the leukemic cells remain major challenges. As the large number of mutant signaling proteins that have been identified in AML are likely to reflect activation of a more limited number of downstream effector pathways, such as the RAF/MEK/ERK and PI3K/AKT cascades, targeting these unifying pathways may represent a more broadly applicable therapeutic strategy. Furthermore, integrative genomic studies combining DNA sequencing, DNA copy number analysis, transcriptional profiling, and functional genetic approaches hold great promise for identifying additional signaling abnormalities in AML that are relevant to leukemogenesis and can be exploited therapeutically. Eventually, it may become possible to use pathogenesis-oriented combinations of signal transduction inhibitors to improve the cure rate in AML patients.
Collapse
Affiliation(s)
- Claudia Scholl
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
146
|
Abstract
Acute myeloid leukemia (AML) represents a heterogeneous group of leukemia entities that differ with regard to biology, clinical course, and prognosis. Over the past decades, it has been shown that most AML cases exhibit chromosomal aberrations, gene mutations, and disordered gene expression that alter normal gene function, thereby contributing to leukemic transformation. Especially, in cytogenetically normal AML (CN-AML) molecular genetic and gene expression analyses are becoming of increasing importance. In addition to the impact of gene mutations, including the MLL, FLT3, CEBPA, or NPM1 genes in CN-AML, recent analyses have provided evidence that altered gene expression might not only be of biological but also of prognostic relevance in CN-AML patients. Quantitative reverse-transcriptase polymerase chain reaction (Q-RT-PCR) and recent advances in genome-wide DNA microarray-based gene expression profiling (GEP) represent powerful tools for the systematic exploration of the molecular variation underlying the biologic and clinical heterogeneity of CN-AML. Ultimately, a better understanding of gene expression alterations and hence the molecular basis of the disease will contribute to a refined leukemia classification, which will include both previously known CN-AML subgroups and novel classes defined by distinct gene expression clusters with prognostic significance.
Collapse
|
147
|
Abstract
Patients with acute myeloid leukemia (AML) harboring three or more acquired chromosome aberrations in the absence of the prognostically favorable t(8;21)(q22;q22), inv(16)(p13q22)/t(6;16)(p13;q22), and t(15;17)(q22;q21) aberrations form a separate category - AML with a complex karyotype. They constitute 10% to 12% of all AML patents, with the incidence of complex karyotypes increasing with the more advanced age. Recent studies using molecular-cytogenetic techniques (spectral karyotyping [SKY], multiplex fluorescence in situ hybridization [M-FISH]) and array comparative genomic hybridization (a-CGH) considerably improved characterization of previously unidentified, partially identified, or cryptic chromosome aberrations, and allowed precise delineation of genomic imbalances. The emerging nonrandom pattern of abnormalities includes relative paucity, but not absence, of balanced rearrangements (translocations, insertions, or inversions), predominance of aberrations leading to loss of chromosome material (monosomies, deletions, and unbalanced translocations) that involve, in decreasing order, chromosome arms 5q, 17p, 7q, 18q, 16q, 17q, 12p, 20q, 18p, and 3p, and the presence of recurrent, albeit less frequent and often hidden (in marker chromosomes and unbalanced translocations) aberrations leading to overrepresentation of segments from 8q, 11q, 21q, 22q, 1p, 9p, and 13q. Several candidate genes have been identified as targets of genomic losses, for example, TP53, CTNNA1, NF1, ETV6, and TCF4, and amplifications, for example, ERG, ETS2, APP, ETS1, FLI1, MLL, DDX6, GAB2, MYC, TRIB1, and CDX2. Treatment outcomes of complex karyotype patients receiving chemotherapy are very poor. They can be improved to some extent by allogeneic stem cell transplantation in younger patients. It is hoped that better understanding of genomic alterations will result in identification of novel therapeutic targets and improved prognosis in patients with complex karyotypes.
Collapse
|
148
|
An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112:4193-201. [PMID: 18716133 DOI: 10.1182/blood-2008-02-134411] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with cytogenetically normal acute myeloid leukemia (CN-AML) show heterogeneous treatment outcomes. We used gene-expression profiling to develop a gene signature that predicts overall survival (OS) in CN-AML. Based on data from 163 patients treated in the German AMLCG 1999 trial and analyzed on oligonucleotide microarrays, we used supervised principal component analysis to identify 86 probe sets (representing 66 different genes), which correlated with OS, and defined a prognostic score based on this signature. When applied to an independent cohort of 79 CN-AML patients, this continuous score remained a significant predictor for OS (hazard ratio [HR], 1.85; P = .002), event-free survival (HR = 1.73; P = .001), and relapse-free survival (HR = 1.76; P = .025). It kept its prognostic value in multivariate analyses adjusting for age, FLT3 ITD, and NPM1 status. In a validation cohort of 64 CN-AML patients treated on CALGB study 9621, the score also predicted OS (HR = 4.11; P < .001), event-free survival (HR = 2.90; P < .001), and relapse-free survival (HR = 3.14, P < .001) and retained its significance in a multivariate model for OS. In summary, we present a novel gene-expression signature that offers additional prognostic information for patients with CN-AML.
Collapse
|
149
|
Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrózek K, Maharry K, Langer C, Baldus CD, Zhao W, Powell BL, Baer MR, Carroll AJ, Caligiuri MA, Kolitz JE, Larson RA, Bloomfield CD. Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2008; 26:4595-602. [PMID: 18559874 DOI: 10.1200/jco.2007.15.2058] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To analyze the prognostic impact of Wilms' tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS We studied 196 adults younger than 60 years with newly diagnosed primary CN-AML, who were treated similarly on Cancer and Leukemia Group B (CALGB) protocols 9621 and 19808, for WT1 mutations in exons 7 and 9. The patients also were assessed for the presence of FLT3 internal tandem duplications (FLT3-ITD), FLT3 tyrosine kinase domain mutations (FLT3-TKD), MLL partial tandem duplications (MLL-PTD), NPM1 and CEBPA mutations, and for the expression levels of ERG and BAALC. RESULTS Twenty-one patients (10.7%) harbored WT1 mutations. Complete remission rates were not significantly different between patients with WT1 mutations and those with unmutated WT1 (P = .36; 76% v 84%). Patients with WT1 mutations had worse disease-free survival (DFS; P < .001; 3-year rates, 13% v 50%) and overall survival (OS; P < .001; 3-year rates, 10% v 56%) than patients with unmutated WT1. In multivariable analyses, WT1 mutations independently predicted worse DFS (P = .009; hazard ratio [HR] = 2.7) when controlling for CEBPA mutational status, ERG expression level, and FLT3-ITD/NPM1 molecular-risk group (ie, FLT3-ITD(negative)/NPM1(mutated) as low risk v FLT3-ITD(positive) and/or NPM1(wild-type) as high risk). WT1 mutations also independently predicted worse OS (P < .001; HR = 3.2) when controlling for CEBPA mutational status, FLT3-ITD/NPM1 molecular-risk group, and white blood cell count. CONCLUSION We report the first evidence that WT1 mutations independently predict extremely poor outcome in intensively treated, younger patients with CN-AML. Future trials should include testing for WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML.
Collapse
Affiliation(s)
- Peter Paschka
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Ferrara F, Palmieri S, Leoni F. Clinically useful prognostic factors in acute myeloid leukemia. Crit Rev Oncol Hematol 2008; 66:181-93. [DOI: 10.1016/j.critrevonc.2007.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 08/31/2007] [Accepted: 09/28/2007] [Indexed: 11/30/2022] Open
|