101
|
Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, Aryan R, Savardashtaki A, Mirzaei H. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem 2019; 581:113349. [PMID: 31254490 DOI: 10.1016/j.ab.2019.113349] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023]
Abstract
Nanotechnology plays an undeniable significant role in medical sciences, particularly in the field of biomedicine. Development of several diagnostic procedures in medicine has been possible through the beneficial application of nano-materials, among which electrochemical nano-biosensors can be mentioned. They can be employed to quantify various clinical biomarkers in detection, evaluation, and follow up stages of the illnesses. MicroRNAs, a group of regulatory short RNA fragments, added a new dimension to the management and diagnosis of several diseases. Mature miRNAs are single-stranded RNA molecules approximately 22 nucleotides in length, which regulate a vast range of biological functions from cellular proliferation and death to cancer development and progression. Recently, diagnostic value of miRNAs in various diseases has been demonstrated. There are many traditional methods for detection of miRNAs including northern blotting, quantitative real time PCR (qRT-PCR), microarray technology, nanotechnology-based approaches, and molecular biology tools including miRNA biosensors. In comparison with other techniques, electrochemical nucleic acid biosensor methods exhibit many interesting features, and could play an important role in the future nucleic acid analysis. This review paper provides an overview of some different types of nanotechnology-based biosensors for detection of miRNAs.
Collapse
Affiliation(s)
- Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadat Dokanehiifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Aryan
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
102
|
Partyka KL, Trevino K, Randolph ML, Cramer H, Wu HH. Risk of malignancy and neoplasia predicted by three molecular testing platforms in indeterminate thyroid nodules on fine-needle aspiration. Diagn Cytopathol 2019; 47:853-862. [DOI: 10.1002/dc.24250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Kristen L. Partyka
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis Indiana
| | - Karen Trevino
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis Indiana
| | - Melissa L. Randolph
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis Indiana
| | - Harvey Cramer
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis Indiana
| | - Howard H. Wu
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis Indiana
| |
Collapse
|
103
|
Boos LA, Schmitt A, Moch H, Komminoth P, Simillion C, Marinoni I, Nikiforov YE, Nikiforova MN, Perren A, Dettmer MS. MiRNAs Are Involved in Tall Cell Morphology in Papillary Thyroid Carcinoma. Cancers (Basel) 2019; 11:cancers11060885. [PMID: 31242620 PMCID: PMC6628239 DOI: 10.3390/cancers11060885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
Five percent of papillary thyroid carcinomas (PTC) show an adverse clinical outcome (ACO). The tall cell variant of papillary thyroid carcinomas (TCV) is a good predictor of an ACO, however, the identification of tall-cells is subjective. Micro RNAs are short non-coding ribonucleic acids (miRNA). Their expression in PTC could be a powerful, more objective predictor of prognosis. METHODS Forty-four PTC underwent miRNA profiling, twenty-four of them were TCV. The miRNA dataset was validated by analysis of expression of known target proteins (vascular endothelial growth factor (VEGF) and phosphatase and tensin homolog (PTEN)) in 125 patients including 48 TCV and 57 with an ACO. RESULTS One hundred and forty-nine miRNAs were significantly associated with an ACO, seventy-one of them with TC-morphology. Twenty-two miRNAs were identified as targets for VEGF and thirty-two as targets for PTEN. In univariate and multivariable analysis, reduced expression of PTEN and an increased expression of VEGF were associated with shorter relapse free survival. A classifier, including TC-morphology, pT-stage, VEGF, and PTEN, predicted relapse with an 80% accuracy. CONCLUSIONS Some miRNAs predict outcome in PTC and are involved in TC-morphology in PTC. These miRNAs may serve as more objective indicators of an ACO than tall cell morphology. PTEN and VEGF protein expression are prognostically relevant and are at least partially regulated by miRNAs.
Collapse
Affiliation(s)
- Laura A Boos
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH 3008 Bern, Switzerland.
| | - Anja Schmitt
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH 3008 Bern, Switzerland.
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Paul Komminoth
- Institute of Surgical Pathology, Stadtspital Triemli, Birmensdorferstr. 497, 8063 Zürich, Switzerland.
| | - Cedric Simillion
- Department of BioMedical Research, University of Bern, Murtenstrasse 31, CH 3008 Bern, Switzerland.
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH 3008 Bern, Switzerland.
| | - Yuri E Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Marina N Nikiforova
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Aurel Perren
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH 3008 Bern, Switzerland.
| | - Matthias S Dettmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH 3008 Bern, Switzerland.
| |
Collapse
|
104
|
Pignatti E, Vighi E, Magnani E, Kara E, Roncati L, Maiorana A, Santi D, Madeo B, Cioni K, Carani C, Rochira V, Simoni M, Brigante G. Expression and clinicopathological role of miR146a in thyroid follicular carcinoma. Endocrine 2019; 64:575-583. [PMID: 30701447 DOI: 10.1007/s12020-019-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Dysregulation of microRNA expression has been involved in the development and progression of follicular thyroid carcinoma (FTC). The aim of this work was to study the expression of miRNA146a in FTC and the association with clinicopathological features of the disease. METHODS Thirty-eight patients affected by FTC were included in the study. Twenty patients carrying follicular thyroid adenoma (FA) were also enroled as the benign counterpart of FTC. Total RNA including miRNA146a was extracted from formalin-fixed paraffin-embedded (FFPE) pairs of affected/unaffected tissue and its expression was assessed by real-time PCR. Two selected target genes, TRAF6 (tumour necrosis factor receptor-associated factor 6) and IRAK1 (Il-1 receptor-associated kinase 1/2), were also analysed. RESULTS miR146a expression in FTC tissue was overall not downregulated in malignant versus unaffected tissue, but its expression was inversely correlated with clinicopathological features of FTCs at diagnosis. A decreased expression of miR146a became apparent in FTC thyroid tissue of widely compared to minimally invasive tumours. However, miR146a expression differences between contralateral unaffected tissue (extra-FTC) and FTC were not observed regardless of clinicopathological features. IRAK1, a known target for miR146a, was upregulated in FTC and the increase was mainly appreciable in Hurtle FTC variant. Unexpectedly, miR146a did not correlate with TRAF6 showing an inverse trend compared to IRAK1 although both genes regulate the activity of nuclear factor- kB (NF-kB). CONCLUSION The results of this study indicate that downregulation of miR146a, inversely correlated with clinicopathological features of FTCs at diagnosis and suggest a possible involvement of miR146a in FTC development. IRAK1 over-expression in FTC may be related to tumour development/progression. In vitro experiments are needed to support this hypothesis.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vighi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Magnani
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elda Kara
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncati
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Antonino Maiorana
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Bruno Madeo
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Katia Cioni
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Cesare Carani
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Rochira
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy.
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy.
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
105
|
Khatami F, Larijani B, Nasiri S, Tavangar SM. Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:19-29. [PMID: 32351906 PMCID: PMC7175608 DOI: 10.22088/ijmcm.bums.8.2.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
In the blood of cancer patients, some nucleic acid fragments and tumor cells can be found that make it possible to trace tumor changes through a simple blood test called “liquid biopsy”. The main components of liquid biopsy are fragments of DNA and RNA shed by tumors into the bloodstream and circulate freely (ctDNAs and ctRNAs). Tumor cells which are shed into the blood (circulating tumor cells or CTCs), and exosomes that have been investigated for non-invasive detection and monitoring several tumors including thyroid cancer. Genetic and epigenetic alterations of a thyroid tumor can be a driver for tumor genesis or essential for tumor progression and invasion. Liquid biopsy can be real-time representative of such genetic and epigenetic alterations to trace tumors. In thyroid tumors, the circulating BRAF mutation is now taken into account for both thyroid cancer diagnosis and determination of the most effective treatment strategy. Several recent studies have indicated the ctDNA methylation pattern of some iodine transporters and DNA methyltransferase as a diagnostic and prognostic biomarker in thyroid cancer as well. There has been a big hope that the recent advances of genome sequencing together with liquid biopsy can be a game changer in oncology.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
106
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
107
|
Zarkesh M, Zadeh-Vakili A, Akbarzadeh M, Nozhat Z, Fanaei SA, Hedayati M, Azizi F. BRAF V600E mutation and microRNAs are helpful in distinguishing papillary thyroid malignant lesions: Tissues and fine needle aspiration cytology cases. Life Sci 2019; 223:166-173. [PMID: 30890403 DOI: 10.1016/j.lfs.2019.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023]
Abstract
AIMS Mutations of BRAF oncogene are considered to contribute in the invasiveness and poor clinicopathologic features of papillary thyroid cancer (PTC). As a step towards understanding the underlying molecular mechanisms of this contribution, we aimed to examine the association of four microRNAs' (miR-222, -137, -214, -181b) levels with BRAFV600E and clinicopathological features in PTC tissues and fine needle aspiration (FNA) specimens. METHODS In total, 56 PTC and 27 benign with multinodular goiter tissue samples, 95 FNA samples, and B-CPAP and HEK293 cell lines were examined. BRAFV600E mutation was examined in PTC tissues and FNA samples. Expression of microRNAs was assessed by real-time quantitative reverse transcription-PCR. KEY FINDINGS The frequency of BRAFV600E in PTC tissues and FNA samples "suspicious for PTC" was 41.1 and 36.8%, respectively. MiR-222, -137, -214, and -181b were significantly upregulated in PTC tumors (P < 0.05) and in B-CPAP cell line (P < 0.001). In FNA, the expressions of miR-222, -181b and -214 were significantly elevated in patients suspected for PTC (P < 0.05), while there was no significant difference in miR-137. After adjustment for age and sex, miR-181b was associated with an increased risk of bearing BRAFV600E mutation (OR: 1.27; 95% CI: 1.01-1.61; P = 0.045) and risk of lymphovascular invasion (OR: 1.66; 95% CI: 1.01-2.72; P = 0.045); miR-137 was associated with the risk of larger tumor size (OR: 1.31; 95% CI: 1.04-1.65; P = 0.022); miR-222 was related to increase in extracapsular invasion (OR: 1.28; 95% CI: 1.04-1.57; P = 0.018). SIGNIFICANCE Upregulation of miR-222, -214 and -181b has been confirmed in PTC tumors, FNA samples and cell line. MiR-137 upregulation has been confirmed in PTC tumors and cell line, but not in FNA samples. MiR-222, -137 and -181b showed an association with the degree of malignancy in PTC tumors.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Nozhat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
108
|
Rappa G, Puglisi C, Santos MF, Forte S, Memeo L, Lorico A. Extracellular Vesicles from Thyroid Carcinoma: The New Frontier of Liquid Biopsy. Int J Mol Sci 2019; 20:E1114. [PMID: 30841521 PMCID: PMC6429352 DOI: 10.3390/ijms20051114] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
The diagnostic approach to thyroid cancer is one of the most challenging issues in oncology of the endocrine system because of its high incidence (3.8% of all new cancer cases in the US) and the difficulty to distinguish benign from malignant non-functional thyroid nodules and establish the cervical lymph node involvement during staging. Routine diagnosis of thyroid nodules usually relies on a fine-needle aspirate biopsy, which is invasive and often inaccurate. Therefore, there is an urgent need to identify novel, accurate, and non-invasive diagnostic procedures. Liquid biopsy, as a non-invasive approach for the detection of diagnostic biomarkers for early tumor diagnosis, prognosis, and disease monitoring, may be of particular benefit in this context. Extracellular vesicles (EVs) are a consistent source of tumor-derived RNA due to their prevalence in circulating bodily fluids, the well-established isolation protocols, and the fact that RNA in phospholipid bilayer-enclosed vesicles is protected from blood-borne RNases. Recent results in other types of cancer, including our recent study on plasma EVs from glioblastoma patients suggest that information derived from analysis of EVs from peripheral blood plasma can be integrated in the routine diagnostic tumor approach. In this review, we will examine the diagnostic and prognostic potential of liquid biopsy to detect tumor-derived nucleic acids in circulating EVs from patients with thyroid carcinoma.
Collapse
Affiliation(s)
- Germana Rappa
- College of Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA.
| | - Caterina Puglisi
- Mediterranean Institute of Oncology Foundation, Via Penninazzo 7, 95029 Viagrande, Italy.
| | - Mark F Santos
- College of Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA.
| | - Stefano Forte
- Mediterranean Institute of Oncology Foundation, Via Penninazzo 7, 95029 Viagrande, Italy.
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology Foundation, Via Penninazzo 7, 95029 Viagrande, Italy.
| | - Aurelio Lorico
- College of Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA.
| |
Collapse
|
109
|
Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int J Med Sci 2019; 16:450-460. [PMID: 30911279 PMCID: PMC6428975 DOI: 10.7150/ijms.29935] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 11/05/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all cancers of the thyroid. It is also one of the few cancers with a rapidly increasing incidence. PTC is usually contained within the thyroid gland and generally biologically indolent. Prognosis of the cancer is excellent, with less than 2% mortality at 5 years. However, more than 25% of patients with PTC developed a recurrence during a long term follow-up. The present article provides an updated condensed overview of PTC, which focuses mainly on the molecular alterations involved and recent biomarker investigations.
Collapse
Affiliation(s)
- Mardiaty Iryani Abdullah
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Barani Karikalan
- Perdana University, Jalan MAEPS Perdana, Serdang 43400, Selangor, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
110
|
Wang Z, Lv J, Zou X, Huang Z, Zhang H, Liu Q, Jiang L, Zhou X, Zhu W. A three plasma microRNA signature for papillary thyroid carcinoma diagnosis in Chinese patients. Gene 2019; 693:37-45. [PMID: 30684524 DOI: 10.1016/j.gene.2019.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023]
Abstract
Whether plasma miRNAs could be used as novel non-invasive biomarkers in diagnosing papillary thyroid carcinoma (PTC) remains unknown. In this study, we designed a four-phase study to identify differentially expressed plasma miRNAs in Chinese PTC patients. Exiqon panel was initially utilized to conduct plasma miRNA profile (3 PTC pools VS. 1 healthy control (HC) pool; each 10 samples were pooled as 1 sample). The dysregulated miRNAs were then analyzed in the training (30 PTC VS. 30 HCs), testing (57 PTC VS. 54 HCs) and external validation phases (33 PTC VS. 30HCs). The identified miRNAs were further affirmed in benign nodules (2 nodular goiter (NG) pool VS. 1 HC pool). We also verified the expression of identified miRNAs in 17 matched malignant and normal tissue samples, NG plasma samples (29 PTC VS. 29 NG) and plasma exosomes (25 PTC VS. 25 HCs). Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic value of the identified miRNAs. As a result, the screening phase demonstrated 30 dysregulated plasma miRNAs in PTC patients compared with HCs. After multiphase experiment processes, miR-346, miR-10a-5p and miR-34a-5p were found significantly elevated in PTC plasma samples relative to HCs. The areas under the ROC curve (AUC) of the three-miRNA panel for the training, testing and validation phases were 0.926, 0.811 and 0.816, separately. The panel could also differentiate PTC from NG with the AUC of 0.877. MiR-346 and miR-34a-5p but not miR-10a-5p were up-regulated in PTC tissues. And the three miRNAs showed consistently up-regulation in PTC plasma exosomes. In conclusion, our study established a three-miRNA panel in plasma with considerable clinical value in discriminating PTC from HC or NG.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Jinru Lv
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Xuan Zou
- First Clinical College of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi 214062, Jiangsu Province, PR China
| | - Huo Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Qingxie Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Lin Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, No.1399 West Road, Shengze Town, Wujiang District, Suzhou 215000, China.
| |
Collapse
|
111
|
Castagna MG, Marzocchi C, Pilli T, Forleo R, Pacini F, Cantara S. MicroRNA expression profile of thyroid nodules in fine-needle aspiration cytology: a confirmatory series. J Endocrinol Invest 2019; 42:97-100. [PMID: 29574528 DOI: 10.1007/s40618-018-0880-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION MiRNAs are small endogenous non-coding RNAs implicated with gene expression regulation. Changes in miRNA levels have been reported in thyroid cancer. Fine-needle aspiration cytology (FNAC) is the most reliable tool for differential diagnosis of thyroid nodules. METHODS We have analyzed 174 FNAC from 168 patients with thyroid nodules for expression levels of 11 miRNAs (miRNA197; -187; -181b-3p; -181b-5p; -224; -181a; 146b; -221; -222; -155 and miRNA183) known to be up-regulated in cancer tissues compared to benign lesions. Expression of miRNAs was analyzed in FNA samples calculating the fold change of miRNA expression relative to normal thyroid tissue after normalization to an endogenous control. RESULTS In FNAC, miRNA expression was confirmed to be higher in malignant or suspicious for malignancy nodules compared to benign, only for miRNA146b, -222 and -221 (fold change expression ≥ 5). CONCLUSION In this study, we confirmed that a limited set of miRNAs can be used for the differential diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- M G Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - C Marzocchi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - T Pilli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - R Forleo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - F Pacini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - S Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
112
|
Abstract
Genomic, clinical, and pathologic studies have prompted a more risk-stratified approach to the management of patients with thyroid nodules. The recent nomenclature change concerning noninvasive follicular thyroid neoplasm with papillary-like nuclear features reflects the clinical trend toward conservative treatment choices for carefully selected low-risk thyroid neoplasms. These developments have occurred in parallel with a growing array of molecular tests intended to improve clinical triage for patients with indeterminate fine needle aspiration diagnoses. This review discusses the implications of the nomenclature revision on the interpretation of thyroid fine needle aspiration and updates available ancillary molecular tests for thyroid fine needle aspirations.
Collapse
Affiliation(s)
- Michiya Nishino
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Jeffrey F Krane
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Amory 3, Boston, MA 02115, USA
| |
Collapse
|
113
|
Calabrese G, Dolcimascolo A, Torrisi F, Zappalà A, Gulino R, Parenti R. MiR-19a Overexpression in FTC-133 Cell Line Induces a More De-Differentiated and Aggressive Phenotype. Int J Mol Sci 2018; 19:ijms19123944. [PMID: 30544640 PMCID: PMC6320980 DOI: 10.3390/ijms19123944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, microRNAs (miRNAs) have received increasing attention for their important role in tumor initiation and progression. MiRNAs are a class of endogenous small non-coding RNAs that negatively regulate the expression of several oncogenes or tumor suppressor genes. MiR-19a, a component of the oncogenic miR-17-92 cluster, has been reported to be highly expressed only in anaplastic thyroid cancer, the most undifferentiated, aggressive and lethal form of thyroid neoplasia. In this work, we evaluated the putative contribution of miR-19a in de-differentiation and aggressiveness of thyroid tumors. To this aim, we induced miR-19a expression in the well-differentiated follicular thyroid cancer cell line and evaluated proliferation, apoptosis and gene expression profile of cancer cells. Our results showed that miR-19a overexpression stimulates cell proliferation and alters the expression profile of genes related to thyroid cell differentiation and aggressiveness. These findings not only suggest that miR-19a has a possible involvement in de-differentiation and malignancy, but also that it could represent an important prognostic indicator and a good therapeutic target for the most aggressive thyroid cancer.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Anna Dolcimascolo
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| |
Collapse
|
114
|
Yu C, Zhang L, Luo D, Yan F, Liu J, Shao S, Zhao L, Jin T, Zhao J, Gao L. MicroRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid 2018; 28:1627-1641. [PMID: 30244634 PMCID: PMC6308293 DOI: 10.1089/thy.2017.0626] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: MiR-146b has been reported to be overexpressed in papillary thyroid cancer (PTC) tissues and associated with aggressive PTC. MiR-146b is regarded as a relevant diagnostic marker for this type of cancer. MiR-146b-5p has been confirmed to increase cell proliferation by repressing SMAD4. However, detailed functional analysis of another mature form of miR-146b, miR-146b-3p, has not been carried out. This study aimed to identify the differential expression of miR-146b-5p and miR-146b-3p in more aggressive PTC associated with lymph node metastasis, and further elucidate the contribution and mechanism of miR-146b-3p in the process of PTC metastasis. Methods: Expression of miR-146b-5p and miR-146b-3p was assessed in formalin-fixed paraffin-embedded tissue samples from PTC patients, and the relationship with lymph node metastasis was analyzed. A variety of PTC cells, including BHP10-3, BHP10-3SCmice, and K1 cells, were cultured and treated with miR-146b-5p or miR-146b-3p mimics/inhibitors. The cell migration and invasion abilities were characterized by the real-time cell analyzer assay and Transwell™ assay. PTC xenograft models were used to examine the effect of miR-146b-3p on PTC metastatic ability in vivo. Direct downstream targets of miR-146b-3p were analyzed by luciferase reporter assay and Western blotting. The mechanism by which miR-146b-3p affects cell metastasis was further characterized by co-transfection with merlin, the protein product of the NF2 gene. Results: MiR-146b-5p and miR-146b-3p expression was significantly higher in thyroid cancer tissues and cell lines than in normal thyroid tissue and cells. Moreover, expression of miR-146b-5p and miR-146b-3p was further increased in thyroid metastatic nodes than in thyroid cancer. After overexpression of miR-146b-5p or miR-146b-3p in BHP10-3 or K1 cells, PTC migration and invasion were increased. Notably, miR-146b-3p increased cell migration and invasion more obviously than did miR-146b-5p. Overexpression of miR-146b-3p also significantly promoted PTC tumor metastasis in vivo. Luciferase reporter assay results revealed that NF2 is a downstream target of miR-146b-3p in PTC cells, as miR-146b-3p bound directly to the 3' untranslated region of NF2, thus reducing protein levels of NF2. Overexpression of merlin reversed the enhanced aggressive effects of miR-146b-3p. Conclusions: Overexpression of miR-146b-5p and miR-146b-3p is associated with PTC metastasis. MiR-146b-3p enhances cell invasion and metastasis more obviously than miR-146b-5p through the suppression of the NF2 gene. These findings suggest a potential diagnostic and therapeutic value of these miRNAs in PTC metastasis.
Collapse
Affiliation(s)
- Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Address correspondence to: Chunxiao Yu, PhD, Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong 2500021, China
| | - Li Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Third Hospital, Shandong, P.R. China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- School of Medicine, Shandong University, Shandong, P.R. China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital affiliated to Shandong University, Shandong, P.R. China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Tong Jin
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Shandong, P.R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong, P.R. China
- Ling Gao, PhD, MD, Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong 2500021, China
| |
Collapse
|
115
|
MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI. Biomed Pharmacother 2018; 109:2357-2364. [PMID: 30551495 DOI: 10.1016/j.biopha.2018.08.150] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We intended to evaluate expression and mechanisms of human microRNA 1270 (hsa-miR-1270) in papillary thyroid cancer (PTC). METHODS In PTC cell lines and human PTC tumors, hsa-miR-1270 expressions were evaluated by qRT-PCR. Hsa-miR-1270 was downregulated in TPC1 and K1 cells via lentiviral transduction. Its effects on PTC cancer cell proliferation, migration and in vivo transplantation were assessed, respectively. Potential targeting of hsa-miR-1270 on downstream gene, Suppressor Of Cancer Cell Invasion (SCAI), was assessed. In hsa-miR-1270-downregulated PTC cells, SCAI was further downregulated to examine its associating role in hsa-miR-1270-mediated regulation on cancer cell proliferation and migration. RESULTS Hsa-miR-1270 was aberrantly upregulated in PTC cell lines and human PTC tumors. In TPC1 and K1 cells, lentivirus-mediated hsa-miR-1270 downregulation suppressed cancer cell proliferation, migration and in vivo transplantation. Hsa-miR-1270 binds SCAI and inversely regulated SCAI gene expression in PTC cells. SCAI downregulation removed the suppressing effects of hsa-miR-1270 downregulation in human PTC cells. CONCLUSION Hsa-miR-1270 downregulation may suppress human PTC cell development both in vitro and in vivo. The regulatory mechanism of hsa-miR-1270 in PTC may be primarily associated with SCAI.
Collapse
|
116
|
Zarkesh M, Zadeh-Vakili A, Azizi F, Foroughi F, Akhavan MM, Hedayati M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol Diagn Ther 2018; 22:41-56. [PMID: 28986854 DOI: 10.1007/s40291-017-0303-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thyroid carcinoma (TC) is the most frequent malignant neoplasm of the endocrine system. Molecular methods for diagnosis of invasive thyroid disease can be effectively adopted. Epigenetic factors play an important role in the diversity patterns of gene expression and the phenotypic and biological characteristics of TC subtypes. We aimed to review epigenetic changes in the main subtypes of TC, along with a presentation of the methods that have examined these changes, and active clinical trials for the treatment of advanced TCs targeting epigenetic changes. A literature analysis was performed in MEDLINE using PubMed, Elsevier, and Google Scholar for studies published up to 2016, using the keywords: "Epigenetic alterations" OR "Epigenetic changes", "thyroid cancers", "papillary thyroid cancer", "medullary thyroid cancer", "follicular thyroid cancer", and "anaplastic thyroid cancer", which resulted in 310 articles in English. All related abstracts were reviewed and studies were included that were published in English, had available full text, and determined the details of the methods and materials associated with the epigenetic patterns of TC and its subtypes (100 articles). Analysis of epigenetic alterations in TC subtypes helps to identify pathogenesis and can play an important role in the classification and diagnosis of tumors. Epigenetic mechanisms, especially aberrant methylation of DNA and microRNAs (miRs), are likely to play an important role in thyroid tumorigenesis. Further studies are required to elucidate the role of histone modification mechanisms in TC development.
Collapse
Affiliation(s)
- Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foroughi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences, 19395-4763, Tehran, Iran.
| |
Collapse
|
117
|
Lang WJ, Chen FY. The reciprocal link between EVI1 and miRNAs in human malignancies. Gene 2018; 672:56-63. [DOI: 10.1016/j.gene.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/26/2022]
|
118
|
Pan D, Lin P, Wen D, Wei Y, Mo Q, Liang L, Chen G, He Y, Chen J, Yang H. Identification of down-regulated microRNAs in thyroid cancer and their potential functions. Am J Transl Res 2018; 10:2264-2276. [PMID: 30210669 PMCID: PMC6129536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The mechanism of microRNAs (miRNAs) in thyroid cancer is still unclear. We identified miRNAs with differential expression in thyroid cancer versus normal tissues. METHODS Microarray datasets were obtained from the GEO and ArrayExpress databases, and from publications found via PubMed, EMBASE, and Web of Science. Differentially expressed miRNAs were identified using the limma package, and their targets predicted using miRWalk. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were performed using these target genes to explore potential carcinogenic mechanisms. Correlations between target gene and miRNA expression levels were examined. Changes in target protein expression were confirmed using data from The Human Protein Atlas and the Cancer Genome Atlas. RESULTS We ultimately included five datasets, and further analyzed the four miRNAs that were down-regulated in at least four datasets (miR-7-2-3p, miR-138-5p, miR-144-5p, miR-486-5p). Predicted targets were enriched in GO terms including extracellular matrix organization, cell surface, and receptor binding, and in KEGG cancer pathways. PPI analysis identified 10 hub genes as key potential targets of these miRNAs. The expression levels of eight target genes were negatively correlated with those of their respective miRNAs. Furthermore, eight predicted target genes in cancer-related pathways showed up-regulated protein and mRNA expression in thyroid cancer. CONCLUSION Low miRNA expression in thyroid cancer might influence tumorigenesis via critical pathways. The genes identified here may act as a starting point for further investigation of the carcinogenic mechanisms of these miRNAs.
Collapse
Affiliation(s)
- Denghua Pan
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Dongyue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yunpeng Wei
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Qiuyan Mo
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Liang Liang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
119
|
Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol 2018; 469:3-10. [PMID: 28711609 DOI: 10.1016/j.mce.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Differentiated thyroid carcinoma of follicular cell-derivation is the most common endocrine neoplasm with a rapidly increasing incidence. The majority represent papillary carcinomas; more rarely, they are follicular carcinomas. The vast majority have indolent behavior, however a significant proportion progress to develop lymph node metastases and a smaller proportion disseminate systemically. While common and frequent genetic events have been described to underlie the development of these neoplasms, the factors contributing to differing behaviors among tumors with similar genetic alterations remain unclear. This review focuses on epigenetic mechanisms targeting major signaling pathways that underlie the spectrum of biological behaviors and that may have potential diagnostic, prognostic and therapeutic value.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
120
|
Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol 2018; 469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Well-differentiated thyroid cancer accounts for the majority of endocrine malignancies and, in general, has an excellent prognosis. In contrast, the less common poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are two of the most aggressive human malignancies. Recently, there has been an increased focus on the epigenetic alterations underlying thyroid carcinogenesis, including those that drive PDTC and ATC. Dysregulated epigenetic candidates identified include the Aurora group, KMT2D, PTEN, RASSF1A, multiple non-coding RNAs (ncRNA), and the SWI/SNF chromatin-remodeling complex. A deeper understanding of the signaling pathways affected by epigenetic dysregulation may improve prognostic testing and support the advancement of thyroid-specific epigenetic therapies. This review outlines the current understanding of epigenetic alterations observed in PDTC and ATC and explores the potential for exploiting this understanding in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
121
|
Chen W, Cui Y, Wang J, Yuan Y, Sun X, Zhang L, Shen S, Cheng J. Effects of downregulated expression of microRNA-187 in gastric cancer. Exp Ther Med 2018; 16:1061-1070. [PMID: 30112051 PMCID: PMC6090455 DOI: 10.3892/etm.2018.6318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/04/2016] [Indexed: 01/20/2023] Open
Abstract
microRNAs (miRNAs) are involved in cancer development and progression, and have regulatory roles as tumor suppressors or oncogenes. Although aberrant expression of miR-187 has been observed in several types of cancer, its pathophysiological role and relevance to tumorigenesis in gastric cancer (GC) remains unknown. In the present study, the expression and biological role of miR-187 was investigated in 32 specimens of GC tissues and their adjacent non-tumorigenic controls, and the association between miR-187 expression and clinical features of GC were analyzed further. Kaplan-Meier survival curves determined the clinical significance of miR-187 expression in GC. Following transfection with miR-187 mimics, the biological functions of miR-187 were determined by cell proliferation and cell cycle assays. Moreover, following transfection with miR-187 mimics, the targets regulated by miR-187 were investigated using western blotting. Luciferase reporter assays confirmed whether miR-187 regulated MAD2 mitotic arrest deficient-like 2 (MAD2L2) and stomatin (EPB72)-like 2 (STOML2) expression. The data of the present study revealed that miR-187 was significantly downregulated in GC compared with adjacent non-tumorigenic counterparts. Furthermore, decreased expression of miR-187 correlated with cell differentiation (P<0.05), TNM staging (P<0.05) and poor prognosis in GC patients. Functional studies indicated that miR-187 overexpression evidently inhibited MGC-803 cell proliferation in vitro and altered the cell cycle by arresting cells in the G0/G1 phase. In addition, the luciferase assay and western blotting revealed that MAD2L2 and STOML2 were targeted by miR-187. In conclusion, it is suggested that miR-187 functions as a tumor suppressor in GC, and is important in the development and progression of GC. Moreover, miR-187 may be a potential biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yongxin Cui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Department of General Surgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Jiulong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuqing Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangwei Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shurong Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
122
|
Panganiban RP, Lambert KA, Hsu MH, Laryea Z, Ishmael FT. Isolation and profiling of plasma microRNAs: Biomarkers for asthma and allergic rhinitis. Methods 2018; 152:48-54. [PMID: 29906503 DOI: 10.1016/j.ymeth.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammatory diseases can be particularly challenging to diagnose and characterize, as inflammatory changes in tissue may not be present in blood. There is a crucial need to develop non-invasive biomarkers that would be useful in diagnosing disease and selecting medical therapies. For example, there are no blood tests to diagnose asthma, a common inflammatory lung disease. MicroRNA (miRNA) expression profiling in blood is emerging as a potentially sensitive and useful biomarker of many diseases. In particular, we have characterized a cost-effective PCR-based array technology to measure and profile circulating miRNAs in the plasma of patients with allergic rhinitis and asthma. Here, we describe the methods to isolate, quantify, and analyze miRNAs in the plasma of human subjects as well as ways to determine their diagnostic utility.
Collapse
Affiliation(s)
- Ronaldo P Panganiban
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The Pennsylvania State University Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kristin A Lambert
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The Pennsylvania State University Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Man-Hsun Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The Pennsylvania State University Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Zoe Laryea
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The Pennsylvania State University Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The Pennsylvania State University Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
123
|
Liang L, Zheng X, Hu M, Cui Y, Zhong Q, Wang S, Huang F. MiRNA-221/222 in thyroid cancer: A meta-analysis. Clin Chim Acta 2018; 484:284-292. [PMID: 29894779 DOI: 10.1016/j.cca.2018.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVES A meta-analysis was performed to observe whether a difference in miRNA-221/222 expression exists in thyroid cancer with normal thyroid or BTLs (benign thyroid lesions) and, under this premise, assess its diagnostic efficacy for thyroid cancer. METHODS Systematic electronic literature searches were conducted to include PubMed, the Cochrane Central Register of Controlled Trials, and Web of Science. The combined fold change (FC) was calculated, and pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR) and summary receiver operating characteristic (SROC) curves were calculated. RESULTS Twenty-seven articles were included in this meta-analysis. The combined FC of miRNA-221/222 were 13.85 and 13.75 in thyroid cancer with normal control. For miRNA-221/222, the pooled sensitivity was 0.79 (95% CI = 0.73-0.85), specificity was 0.84 (95% CI = 0.76-0.90) and AUC (area under the curve) value was 0.88 (0.85-0.91). For miRNA-221, the pooled sensitivity was 0.82 (95% CI = 0.76-0.86) and specificity was 0.84 (95%CI = 0.74-0.91). For miRNA-222, the pooled sensitivity was 0.78 (95%CI = 0.68-0.85) and specificity was 0.83 (95% CI = 0.70-0.92). CONCLUSION Differences in expression levels of miRNA-221/222 can provide clues for exploring the etiology of thyroid cancer. In addition, miRNA-221/222 were promising molecular biomarkers that may significantly improve the diagnostic accuracy of thyroid cancer.
Collapse
Affiliation(s)
- Ling Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xucai Zheng
- Department of Head and Neck, Breast Surgery, Anhui Provincial Cancer Hospital (West Branch of The First Affiliated Hospital of University of Science and Technology of China), Hefei, Anhui 230088, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yanjie Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qi Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shengying Wang
- Department of Head and Neck, Breast Surgery, Anhui Provincial Cancer Hospital (West Branch of The First Affiliated Hospital of University of Science and Technology of China), Hefei, Anhui 230088, China.
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Central Laboratory of Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
124
|
Rossi ED, Martini M, Capodimonti S, Cenci T, Bilotta M, Pierconti F, Pontecorvi A, Lombardi CP, Fadda G, Larocca LM. Morphology combined with ancillary techniques: An algorithm approach for thyroid nodules. Cytopathology 2018; 29:418-427. [PMID: 29683529 DOI: 10.1111/cyt.12555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several authors have underlined the limits of morphological analysis mostly in the diagnosis of follicular neoplasms (FN). The application of ancillary techniques, including immunocytochemistry (ICC) and molecular testing, contributes to a better definition of the risk of malignancy (ROM) and management of FN. According to literature, the application of models, including the evaluation of ICC, somatic mutations (ie, BRAFV600E ), micro RNA analysis is proposed for FNs. This study discusses the validation of a diagnostic algorithm in FN with a special focus on the role of morphology then followed by ancillary techniques. METHODS From June 2014 to January 2016, we enrolled 37 FNs with histological follow-up. In the same reference period, 20 benign nodules and 20 positive for malignancy were selected as control. ICC, BRAFV600E mutation and miR-375 were carried out on LBC. RESULTS The 37 FNs included 14 atypia of undetermined significance/follicular lesion of undetermined significance and 23 FN. Specifically, atypia of undetermined significance/follicular lesion of undetermined significance resulted in three goitres, 10 follicular adenomas and one NIFTP whereas FN/suspicious for FN by seven follicular adenomas and 16 malignancies (nine non-invasive follicular thyroid neoplasms with papillary-like nuclear features, two invasive follicular variant of papillary thyroid carcinoma [PTC] and five PTC). The 20 positive for malignancy samples included two invasive follicular variant of PTC, 16 PTCs and two medullary carcinomas. The morphological features of BRAFV600E mutation (nuclear features of PTC and moderate/abundant eosinophilic cytoplasms) were associated with 100% ROM. In the wild type cases, ROM was 83.3% in presence of a concordant positive ICC panel whilst significantly lower (10.5%) in a negative concordant ICC. High expression values of MirR-375 provided 100% ROM. CONCLUSIONS The adoption of an algorithm might represent the best choice for the correct diagnosis of FNs. The morphological detection of BRAFV600E represents the first step for the identification of malignant FNs. A significant reduction of unnecessary thyroidectomies is the goal of this application.
Collapse
Affiliation(s)
- E D Rossi
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - M Martini
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - S Capodimonti
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - T Cenci
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - M Bilotta
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - F Pierconti
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - A Pontecorvi
- Division of Endocrinology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - C P Lombardi
- Division of Endocrine-Surgery, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - G Fadda
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| | - L M Larocca
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" School of Medicine, Rome, Italy
| |
Collapse
|
125
|
Yang T, Zhai H, Yan R, Zhou Z, Gao L, Wang L. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line. ACTA ACUST UNITED AC 2018; 51:e7046. [PMID: 29791590 PMCID: PMC6002139 DOI: 10.1590/1414-431x20187046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/16/2018] [Indexed: 01/17/2023]
Abstract
Thyroid cancer is a common malignant tumor. Long non-coding RNA colon
cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in many
cancers; however, the molecular mechanism of CCAT1 in thyroid cancer remains
unclear. Hence, this study aimed to investigate the effect of CCAT1 on human
thyroid cancer cell line FTC-133. FTC-133 cells were transfected with CCAT1
expressing vector, CCAT1 shRNA, miR-143 mimic, and miR-143 inhibitor,
respectively. After different treatments, cell viability, proliferation,
migration, invasion, and apoptosis were measured. Moreover, the regulatory
relationship of CCAT1 and miR-143, as well as miR-143 and VEGF were tested using
dual-luciferase reporter assay. The relative expressions of CCAT1, miR-143, and
VEGF were tested by qRT-PCR. The expressions of apoptosis-related factors and
corresponding proteins in PI3K/AKT and MAPK pathways were analyzed using western
blot analysis. The results suggested that CCAT1 was up-regulated in the FTC-133
cells. CCAT1 suppression decreased FTC-133 cell viability, proliferation,
migration, invasion, and miR-143 expression, while it increased apoptosis and
VEGF expression. CCAT1 might act as a competing endogenous RNA (ceRNA) for
miR-143. Moreover, CCAT1 activated PI3K/AKT and MAPK signaling pathways through
inhibition of miR-143. This study demonstrated that CCAT1 exhibited
pro-proliferative and pro-metastasis functions on FTC-133 cells and activated
PI3K/AKT and MAPK signaling pathways via down-regulation of miR-143. These
findings will provide a possible target for clinical treatment of thyroid
cancer.
Collapse
Affiliation(s)
- Tianzheng Yang
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Hongyan Zhai
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ruihong Yan
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zhenhu Zhou
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lei Gao
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Luqing Wang
- Department of Radioimmunoassay, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
126
|
Chen S, Fan X, Gu H, Zhang L, Zhao W. Competing endogenous RNA regulatory network in papillary thyroid carcinoma. Mol Med Rep 2018; 18:695-704. [PMID: 29767230 PMCID: PMC6059698 DOI: 10.3892/mmr.2018.9009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to screen all types of RNAs involved in the development of papillary thyroid carcinoma (PTC). RNA-sequencing data of PTC and normal samples were used for screening differentially expressed (DE) microRNAs (DE-miRNAs), long non-coding RNAs (DE-lncRNAs) and genes (DEGs). Subsequently, lncRNA-miRNA, miRNA-gene (that is, miRNA-mRNA) and gene-gene interaction pairs were extracted and used to construct regulatory networks. Feature genes in the miRNA-mRNA network were identified by topological analysis and recursive feature elimination analysis. A support vector machine (SVM) classifier was built using 15 feature genes, and its classification effect was validated using two microarray data sets that were downloaded from the Gene Expression Omnibus (GEO) database. In addition, Gene Ontology function and Kyoto Encyclopedia Genes and Genomes pathway enrichment analyses were conducted for genes identified in the ceRNA network. A total of 506 samples, including 447 tumor samples and 59 normal samples, were obtained from The Cancer Genome Atlas (TCGA); 16 DE-lncRNAs, 917 DEGs and 30 DE-miRNAs were screened. The miRNA-mRNA regulatory network comprised 353 nodes and 577 interactions. From these data, 15 feature genes with high predictive precision (>95%) were extracted from the network and were used to form an SVM classifier with an accuracy of 96.05% (486/506) for PTC samples downloaded from TCGA, and accuracies of 96.81 and 98.46% for GEO downloaded data sets. The ceRNA regulatory network comprised 596 lines (or interactions) and 365 nodes. Genes in the ceRNA network were significantly enriched in ‘neuron development’, ‘differentiation’, ‘neuroactive ligand-receptor interaction’, ‘metabolism of xenobiotics by cytochrome P450’, ‘drug metabolism’ and ‘cytokine-cytokine receptor interaction’ pathways. Hox transcript antisense RNA, miRNA-206 and kallikrein-related peptidase 10 were nodes in the ceRNA regulatory network of the selected feature gene, and they may serve import roles in the development of PTC.
Collapse
Affiliation(s)
- Shouhua Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaobin Fan
- Department of Operation Room, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - He Gu
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Lili Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Wenhua Zhao
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
127
|
Khatami F, Tavangar SM. Genetic and Epigenetic of Medullary Thyroid Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:142-50. [PMID: 29126344 PMCID: PMC5889499 DOI: 10.22034/ibj.22.3.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Medullary thyroid carcinoma (MTC) is an infrequent, calcitonin producing neuroendocrine tumor and initiates from the parafollicular C cells of the thyroid gland. Several genetic and epigenetic alterations are collaterally responsible for medullary thyroid carcinogenesis. In this review article, we shed light on all the genetic and epigenetic hallmarks of MTC. From the genetic perspective, RET, HRAS, and KRAS are the most important genes that are characterized in MTC. From the epigenetic perspective, Ras-association domain family member 1A, telomerase reverse transcriptase promoter methylations, overexpression of histone methyltransferases, EZH2 and SMYD3, and wide ranging increase and decrease in non-coding RNAs can be responsible for medullary thyroid carcinogenesis.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
128
|
D'Cruz AK, Vaish R, Vaidya A, Nixon IJ, Williams MD, Vander Poorten V, López F, Angelos P, Shaha AR, Khafif A, Skalova A, Rinaldo A, Hunt JL, Ferlito A. Molecular markers in well-differentiated thyroid cancer. Eur Arch Otorhinolaryngol 2018; 275:1375-1384. [PMID: 29626249 DOI: 10.1007/s00405-018-4944-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Thyroid nodules are of common occurrence in the general population. About a fourth of these nodules are indeterminate on aspiration cytology placing many a patient at risk of unwanted surgery. The purpose of this review is to discuss various molecular markers described to date and place their role in proper perspective. This review covers the fundamental role of the signaling pathways and genetic changes involved in thyroid carcinogenesis. The current literature on the prognostic significance of these markers is also described. METHODS PubMed was used to search relevant articles. The key terms "thyroid nodules", "thyroid cancer papillary", "carcinoma papillary follicular", "carcinoma papillary", "adenocarcinoma follicular" were searched in MeSH, and "molecular markers", "molecular testing", mutation, BRAF, RAS, RET/PTC, PAX 8, miRNA, NIFTP in title and abstract fields. Multiple combinations were done and a group of experts in the subject from the International Head and Neck Scientific Group extracted the relevant articles and formulated the review. RESULTS There has been considerable progress in the understanding of thyroid carcinogenesis and the emergence of numerous molecular markers in the recent years with potential to be used in the diagnostic algorithm of these nodules. However, their precise role in routine clinical practice continues to be a contentious issue. Majority of the studies in this context are retrospective and impact of these mutations is not independent of other prognostic factors making the interpretation difficult. CONCLUSION The prevalence of these mutations in thyroid nodule is high and it is a continuously evolving field. Clinicians should stay informed as recommendation on the use of these markers is expected to evolve.
Collapse
Affiliation(s)
- Anil K D'Cruz
- Head Neck Services, Tata Memorial Hospital, Parel, Mumbai, 400012, India.
| | - Richa Vaish
- Head Neck Services, Tata Memorial Hospital, Parel, Mumbai, 400012, India
| | - Abhishek Vaidya
- National Cancer Institute, Nagpur, India
- NKPSIMS, Nagpur, India
| | - Iain J Nixon
- Departments of Surgery and Otolaryngology, Head and Neck Surgery, Edinburgh University, Edinburgh, UK
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section Head and Neck Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, IUOPA, University of Oviedo, CIBERONC, Oviedo, Spain
| | - Peter Angelos
- Department of Surgery and Surgical Ethics, The University of Chicago Medicine, Chicago, IL, USA
| | - Ashok R Shaha
- Head and Neck Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Avi Khafif
- Head and Neck Surgery and Oncology Unit, A.R.M. Center for Advanced Otolaryngology Head and Neck Surgery, Assuta Medical Center, Tel Aviv, Israel
| | - Alena Skalova
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | | | - Jennifer L Hunt
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
129
|
de Koster EJ, de Geus-Oei LF, Dekkers OM, van Engen-van Grunsven I, Hamming J, Corssmit EPM, Morreau H, Schepers A, Smit J, Oyen WJG, Vriens D. Diagnostic Utility of Molecular and Imaging Biomarkers in Cytological Indeterminate Thyroid Nodules. Endocr Rev 2018; 39:154-191. [PMID: 29300866 DOI: 10.1210/er.2017-00133] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Indeterminate thyroid cytology (Bethesda III and IV) corresponds to follicular-patterned benign and malignant lesions, which are particularly difficult to differentiate on cytology alone. As ~25% of these nodules harbor malignancy, diagnostic hemithyroidectomy is still custom. However, advanced preoperative diagnostics are rapidly evolving.This review provides an overview of additional molecular and imaging diagnostics for indeterminate thyroid nodules in a preoperative clinical setting, including considerations regarding cost-effectiveness, availability, and feasibility of combining techniques. Addressed diagnostics include gene mutation analysis, microRNA, immunocytochemistry, ultrasonography, elastosonography, computed tomography, sestamibi scintigraphy, [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET), and diffusion-weighted magnetic resonance imaging.The best rule-out tests for malignancy were the Afirma® gene expression classifier and FDG-PET. The most accurate rule-in test was sole BRAF mutation analysis. No diagnostic had both near-perfect sensitivity and specificity, and estimated cost-effectiveness. Molecular techniques are rapidly advancing. However, given the currently available techniques, a multimodality stepwise approach likely offers the most accurate diagnosis, sequentially applying one sensitive rule-out test and one specific rule-in test. Geographical variations in cytology (e.g., Hürthle cell neoplasms) and tumor genetics strongly influence local test performance and clinical utility. Multidisciplinary collaboration and implementation studies can aid the local decision for one or more eligible diagnostics.
Collapse
Affiliation(s)
- Elizabeth J de Koster
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Olaf M Dekkers
- Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jaap Hamming
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleonora P M Corssmit
- Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Smit
- Department of Endocrinology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Division of Radiotherapy and Imaging, Institute of Cancer Research, and Department of Nuclear Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
130
|
Circulating microRNA124-3p, microRNA9-3p and microRNA196b-5p may be potential signatures for differential diagnosis of thyroid nodules. Oncotarget 2018; 7:84165-84177. [PMID: 27705935 PMCID: PMC5356652 DOI: 10.18632/oncotarget.12389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/24/2016] [Indexed: 12/14/2022] Open
Abstract
It is important to develop an effective auxiliary approach to distinguish papillary thyroid carcinoma (PTC) from benign nodules because a considerable proportion cannot be identified by fine-needle aspiration cytology at present, resulting in unnecessary thyroidectomy. Circulating miRNAs are potential biomarkers for differential diagnosis of tumors. We aimed to investigate the dysregulation of circulating miRNAs in PTC and evaluate the diagnostic value for differentiation of PTC from benign nodules. We first assessed the expression of miRNAs in patients with PTC, patients with benign nodules and healthy controls using a miRCURY LNA Array (n = 3 for each group). Expression of circulating miR-124-3p, miR-9-3p and miR-5691 was significantly up-regulated, while miR-4701 and miR-196b-5p were down-regulated in PTC patients. The dysregulation of miR-124-3p, miR-9-3p, miR-4701 and miR-196b-5p was further validated by qRT-PCR in fifty participants from each group. The expression of circulating miR-124-3p and miR-9-3p was significantly up-regulated in PTC patients. Both miR-124-3p and miR-9-3p could distinguish PTC from benign nodules with high sensitivity and specificity. There were no significant differences in the expression of circulating miR-4701 and miR-196b-5p between PTC patients and healthy controls. Nevertheless, patients with benign nodules showed a higher level of miR-196b-5p compared with that of PTC patients and healthy controls. ROC analysis indicated that miR-196b-5p had a good diagnostic value for differentiation of benign nodules from PTC. Our study suggested that miR-124-3p, miR-9-3p and miR-196b-5p may be potential signatures for differential diagnosis of thyroid nodules in eastern coastal areas of China.
Collapse
|
131
|
Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-Yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 2018; 41:269-283. [PMID: 28762013 DOI: 10.1007/s40618-017-0735-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
The most common endocrine malignancy is thyroid cancer, and researchers have made a great deal of progress in deciphering its molecular mechanisms in the recent years. Many of molecular changes observed in thyroid cancer can be used as biomarkers for diagnosis, prognosis, and therapeutic targets for treatment. MicroRNAs (miRNAs) are important parts in biological and metabolic pathways such as regulation of developmental stages, signal transduction, cell maintenance, and differentiation. Therefore, their dysregulation can expose individuals to malignancies. It has been proved that miRNA expression is dysregulated in different types of tumors, like thyroid cancers, and can be the cause of tumor initiation and progression. In this paper, we have reviewed the available data on miRNA dysregulation in different thyroid tumors including papillary, follicular, anaplastic, and medullary thyroid carcinomas aiming to introduce the last updates in miRNAs-thyroid cancer relation.
Collapse
Affiliation(s)
- S Pishkari
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - M Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - M Hashemi
- Department of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - E Baldini
- Department of Surgical Sciences, University of Rome, Rome, Italy.
| | - S Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
132
|
Jahanbani I, Al-Abdallah A, Ali RH, Al-Brahim N, Mojiminiyi O. Discriminatory miRNAs for the Management of Papillary Thyroid Carcinoma and Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features. Thyroid 2018; 28:319-327. [PMID: 29378472 DOI: 10.1089/thy.2017.0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) variants have several overlapping clinical and pathological features. The World Health Organization recently published a new classification of thyroid tumors containing significant revisions. Encapsulated papillary thyroid carcinoma (EPTC) has been recognized as a distinctive variant of PTC. The noninvasive encapsulated follicular variant of PTC has been reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP). Different neoplasms are associated with different outcomes and require different clinical management. The objective of this study was to explore the miRNA expression patterns specific for classic PTC (cPTC), EPTC, follicular variant of PTC, and NIFTP in order to identify biomarkers of diagnostic and prognostic utility aiming for better clinical decisions. METHODS The expression of 84 miRNAs was determined by quantitative real-time polymerase chain reaction in 113 thyroid tissues of PTC (classic, encapsulated, and follicular), NIFTP, and hyperplasia lesions. Expression of the same miRNAs was tested in pre- and postoperative whole-blood samples. RESULTS Several miRNAs were differentially expressed in the different groups. Expression profile of miRNAs in the tissue was similarly reflected in the circulation. Receiver operating characteristic curve analysis showed that miR-7-5p, miR-222-3p, and miR-146b-5p can discriminate between the different groups with high sensitivity and specificity. Downregulation of miR-144-3p, miR-15a-5p, miR-20a-5p, miR-32-5p miR-142-5p, miR-143-3p, and miR-20b-5p is associated with aggressive behavior in cPTC. Circulating miR-146b-5p, miR-222-3p, miR-155-5p, and miR-378a-3p are potential diagnostic and follow up biomarkers for PTC. CONCLUSION Downregulation of miR-7-5p discriminates NIFTP from hyperplasia. Upregulation of miR-222-3p discriminates follicular variant of PTC from NIFTP. High levels of miR-146b-5p distinctively characterize cPTC. These miRNAs are useful biomarkers in the diagnosis of PTC and NIFTP, and help to avoid unnecessary thyroidectomy and improve clinical management.
Collapse
Affiliation(s)
- Iman Jahanbani
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Abeer Al-Abdallah
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Rola H Ali
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Nabeel Al-Brahim
- 2 Department of Pathology, Farwaniya Hospital , Kuwait City, Kuwait
| | - Olusegun Mojiminiyi
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| |
Collapse
|
133
|
Romeo P, Colombo C, Granata R, Calareso G, Gualeni AV, Dugo M, De Cecco L, Rizzetti MG, Zanframundo A, Aiello A, Carcangiu ML, Gloghini A, Ferrero S, Licitra L, Greco A, Fugazzola L, Locati LD, Borrello MG. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr Relat Cancer 2018; 25:217-231. [PMID: 29298817 DOI: 10.1530/erc-17-0389] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
Abstract
This study aimed to identify circulating miRNAs as novel non-invasive biomarkers for prognosis and vandetanib response in advanced medullary thyroid cancer (MTC) patients. We prospectively recruited two independent cohorts of locally advanced/metastatic MTC patients including a subgroup of vandetanib-treated subjects: a discovery cohort (n = 20), including matched plasma/tissue samples (n = 17/20), and a validation cohort, yielding only plasma samples (n = 17). Plasma samples from healthy subjects (n = 36) and MTC patients in remission (n = 9) were used as controls. MTC (n = 17 from 8 patients included in discovery cohort) and non-neoplastic thyroid specimens (n = 3) were assessed by microarray profiling to identify candidate circulating miRNAs. qRT-PCR and in situ hybridization were carried out to validate the expression and localization of a selected miRNA within tissues, and qRT-PCR was also performed to measure miRNA levels in plasma samples. By microarray analysis, we identified 51 miRNAs differentially expressed in MTC. The most overexpressed miR, miR-375, was highly expressed by C cells compared to other thyroid cells, and more expressed in MTC than in reactive C-cell hyperplasia. MTC patients had significantly higher miR-375 plasma levels than healthy controls (P < 0.0001) and subjects in remission (P = 0.0004) as demonstrated by qRT-PCR analysis. miR-375 plasma levels were not predictive of vandetanib response, but, notably, high levels were associated with significantly reduced overall survival (HR 10.61, P < 0.0001) and were a strong prognostic factor of poor prognosis (HR 6.24, P = 0.00025) in MTC patients. Overall, our results unveil plasma miR-375 as a promising prognostic marker for advanced MTC patients, to be validated in larger cohorts.
Collapse
Affiliation(s)
- Paola Romeo
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carla Colombo
- Division of Endocrine and Metabolic DiseasesIRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Roberta Granata
- Department of Head and Neck Medical OncologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Department of RadiologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ambra Vittoria Gualeni
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Functional Genomics and Bioinformatics UnitDepartment of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Functional Genomics and Bioinformatics UnitDepartment of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Rizzetti
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Zanframundo
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonella Aiello
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Luisa Carcangiu
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory MedicineFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Ferrero
- Department of Pathophysiology and TransplantationFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of BiomedicalSurgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lisa Licitra
- Department of Head and Neck Medical OncologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Medical OncologyUniversity of Milan, Milan, Italy
| | - Angela Greco
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic DiseasesIRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Laura Deborah Locati
- Department of Head and Neck Medical OncologyFondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Borrello
- Molecular Mechanisms UnitResearch Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
134
|
Geraldo MV, Nakaya HI, Kimura ET. Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer. Oncotarget 2018; 8:9597-9607. [PMID: 28030816 PMCID: PMC5354756 DOI: 10.18632/oncotarget.14162] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/26/2016] [Indexed: 11/25/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent malignant neoplasia of the thyroid gland. A fraction of PTC cases show loss of differentiation and aggressive behavior, with radioiodine therapy resistance and metastasis. Although microRNAs (miRNAs) emerged as promising molecular markers for PTC, their role in the loss of differentiation observed during PTC progression remains to be fully understood. We performed the large-scale analysis of miRNA expression during PTC progression in BRAFT1799A-transgenic animals (Tg-Braf) and thyroid cancer cell lines and identified the marked downregulation of several miRNAs from the region 14q32. Data from The Cancer Genome Atlas (TCGA) confirmed the global downregulation of miRNAs from the 14q32 region in human PTC. The regulatory network potentially suppressed by these miRNAs suggests that key cancer-related biological processes such as cell proliferation, adhesion, migration and angiogenesis. Among the downregulated miRNAs, we observed that miR-654-3p levels decrease with long-term PTC progression in Tg-Braf mice and inversely correlate with EMT. The in vitro restoration of miR-654-3p decreased cell proliferation and migration and induced reprogramming of metastasis-related genes, suggesting a tumor suppressor role for this miRNA. In conclusion, we show global downregulation of 14q32-encoded miRNAs in an in vivo model of PTC progression. The potential circuitry in which these miRNAs are involved suggests that these miRNAs could play a key role in the pathophysiology of PTC and therefore be relevant for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Murilo Vieira Geraldo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Helder Imoto Nakaya
- Department of Clinical Analyses and Toxicology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
135
|
Aubert S, Berdelou A, Gnemmi V, Behal H, Caiazzo R, D'herbomez M, Pigny P, Wemeau JL, Carnaille B, Renaud F, Bouchindhomme B, Leteurtre E, Perrais M, Pattou F, Do Cao C. Large sporadic thyroid medullary carcinomas: predictive factors for lymph node involvement. Virchows Arch 2018; 472:461-468. [PMID: 29388012 DOI: 10.1007/s00428-018-2303-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/01/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
Abstract
Lymph node involvement (LNI) is one of the most important prognostic factors for poor survival in medullary thyroid carcinoma (MTC). At diagnosis, LNI is found in over 50% of sporadic MTCs, and especially in large tumours. Cervical lymph node dissection is therefore mandatory during MTC surgery. However, some large tumours (responsible for high preoperative basal calcitonin levels) are found to lack LNI, and can be cured definitely. Preoperative detection of these particular tumours might spare patients from undergoing extensive cervical dissection. The objective of the present retrospective study of a series of large sporadic MTCs was to identify clinical, biological and pathological factors that were predictive of LNI. Consecutive cases of large, sporadic MTCs (measuring at least 1 cm in diameter) were retrieved and reviewed. The levels of several mature microRNAs (miRs) in paraffin-embedded samples were assessed using qPCR. Of the 54 MTCs, 26 had LNI and 28 were pN0. Relative to pN0 patients, patients with LNI had a significant higher preoperative basal calcitonin level (p = 0.0074) and a greater prevalence of infiltrative margins (p < 0.0001), lymphovascular invasion (p = 0.0004), extrathyroidal extension (p < 0.0001), a higher pT stage (p = 0.0003) and more abundant desmoplastic stroma (p = 0.0006). Tumour expression levels of miR-21 (p = 0.0008) and miR-183 (p = 0.0096) were higher in the LNI group. The abundance of desmoplastic stroma (p = 0.007) and the miR-21 expression level (p = 0.0026) were independent prognostic factors for LNI. The abundance of desmoplastic stroma and high levels of miR-21 expression were strong indicators of LNI, and may thus help the surgeon to choose the extent of cervical lymph node dissection for large, sporadic MTCs with no preoperatively obvious LNI.
Collapse
Affiliation(s)
- Sébastien Aubert
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, 59037, Lille, France.
- Faculté de Médecine, Université de Lille, 59045, Lille, France.
- UMR 1172, INSERM Bâtiment Biserte, JPArc, 59045, Lille, France.
| | - Amandine Berdelou
- Service de Cancérologie endocrinienne, IGR, 94805, Villejuif, Paris, France
| | - Viviane Gnemmi
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, 59037, Lille, France
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- UMR 1172, INSERM Bâtiment Biserte, JPArc, 59045, Lille, France
| | - Hélène Behal
- Unité de Biostatistiques - Pôle de Santé Publique, CHRU de Lille, 59037, Lille, France
| | - Robert Caiazzo
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- Service de Chirurgie Endocrine, Hôpital Huriez, CHRU de Lille, 59037, Lille, France
| | - Michèle D'herbomez
- Institut de Biochimie, Centre de Biologie Pathologie Génétique, CHRU de Lille, 59037, Lille, France
| | - Pascal Pigny
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- UMR 1172, INSERM Bâtiment Biserte, JPArc, 59045, Lille, France
- Institut de Biochimie, Centre de Biologie Pathologie Génétique, CHRU de Lille, 59037, Lille, France
| | - Jean Louis Wemeau
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- Service d'Endocrinologie, Hôpital Huriez, CHRU de Lille, 59037, Lille, France
| | - Bruno Carnaille
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- Service de Chirurgie Endocrine, Hôpital Huriez, CHRU de Lille, 59037, Lille, France
| | - Florence Renaud
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, 59037, Lille, France
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- UMR 1172, INSERM Bâtiment Biserte, JPArc, 59045, Lille, France
| | - Brigitte Bouchindhomme
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, 59037, Lille, France
| | - Emmanuelle Leteurtre
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, 59037, Lille, France
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- UMR 1172, INSERM Bâtiment Biserte, JPArc, 59045, Lille, France
| | - Michael Perrais
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- UMR 1172, INSERM Bâtiment Biserte, JPArc, 59045, Lille, France
| | - François Pattou
- Faculté de Médecine, Université de Lille, 59045, Lille, France
- Service de Chirurgie Endocrine, Hôpital Huriez, CHRU de Lille, 59037, Lille, France
| | - Christine Do Cao
- Service d'Endocrinologie, Hôpital Huriez, CHRU de Lille, 59037, Lille, France
| |
Collapse
|
136
|
Allegri L, Rosignolo F, Mio C, Filetti S, Baldan F, Damante G. Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol 2018; 144:285-294. [PMID: 29197967 DOI: 10.1007/s00432-017-2555-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a high mortality rate. Since nutraceuticals may exert beneficial effects on tumor biology, here, effects of four of these compounds [resveratrol, genistein, curcumin and epigallocatechin-3-gallate (EGCG)] on ATC cell lines were investigated. METHODS Two ATC-derived cell lines were used: SW1736 and 8505C. Cell viability and in vitro aggressiveness was tested by MTT and soft agar assays. Apoptosis was investigated by Western Blot, using an anti-cleaved-PARP antibody. mRNA and miRNA levels were quantified by real-time PCR. RESULTS All tested nutraceuticals caused in both cell lines decrease of cell viability and increase of apoptosis. In contrast, only curcumin reduced in vitro aggressiveness in both SW1736 and 8505C cell lines, while genistein and EGCG determined a reduction of colony formation only in 8505C cells. Effects on genes related to the thyroid-differentiated phenotype were also tested: resveratrol and genistein administration determined the increment of almost all tested mRNAs in both cell lines. Instead curcumin and EGCG treatments had opposite effects in the two cell lines, causing the increment of almost all the mRNAs in 8505C cells and their reduction in SW1736. Finally, effects of nutraceuticals on levels of several miRNAs, known as important in thyroid cancer progression (hsa-miR-221, hsa-miR-222, hsa-miR-21, hsa-miR-146b, hsa-miR-204), were tested. Curcumin induced a strong and significant reduction of all miR analyzed, except for has-miR-204, in both cell lines. CONCLUSIONS Altogether, our results clearly indicate the anti-cancer proprieties of curcumin, suggesting the promising use of this nutraceutical in ATC treatment. Resveratrol, genistein and EGCG have heterogeneous effects on molecular features of ATC cells.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Federica Baldan
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100, Udine, Italy
- Institute of Medical Genetic, Academic Hospital of Udine, 33100, Udine, Italy
| |
Collapse
|
137
|
Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget 2018; 7:61355-61365. [PMID: 27542258 PMCID: PMC5308656 DOI: 10.18632/oncotarget.11349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Aberrations in miRNA regulation are known to play important roles in OSCC pathogenesis. miR-187 was shown to be up-regulated in head and neck malignancies in our previous screening. This study further investigated the oncogenic potential, clinical implications, and targets of miR-187 in OSCC. We observed that miR-187 increased oncogenicity, particularly migration, of OSCC cells. miR-187 expression increased the xenografic tumorigenicity and metastasis in mice. In addition, metastatic human OSCC had higher miR-187 expression than did non-metastatic tumors. Through vigorous screening, we confirmed BarH-like Homeobox 2 (BARX2) gene as an miR-187 target. BARX2 expression suppressed the migration, invasion, anchorage-independent colony formation, and orthotopic tumorigenesis of OSCC cells. The migratory phenotype and neck metastasis induced by miR-187 was rescued by BARX2 expression. BARX2 expression was down-regulated in the vast majority of OSCC, and this down-regulation was particularly conspicuous in tumors with advanced nodal metastasis. In addition, plasma miR-187 was significantly higher in OSCC patients than in normal individuals. This study highlights the roles of miR-187-BARX2 in driving the carcinogenesis of OSCC. The results suggest that miR-187 is a potential serological marker for OSCC and that targeting of miR-187 might prove effective in attenuating nodal metastasis.
Collapse
|
138
|
Nishino M, Nikiforova M. Update on Molecular Testing for Cytologically Indeterminate Thyroid Nodules. Arch Pathol Lab Med 2018; 142:446-457. [PMID: 29336606 DOI: 10.5858/arpa.2017-0174-ra] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - Approximately 15% to 30% of thyroid nodules that undergo fine-needle aspiration are classified as cytologically indeterminate, presenting management challenges for patients and clinicians alike. During the past several years, several molecular tests have been developed to reduce the diagnostic uncertainty of indeterminate thyroid fine-needle aspirations. OBJECTIVE - To review the methodology, clinical validation, and recent peer-reviewed literature for 4 molecular tests that are currently marketed for cytologically indeterminate thyroid fine-needle aspiration specimens: Afirma, ThyroSeq, ThyGenX/ThyraMIR, and RosettaGX Reveal. DATA SOURCES - Peer-reviewed literature retrieved from PubMed search, data provided by company websites and representatives, and authors' personal experiences. CONCLUSIONS - The 4 commercially available molecular tests for thyroid cytology offer unique approaches to improve the risk stratification of thyroid nodules. Familiarity with data from the validation studies as well as the emerging literature about test performance in the postvalidation setting can help users to select and interpret these tests in a clinically meaningful way.
Collapse
Affiliation(s)
| | - Marina Nikiforova
- From the Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (Dr Nishino); and the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Nikiforova)
| |
Collapse
|
139
|
Saiselet M, Pita JM, Augenlicht A, Dom G, Tarabichi M, Fimereli D, Dumont JE, Detours V, Maenhaut C. miRNA expression and function in thyroid carcinomas: a comparative and critical analysis and a model for other cancers. Oncotarget 2018; 7:52475-52492. [PMID: 27248468 PMCID: PMC5239568 DOI: 10.18632/oncotarget.9655] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
As in many cancer types, miRNA expression profiles and functions have become an important field of research on non-medullary thyroid carcinomas, the most common endocrine cancers. This could lead to the establishment of new diagnostic tests and new cancer therapies. However, different studies showed important variations in their research strategies and results. In addition, the action of miRNAs is poorly considered as a whole because of the use of underlying dogmatic truncated concepts. These lead to discrepancies and limits rarely considered. Recently, this field has been enlarged by new miRNA functional and expression studies. Moreover, studies using next generation sequencing give a new view of general miRNA differential expression profiles of papillary thyroid carcinoma. We analyzed in detail this literature from both physiological and differential expression points of view. Based on explicit examples, we reviewed the progresses but also the discrepancies and limits trying to provide a critical approach of where this literature may lead. We also provide recommendations for future studies. The conclusions of this systematic analysis could be extended to other cancer types.
Collapse
Affiliation(s)
- Manuel Saiselet
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Jaime M Pita
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Alice Augenlicht
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Geneviève Dom
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Maxime Tarabichi
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Danai Fimereli
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Jacques E Dumont
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Vincent Detours
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Brussels, Belgium.,WELBIO, School of Medicine, University of Brussels, Brussels, Belgium
| |
Collapse
|
140
|
Mohamad Yusof A, Jamal R, Muhammad R, Abdullah Suhaimi SN, Mohamed Rose I, Saidin S, Ab Mutalib NS. Integrated Characterization of MicroRNA and mRNA Transcriptome in Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2018; 9:158. [PMID: 29713312 PMCID: PMC5911478 DOI: 10.3389/fendo.2018.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
The incidence rate of papillary thyroid carcinoma (PTC) has rapidly increased in the recent decades, and the microRNA (miRNA) is one of the potential biomarkers in this cancer. Despite good prognosis, certain features such as lymph node metastasis (LNM) and BRAF V600E mutation are associated with a poor outcome. More than 50% of PTC patients present with LNM and BRAF V600E is the most common mutation identified in this cancer. The molecular mechanisms underlying these features are yet to be elucidated. This study aims to elucidate miRNA-genes interaction networks in PTC with or without LNM and to determine the association of BRAF V600E mutation with miRNAs and genes expression profiles. Next generation sequencing was performed to characterize miRNA and gene expression profiles in 20 fresh frozen tumor and the normal adjacent tissues of PTC with LNM positive (PTC LNM-P) and PTC without LNM (PTC LNN). BRAF V600E was genotyped using Sanger sequencing. Bioinformatics integration and pathway analysis were performed to determine the regulatory networks involved. Based on network analysis, we then investigated the association between miRNA and gene biomarkers, and pathway enrichment analysis was performed to study the role of candidate biomarkers. We identified 138 and 43 significantly deregulated miRNAs (adjusted p value < 0.05; log2 fold change ≤ -1.0 or ≥1.0) in PTC LNM-P and PTC LNN compared to adjacent normal tissues, respectively. Ninety-six miRNAs had significant expression ratios of 3p-to-5p in PTC LNM-P as compared to PTC LNN. In addition, ribosomal RNA-reduced RNA sequencing analysis revealed 699 significantly deregulated genes in PTC LNM-P versus normal adjacent tissues, 1,362 genes in PTC LNN versus normal adjacent tissue, and 1,576 genes in PTC LNM-P versus PTC LNN. We provide the evidence of miRNA and gene interactions, which are involved in LNM of papillary thyroid cancer. These findings may lead to better understanding of carcinogenesis and metastasis processes. This study also complements the existing knowledge about deregulated miRNAs in papillary thyroid carcinoma development.
Collapse
Affiliation(s)
- Azliana Mohamad Yusof
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaizak Muhammad
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sazuita Saidin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Nurul-Syakima Ab Mutalib,
| |
Collapse
|
141
|
Savala R, Dey P, Gupta N. Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid. Diagn Cytopathol 2017; 46:244-249. [DOI: 10.1002/dc.23880] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rajiv Savala
- Department of Pathology; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Pranab Dey
- Department of Cytology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - Nalini Gupta
- Department of Cytology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
142
|
Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, Perrone F, Seregni E, Agnelli L, Neri A, Greco A, Borrello MG. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget 2017; 7:12731-47. [PMID: 26871295 PMCID: PMC4914318 DOI: 10.18632/oncotarget.7262] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/26/2016] [Indexed: 12/18/2022] Open
Abstract
Papillary Thyroid Carcinoma (PTC) is the most frequent thyroid cancer. Although several PTC-specific miRNA profiles have been reported, only few upregulated miRNAs are broadly recognized, while less consistent data are available about downregulated miRNAs. In this study we investigated miRNA deregulation in PTC by miRNA microarray, analysis of a public dataset from The Cancer Genome Atlas (TCGA), literature review and meta-analysis based on a univocal miRNA identifier derived from miRBase v21. A list of 18 miRNAs differentially expressed between PTC and normal thyroid was identified and validated in the TCGA dataset. Furthermore, we compared our signature with miRNA profiles derived from 15 studies selected from literature. Then, to select possibly functionally relevant miRNA, we integrated our miRNA signature with those from two in vitro cell models based on the PTC-driving oncogene RET/PTC1. Through this strategy, we identified commonly deregulated miRNAs, including miR-451a, which emerged also by our meta-analysis as the most frequently reported downregulated miRNA. We showed that lower expression of miR-451a correlates with aggressive clinical-pathological features of PTC as tall cell variant, advanced stage and extrathyroid extension. In addition, we demonstrated that ectopic expression of miR-451a impairs proliferation and migration of two PTC-derived cell lines, reduces the protein levels of its recognized targets MIF, c-MYC and AKT1 and attenuates AKT/mTOR pathway activation. Overall, our study provide both an updated overview of miRNA deregulation in PTC and the first functional evidence that miR-451a exerts tumor suppressor functions in this neoplasia.
Collapse
Affiliation(s)
- Emanuela Minna
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Romeo
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Core Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Silvana Pilotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ettore Seregni
- Department of Diagnostic Imaging and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Greco
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Borrello
- Department of Experimental Oncology and Molecular Medicine, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
143
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
144
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
145
|
Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L, Basolo F, Vitti P, Elisei R. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol 2017; 13:644-660. [PMID: 28707679 DOI: 10.1038/nrendo.2017.76] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare malignancy, accounting for 1-2% of all thyroid cancers. Although rare, ATC accounts for the majority of deaths from thyroid carcinoma. ATC often originates in a pre-existing thyroid cancer lesion, as suggested by the simultaneous presence of areas of differentiated or poorly differentiated thyroid carcinoma. ATC is characterized by the accumulation of several oncogenic alterations, and studies have shown that an increased number of oncogenic alterations equates to an increased level of dedifferentiation and aggressiveness. The clinical management of ATC requires a multidisciplinary approach; according to recent American Thyroid Association guidelines, surgery, radiotherapy and/or chemotherapy should be considered. In addition to conventional therapies, novel molecular targeted therapies are the most promising emerging treatment modalities. These drugs are often multiple receptor tyrosine kinase inhibitors, several of which have been tested in clinical trials with encouraging results so far. Accordingly, clinical trials are ongoing to evaluate the safety, efficacy and effectiveness of these new agents. This Review describes the updated clinical and pathological features of ATC and provides insight into the molecular biology of this disease. The most recent literature regarding conventional, newly available and future therapies for ATC is also discussed.
Collapse
Affiliation(s)
- Eleonora Molinaro
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| | - Agnese Biagini
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| | - Elena Sabini
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| | - Laura Agate
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| | - Salvatore Mazzeo
- Diagnostic and Interventional Radiology Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa
| | - Gabriele Materazzi
- Division of Endocrine Surgery, Department of Surgical Pathology, University Hospital of Pisa
| | | | | | - Liborio Torregrossa
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Paolo Vitti
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa
| |
Collapse
|
146
|
Li H, Zhao L, Zhang Z, Zhang H, Ding C, Su Z. Roles of microRNA let-7b in papillary thyroid carcinoma by regulating HMGA2. Tumour Biol 2017; 39:1010428317719274. [PMID: 29025376 DOI: 10.1177/1010428317719274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of thyroid cancer has increased significantly in the last decade, and the most frequent type of this cancer is papillary thyroid carcinoma. MicroRNAs have been demonstrated to be abnormally expressed in tumors and associated with the development of the tumors. Our aim was to analyze the role and molecular mechanisms of tumor suppressor let-7b in the papillary thyroid carcinoma. Expression of let-7b and high-mobility group A2 in papillary thyroid carcinoma tissues and cell lines was assessed using quantitative reverse transcription polymerase chain reaction and western blot analysis. To explore the role of let-7b or high-mobility group A2 in the BCPAP and TPC-1 cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell methods were used. Let-7b expression was significantly downregulated while expression of high-mobility group A2 was upregulated dramatically in papillary thyroid carcinoma tissues and cells compared with that in normal thyroid tissues and cells. In addition, overexpression of let-7b or knockdown of high-mobility group A2 inhibited cell migration and invasion compared with that of control. Besides, high-mobility group A2 was negatively regulated by let-7b in BCPAP cells. Moreover, high-mobility group A2 reintroduction reversed the anti-proliferation, anti-migration, and anti-invasion roles of let-7b. Let-7b might function as a tumor suppressor in papillary thyroid carcinoma by suppressing the expression of high-mobility group A2, and therefore might provide a promising therapeutic target for patients with papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Hongguang Li
- 1 Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lihong Zhao
- 2 Central Sterile Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhenhua Zhang
- 1 Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Heng Zhang
- 1 Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chao Ding
- 1 Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zijie Su
- 1 Department of Thyroid Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
147
|
Ibrahim FK, Ali-Labib R, Galal IH, Mahmoud HM. MicroRNA-155 expression in exhaled breath condensate of patients with lung cancer. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2017. [DOI: 10.1016/j.ejcdt.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
148
|
Denaro M, Ugolini C, Poma AM, Borrelli N, Materazzi G, Piaggi P, Chiarugi M, Miccoli P, Vitti P, Basolo F. Differences in miRNA expression profiles between wild-type and mutated NIFTPs. Endocr Relat Cancer 2017; 24:543-553. [PMID: 28830935 DOI: 10.1530/erc-17-0167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Noninvasive encapsulated follicular variants of papillary thyroid carcinomas have been recently reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTPs). NIFTPs exhibit a behavior that is very close to that of follicular adenomas but different from the infiltrative and invasive follicular variants of papillary thyroid carcinomas (FVPTCs). The importance of miRNAs to carcinogenesis has been reported in recent years. miRNAs seem to be promising diagnostic and prognostic molecular markers for thyroid cancer, and the combination of miRNA expression and mutational status might improve cytological diagnosis. The aim of the present study was to evaluate the miRNA expression profile in wild-type, RAS- or BRAF-mutated NIFTPs, infiltrative and invasive FVPTCs, and follicular adenomas using the nCounter miRNA Expression assay (NanoString Technologies). To identify the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) molecular pathways associated with deregulated miRNAs, we used the union of pathways option in DNA Intelligent Analysis (DIANA) miRPath software. We have shown that the miRNA expression profiles of wild-type and mutated NIFTPs could be different. The expression profile of wild-type NIFTPs seems comparable to that of follicular adenomas, whereas mutated NIFTPs have an expression profile similar to that of infiltrative and invasive FVPTCs. The upregulation of 4 miRNAs (miR-221-5p, miR-221-3p, miR-222-3p, miR-146b-5p) and the downregulation of 8 miRNAs (miR-181a-3p, miR-28-5p, miR-363-3p, miR-342-3p, miR-1285-5p, miR-152-3p, miR-25-3p, miR-30e-3) in mutated NIFTPs compared to wild-type ones suggest a potential invasive-like phenotype by deregulating the specific pathways involved in cell adhesion and cell migration (Hippo signaling pathway, ECM-receptor interaction, adherens junction, regulation of actin cytoskeleton, fatty acid biosynthesis and metabolism).
Collapse
Affiliation(s)
- Maria Denaro
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Laboratory MedicineSection of Pathology Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Anello Marcello Poma
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Nicla Borrelli
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Gabriele Materazzi
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Piaggi
- National Institute of Diabetes and Digestive and Kidney DiseasesPhoenix, Arizona, USA
| | - Massimo Chiarugi
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical PathologyMedical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
149
|
Celano M, Rosignolo F, Maggisano V, Pecce V, Iannone M, Russo D, Bulotta S. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int J Genomics 2017; 2017:6496570. [PMID: 29038786 PMCID: PMC5606057 DOI: 10.1155/2017/6496570] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Optimal management of patients with thyroid cancer requires the use of sensitive and specific biomarkers. For early diagnosis and effective follow-up, the currently available cytological and serum biomarkers, thyroglobulin and calcitonin, present severe limitations. Research on microRNA expression in thyroid tumors is providing new insights for the development of novel biomarkers that can be used to diagnose thyroid cancer and optimize its management. In this review, we will examine some of the methods commonly used to detect and quantify microRNA in biospecimens from patients with thyroid tumor, as well as the potential applications of these techniques for developing microRNA-based biomarkers for the diagnosis and prognostic evaluation of thyroid cancers.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Maggisano
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Pecce
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Section of Pharmacology, Roccelletta di Borgia, 88021 Borgia, Italy
| | - Diego Russo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
150
|
Sromek M, Czetwertyńska M, Tarasińska M, Janiec-Jankowska A, Zub R, Ćwikła M, Nowakowska D, Chechlińska M. Analysis of Newly Identified and Rare Synonymous Genetic Variants in the RET Gene in Patients with Medullary Thyroid Carcinoma in Polish Population. Endocr Pathol 2017; 28. [PMID: 28647780 PMCID: PMC5552825 DOI: 10.1007/s12022-017-9487-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gain-of-function germline mutations of the RET proto-oncogene are responsible for initiation of carcinogenesis within the thyroid gland and development of hereditary form of medullary thyroid carcinoma and MEN2 syndrome. Genotype-phenotype correlations are established for most RET mutations, but the importance of the synonymous changes in this gene remains debatable. We aimed to analyze RET gene variants in Polish population. Genetic testing for the RET gene variants was performed with standard methods in 585 people aged 1-85, including 448 patients with medullary thyroid carcinoma and 131 of their first- and second-degree relatives, as well as six patients suspected of MTC/MEN2. Besides the most frequent synonymous changes, p.Leu769Leu, p.Ser836Ser, and p.Ser904Ser, four rare changes-c.1827C>T (p.Cys609Cys), c.2364C>T (p.Ile788Ile), c.2418C>T (p.Tyr806Tyr), and c.2673G>A (p.Ser891Ser)-were found in the RET gene, in the Polish population. Two of the rare changes, p.Cys609Cys and p.Ile788Ile, had not been previously described. The frequency of molecular synonymous variants in the general population was evaluated by testing 400 anonymous blood samples of neonates. Our findings may contribute to a better understanding of the genetic diversity of the RET gene and the involvement of synonymous variants in this diversity.
Collapse
Affiliation(s)
- Maria Sromek
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
- Laboratory of Cellular Immunology, Maria Sklodowska-Curie Institute - Oncology Center, W.K. Roentgen 5, 02-781 Warsaw, Poland
| | - Małgorzata Czetwertyńska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Magdalena Tarasińska
- Department of Oncology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aneta Janiec-Jankowska
- Department of Diagnostic Laboratory of Genetic Predispositions, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Renata Zub
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Maria Ćwikła
- Department of Gastroenterological Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Dorota Nowakowska
- Genetic Counseling Unit, Cancer Prevention Center, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Magdalena Chechlińska
- Department of Immunology, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| |
Collapse
|