101
|
|
102
|
Shao D, Zhu X, Sun W, Huo L, Chen W, Wang H, Liu B, Pan P. Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA‑target gene networks. Mol Med Rep 2017; 16:3737-3744. [PMID: 28731161 PMCID: PMC5646950 DOI: 10.3892/mmr.2017.7059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate the molecular mechanisms of myotonic dystrophy (DM) 1 and 2 cataracts using bioinformatics methods. A microarray dataset (E‑MEXP‑3365) downloaded from the Array Express database included lens epithelial samples of DM1 and DM2 cataract patients (n=3/group) and non‑DM lens epithelial samples as a control (n=4). Differentially expressed genes (DEGs) were identified between DM1 and control samples, and between DM2 and control samples. Pathway enrichment analyses were performed for the DEGs. Potential micro (mi)RNAs regulating these DEGs were predicted. An miRNA‑target gene network was constructed for DM1 and DM2. The study identified 223 DEGs in DM1, and 303 DEGs in DM2. DM1 and DM2 shared 172 DEGs. The DEGs in DM1 were enriched with calcium, Wnt and axon guidance signaling pathways. The DEGs in DM2 were linked by adherens junction signaling pathways. miRNA (miR)‑197, miR‑29b and miR‑29c were included in the network modules of DM1. miR‑197, miR‑29c and miR‑29a were involved in the network modules of DM2. It is therefore hypothesized that these signaling pathways and miRNAs underlie DM1 and DM2 cataracts, and may represent potential therapeutic targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Dewang Shao
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Xiaoquan Zhu
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Sun
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Lu Huo
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Chen
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Hua Wang
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Bing Liu
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Peng Pan
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| |
Collapse
|
103
|
Yenigun VB, Sirito M, Amcheslavky A, Czernuszewicz T, Colonques-Bellmunt J, García-Alcover I, Wojciechowska M, Bolduc C, Chen Z, López Castel A, Krahe R, Bergmann A. (CCUG) n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis. Dis Model Mech 2017. [PMID: 28623239 PMCID: PMC5560059 DOI: 10.1242/dmm.026179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions – (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP. Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106). Expression of noncoding (CCUG)106, but not (CCUG)16, in muscle and retinal cells led to the formation of ribonuclear foci and mis-splicing of genes implicated in DM pathology. Mis-splicing could be rescued by co-expression of human MBNL1, but not by CUGBP1 (CELF1) complementation. Flies with (CCUG)106 displayed strong disruption of external eye morphology and of the underlying retina. Furthermore, expression of (CCUG)106 in developing retinae caused a strong apoptotic response. Inhibition of apoptosis rescued the retinal disruption in (CCUG)106 flies. Finally, we tested two chemical compounds that have shown therapeutic potential in DM1 models. Whereas treatment of (CCUG)106 flies with pentamidine had no effect, treatment with a PKR inhibitor blocked both the formation of RNA foci and apoptosis in retinae of (CCUG)106 flies. Our data indicate that expression of expanded (CCUG)DM2 repeats is toxic, causing inappropriate cell death in affected fly eyes. Our Drosophila DM2 model might provide a convenient tool for in vivo drug screening. Summary: A Drosophila model of myotonic dystrophy type 2 (DM2) recapitulates several features of the human disease, identifies apoptosis as a contributing factor to DM2, and is likely to provide a convenient tool for drug screening.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA
| | - Mario Sirito
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alla Amcheslavky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tomek Czernuszewicz
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Marzena Wojciechowska
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clare Bolduc
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Chen
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ralf Krahe
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Graduate Programs in Human & Molecular Genetics, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, Texas, USA
| | - Andreas Bergmann
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
104
|
Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Sci Rep 2017; 7:2843. [PMID: 28588248 PMCID: PMC5460254 DOI: 10.1038/s41598-017-02829-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies (DM1–2) are neuromuscular genetic disorders caused by the pathological expansion of untranslated microsatellites. DM1 and DM2, are caused by expanded CTG repeats in the 3′UTR of the DMPK gene and CCTG repeats in the first intron of the CNBP gene, respectively. Mutant RNAs containing expanded repeats are retained in the cell nucleus, where they sequester nuclear factors and cause alterations in RNA metabolism. However, for unknown reasons, DM1 is more severe than DM2. To study the differences and similarities in the pathogenesis of DM1 and DM2, we generated model flies by expressing pure expanded CUG ([250]×) or CCUG ([1100]×) repeats, respectively, and compared them with control flies expressing either 20 repeat units or GFP. We observed surprisingly severe muscle reduction and cardiac dysfunction in CCUG-expressing model flies. The muscle and cardiac tissue of both DM1 and DM2 model flies showed DM1-like phenotypes including overexpression of autophagy-related genes, RNA mis-splicing and repeat RNA aggregation in ribonuclear foci along with the Muscleblind protein. These data reveal, for the first time, that expanded non-coding CCUG repeat-RNA has similar in vivo toxicity potential as expanded CUG RNA in muscle and heart tissues and suggests that specific, as yet unknown factors, quench CCUG-repeat toxicity in DM2 patients.
Collapse
|
105
|
Biomolecular diagnosis of myotonic dystrophy type 2: a challenging approach. J Neurol 2017; 264:1705-1714. [PMID: 28550479 DOI: 10.1007/s00415-017-8504-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the most common adult form of muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. Diagnostic delay in DM2 is due not only to the heterogeneous phenotype and the aspecific onset but also to the unfamiliarity with the disorder by most clinicians. Moreover, the DM2 diagnostic odyssey is complicated by the difficulties to develop an accurate, robust, and cost-effective method for a routine molecular assay. The aim of this review is to underline by challenging approach the diagnostic limits and pitfalls that could results in failure to recognize the presence of DM2 disease. Understanding and preventing delays in DM2 diagnosis may facilitate family planning, improve symptom management in the short term, and facilitate more specific treatment in the long term.
Collapse
|
106
|
Schmacht L, Traber J, Grieben U, Utz W, Dieringer MA, Kellman P, Blaszczyk E, von Knobelsdorff-Brenkenhoff F, Spuler S, Schulz-Menger J. Cardiac Involvement in Myotonic Dystrophy Type 2 Patients With Preserved Ejection Fraction: Detection by Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.115.004615. [PMID: 27363857 DOI: 10.1161/circimaging.115.004615] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Myotonic dystrophy type 2 (DM2) is a genetic disorder characterized by skeletal muscle symptoms, metabolic changes, and cardiac involvement. Histopathologic alterations of the skeletal muscle include fibrosis and fatty infiltration. The aim of this study was to investigate whether subclinical cardiac involvement in DM2 is already detectable in preserved left ventricular function by cardiovascular magnetic resonance. METHODS AND RESULTS Twenty-seven patients (mean age, 54±10 years; 20 females) with a genetically confirmed diagnosis of DM2 were compared with 17 healthy age- and sex-matched controls using a 1.5 T magnetic resonance imaging. For myocardial tissue differentiation, T1 and T2 mapping, fat/water-separated imaging, focal fibrosis imaging (late gadolinium enhancement [LGE]), and (1)H magnetic resonance spectroscopy were performed. Extracellular volume fraction was calculated. Conduction abnormalities were diagnosed based on Groh criteria. LGE located subepicardial basal inferolateral was detectable in 22% of the patients. Extracellular volume was increased in this region and in the adjacent medial inferolateral segment (P=0.03 compared with healthy controls). In 21% of patients with DM2, fat deposits were detectable (all women). The control group showed no abnormalities. Myocardial triglycerides were not different in LGE-positive and LGE-negative subjects (P=0.47). Six patients had indicators for conduction disease (60% of LGE-positive patients and 12.5% of LGE-negative patients). CONCLUSIONS In DM2, subclinical myocardial injury was already detectable in preserved left ventricular ejection fraction. Extracellular volume was also increased in regions with no focal fibrosis. Myocardial fibrosis was related to conduction abnormalities.
Collapse
Affiliation(s)
- Luisa Schmacht
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Julius Traber
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Ulrike Grieben
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Wolfgang Utz
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Matthias A Dieringer
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Peter Kellman
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Edyta Blaszczyk
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Florian von Knobelsdorff-Brenkenhoff
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Simone Spuler
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Jeanette Schulz-Menger
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.).
| |
Collapse
|
107
|
Yum K, Wang ET, Kalsotra A. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 2017; 44:30-37. [PMID: 28213156 DOI: 10.1016/j.gde.2017.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/11/2016] [Accepted: 01/13/2017] [Indexed: 01/29/2023]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease primarily characterized by myotonia and progressive muscle weakness. The pathogenesis of DM involves microsatellite expansions in noncoding regions of transcripts that result in toxic RNA gain-of-function. Each successive generation of DM families carries larger repeat expansions, leading to an earlier age of onset with increasing disease severity. At present, diagnosis of DM is challenging and requires special genetic testing to account for somatic mosaicism and meiotic instability. While progress in genetic testing has been made, more rapid, accurate, and cost-effective approaches for measuring repeat lengths are needed to establish clear correlations between repeat size and disease phenotypes.
Collapse
Affiliation(s)
- Kevin Yum
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA.
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
108
|
Saada YB, Dib C, Lipinski M, Vassetzky YS. Genome- and Cell-Based Strategies in Therapy of Muscular Dystrophies. BIOCHEMISTRY (MOSCOW) 2017; 81:678-90. [PMID: 27449614 DOI: 10.1134/s000629791607004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscular dystrophies are a group of heterogeneous genetic disorders characterized by progressive loss of skeletal muscle mass. Depending on the muscular dystrophy, the muscle weakness varies in degree of severity. The majority of myopathies are due to genetic events leading to a loss of function of key genes involved in muscle function. Although there is until now no curative treatment to stop the progression of most myopathies, a significant number of experimental gene- and cell-based strategies and approaches have been and are being tested in vitro and in animal models, aiming to restore gene function. Genome editing using programmable endonucleases is a powerful tool for modifying target genome sequences and has been extensively used over the last decade to correct in vitro genetic defects of many single-gene diseases. By inducing double-strand breaks (DSBs), the engineered endonucleases specifically target chosen sequences. These DSBs are spontaneously repaired either by homologous recombination in the presence of a sequence template, or by nonhomologous-end joining error prone repair. In this review, we highlight recent developments and challenges for genome-editing based strategies that hold great promise for muscular dystrophies and regenerative medicine.
Collapse
Affiliation(s)
- Y Bou Saada
- UMR 8126, CNRS, Université Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, Villejuif, F-94805, France.
| | | | | | | |
Collapse
|
109
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
110
|
Vajsar J, Gonorazky HD, Dowling JJ. Myopathies and Myotonic Disorders. PEDIATRIC ELECTROMYOGRAPHY 2017:327-354. [DOI: 10.1007/978-3-319-61361-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
111
|
Kersten HM, Danesh-Meyer HV, Roxburgh RH. Ophthalmic findings in myotonic dystrophy type 2: a case series. J Neurol 2016; 263:2552-2554. [DOI: 10.1007/s00415-016-8325-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
|
112
|
Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy. J Neurol 2016; 263:2528-2537. [PMID: 27734165 DOI: 10.1007/s00415-016-8300-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Myotonic dystrophy (DM) and facioscapulohumeral muscular dystrophy (FSHD) are the two most common adult muscular dystrophies and have progressive and often disabling manifestations. Higher levels of medication adherence lead to better health outcomes, especially important to patients with DM and FSHD because of their multisystem manifestations and complexity of care. However, medication adherence has not previously been studied in a large cohort of DM type 1 (DM1), DM type 2 (DM2), and FSHD patients. The purpose of our study was to survey medication adherence and disease manifestations in patients enrolled in the NIH-supported National DM and FSHD Registry. The study was completed by 110 DM1, 49 DM2, and 193 FSHD patients. Notable comorbidities were hypertension in FSHD (44 %) and DM2 (37 %), gastroesophageal reflux disease in DM1 (24 %) and DM2 (31 %) and arrhythmias (29 %) and thyroid disease (20 %) in DM1. Each group reported high levels of adherence based on regimen complexity, medication costs, health literacy, side effect profile, and their beliefs about treatment. Only dysphagia in DM1 was reported to significantly impact medication adherence. Approximately 35 % of study patients reported polypharmacy (taking 6 or more medications). Of the patients with polypharmacy, the DM1 cohort was significantly younger (mean 55.0 years) compared to DM2 (59.0 years) and FSHD (63.2 years), and had shorter disease duration (mean 26 years) compared to FSHD (26.8 years) and DM2 (34.8 years). Future research is needed to assess techniques to ease pill swallowing in DM1 and to monitor polypharmacy and potential drug interactions in DM and FSHD.
Collapse
|
113
|
BIENIAS PIOTR, ŁUSAKOWSKA ANNA, CIURZYŃSKI MICHAŁ, RYMARCZYK ZUZANNA, IRZYK KATARZYNA, KURNICKA KATARZYNA, KAMIŃSKA ANNA, PRUSZCZYK PIOTR. Supraventricular and Ventricular Arrhythmias Are Related to the Type of Myotonic Dystrophy but Not to Disease Duration or Neurological Status. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2016; 39:959-68. [DOI: 10.1111/pace.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 01/16/2023]
Affiliation(s)
- PIOTR BIENIAS
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - ANNA ŁUSAKOWSKA
- Department of Neurology; Medical University of Warsaw; Warsaw Poland
| | - MICHAŁ CIURZYŃSKI
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - ZUZANNA RYMARCZYK
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - KATARZYNA IRZYK
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - KATARZYNA KURNICKA
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - ANNA KAMIŃSKA
- Department of Neurology; Medical University of Warsaw; Warsaw Poland
| | - PIOTR PRUSZCZYK
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
114
|
No relevant excess prevalence of myotonic dystrophy type 2 in patients with suspected fibromyalgia syndrome. Neuromuscul Disord 2016; 26:370-3. [DOI: 10.1016/j.nmd.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022]
|
115
|
Choi SH, Yang HK, Hwang JM, Park KS. Ocular Findings of Myotonic Dystrophy Type 1 in the Korean Population. Graefes Arch Clin Exp Ophthalmol 2016; 254:1189-93. [DOI: 10.1007/s00417-016-3266-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
|
116
|
Schmacht LM, Traber J, Grieben UI, Utz W, Dieringer MA, Kellman P, Spuler S, Schulz-Menger J. Cardiac involvement of myotonic dystrophy type II in patients with preserved ejection fraction - Detection by CMR. J Cardiovasc Magn Reson 2015. [PMCID: PMC4328411 DOI: 10.1186/1532-429x-17-s1-p315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
117
|
Valaperta R, Lombardi F, Cardani R, Fossati B, Brigonzi E, Merli I, Sansone V, Merletti G, Spina E, Meola G, Costa E. Development and Validation of a New Molecular Diagnostic Assay for Detection of Myotonic Dystrophy Type 2. Genet Test Mol Biomarkers 2015; 19:703-9. [DOI: 10.1089/gtmb.2015.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rea Valaperta
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy
| | - Fortunata Lombardi
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Barbara Fossati
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Elisa Brigonzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Ilaria Merli
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Valeria Sansone
- Neurorehabilitation Unit, University of Milan, NEMO Clinical Center (NeuroMuscular Omnicomprehensive), Fondazione Serena, Milan, Italy
| | - Giulia Merletti
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Edoardo Spina
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Elena Costa
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
118
|
Heatwole C, Johnson N, Bode R, Dekdebrun J, Dilek N, Hilbert JE, Luebbe E, Martens W, McDermott MP, Quinn C, Rothrock N, Thornton C, Vickrey BG, Victorson D, Moxley RT. Patient-Reported Impact of Symptoms in Myotonic Dystrophy Type 2 (PRISM-2). Neurology 2015; 85:2136-46. [PMID: 26581301 DOI: 10.1212/wnl.0000000000002225] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the frequency and relative importance of the most life-affecting symptoms in myotonic dystrophy type 2 (DM2) and to identify the factors that have the strongest association with these symptoms. METHODS We conducted a cross-sectional study of adult patients with DM2 from a National Registry of DM2 Patients to assess the prevalence and relative importance of 310 symptoms and 21 symptomatic themes. Participant responses were compared by age categories, sex, educational attainment, employment status, and duration of symptoms. RESULTS The symptomatic themes with the highest prevalence in DM2 were the inability to do activities (94.4%), limitations with mobility or walking (89.2%), hip, thigh, or knee weakness (89.2%), fatigue (89.2%), and myotonia (82.6%). Participants identified the inability to do activities and fatigue as the symptomatic themes that have the greatest overall effect on their lives. Unemployment, a longer duration of symptoms, and less education were associated with a higher average prevalence of all symptomatic themes (p < 0.01). Unemployment, a longer duration of symptoms, sex, and increased age were associated with a higher average effect of all symptomatic themes among patients with DM2 (p < 0.01). CONCLUSIONS The lives of patients with DM2 are affected by a variety of symptoms. These symptoms have different levels of significance and prevalence in this population and vary across DM2 subgroups in different demographic categories.
Collapse
Affiliation(s)
- Chad Heatwole
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA.
| | - Nicholas Johnson
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Rita Bode
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Jeanne Dekdebrun
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Nuran Dilek
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - James E Hilbert
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Elizabeth Luebbe
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - William Martens
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Michael P McDermott
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Christine Quinn
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Nan Rothrock
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Charles Thornton
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Barbara G Vickrey
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - David Victorson
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| | - Richard T Moxley
- From the Departments of Neurology (C.H., J.D., N.D., J.E.H., E.L., W.M., M.P.M., C.T., R.T.M.) and Biostatistics and Computational Biology (M.P.M.), and James P. Wilmot Cancer Institute (C.Q.), University of Rochester Medical Center, Rochester, NY; University of Utah (N.J.), Salt Lake City; Northwestern University Feinberg School of Medicine (R.B., N.R., D.V.), Chicago, IL; David Geffen School of Medicine (B.G.V.), UCLA Medical Center, Los Angeles; and Greater Los Angeles VA HealthCare System (B.G.V.), CA
| |
Collapse
|
119
|
Gene therapy in monogenic congenital myopathies. Methods 2015; 99:91-8. [PMID: 26454198 DOI: 10.1016/j.ymeth.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review.
Collapse
|
120
|
Meola G, Cardani R. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015; 2:S59-S71. [PMID: 27858759 PMCID: PMC5240594 DOI: 10.3233/jnd-150088] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
121
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
122
|
Passeri E, Bugiardini E, Sansone VA, Pizzocaro A, Fulceri C, Valaperta R, Borgato S, Costa E, Bandera F, Ambrosi B, Meola G, Persani L, Corbetta S. Gonadal failure is associated with visceral adiposity in myotonic dystrophies. Eur J Clin Invest 2015; 45:702-10. [PMID: 25950257 DOI: 10.1111/eci.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/05/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hypogonadism occurs in myotonic dystrophies type 1 (MD1) and type 2 (MD2). Sertoli and Leydig cell secretions, including insulin-like peptide-3 (INSL3), anti-Müllerian hormone (AMH) and inhibin B, were evaluated in male patients with MD. DESIGN Academic settings. Forty-four male patients with MD [31 MD1, 13 MD2, aged 59 (50-64) years, median (interquartile range)], age-, sex- and BMI-matched non-MD hypogonadal patients (n = 14) and healthy controls (n = 32). Serum FSH, LH, inhibin B, AMH, testosterone (T) and INSL3 were measured; fat and muscle masses were evaluated by DEXA. RESULTS Overt primary hypogonadism occurred in 29% of patients with MD1 and 46% of patients with MD2. Considering subclinical forms, the prevalence increased to 69% of MD1 and 100% of MD2. A half of patients with MD experienced symptoms. INSL3 levels were unaffected in most patients with MD. By contrast, AMH and inhibin B were reduced in most patients with MD and unrelated to age. Patients with MD showed increased body and visceral fat. Free T levels were negatively predicted by fat mass, and AMH and FSH levels were negatively correlated with waist/hip ratio and fat mass. AMH, inhibin B and FSH levels positively correlated with muscle strength and muscle mass. CONCLUSIONS AMH and inhibin B secretion failures are common in male patients with MD and are more severe than Leydig cell hormones impairment. AMH and inhibin B measurements might provide clinical utility in evaluating fertility in patients with MD. Serum T, AMH and inhibin B productions are negatively influenced by increased fat mass, while AMH and inhibin B might be markers of muscle impairment.
Collapse
Affiliation(s)
- Elena Passeri
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato, Milanese, Italy
| | - Enrico Bugiardini
- Neurology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato, Milanese, Italy
| | - Valeria A Sansone
- Department of Biomedical Sciences for Health, NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, University of Milan, Milan, Italy
| | | | - Cinzia Fulceri
- Clinical Chemistry Laboratory, IRCCS Policlinico San Donato, Milanese, Italy
| | - Rea Valaperta
- Molecular Medicine Laboratory, IRCCS Policlinico San Donato, Milanese, Italy
| | - Stefano Borgato
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elena Costa
- Clinical Chemistry Laboratory, IRCCS Policlinico San Donato, Milanese, Italy
| | | | - Bruno Ambrosi
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato, Milanese, Italy
| | - Giovanni Meola
- Neurology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato, Milanese, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, San Donato, Milanese, Italy
| |
Collapse
|
123
|
Boisguérin P, Deshayes S, Gait MJ, O'Donovan L, Godfrey C, Betts CA, Wood MJA, Lebleu B. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 2015; 87:52-67. [PMID: 25747758 PMCID: PMC7102600 DOI: 10.1016/j.addr.2015.02.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Abstract
Oligonucleotide-based drugs have received considerable attention for their capacity to modulate gene expression very specifically and as a consequence they have found applications in the treatment of many human acquired or genetic diseases. Clinical translation has been often hampered by poor biodistribution, however. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular delivery of non-permeant biomolecules such as nucleic acids. This review focuses on CPP-delivery of several classes of oligonucleotides (ONs), namely antisense oligonucleotides, splice switching oligonucleotides (SSOs) and siRNAs. Two main strategies have been used to transport ONs with CPPs: covalent conjugation (which is more appropriate for charge-neutral ON analogues) and non-covalent complexation (which has been used for siRNA delivery essentially). Chemical synthesis, mechanisms of cellular internalization and various applications will be reviewed. A comprehensive coverage of the enormous amount of published data was not possible. Instead, emphasis has been put on strategies that have proven to be effective in animal models of important human diseases and on examples taken from the authors' own expertise.
Collapse
Affiliation(s)
- Prisca Boisguérin
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France.
| | - Sébastien Deshayes
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Liz O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Caroline Godfrey
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Corinne A Betts
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Bernard Lebleu
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, Montpellier 34095, France
| |
Collapse
|
124
|
Abstract
PURPOSE OF REVIEW Myotonic dystrophies type 1 and type 2 are progressive multisystem genetic disorders with clinical and genetic features in common. Myotonic dystrophy type 1 is the most prevalent muscular dystrophy in adults and has a wide phenotypic spectrum. The average age of death in myotonic dystrophy type 1 is in the fifth decade. In comparison, myotonic dystrophy type 2 tends to cause a milder phenotype with later onset of symptoms and is less common than myotonic dystrophy type 1. Historically, patients with myotonic dystrophy type 1 have not received the medical and social input they need to maximize their quality and quantity of life. This review describes the improved understanding in the molecular and clinical features of myotonic dystrophy type 1 as well as the screening of clinical complications and their management. We will also discuss new potential genetic treatments. RECENT FINDINGS An active approach to screening and management of myotonic dystrophies type 1 and type 2 requires a multidisciplinary medical, rehabilitative and social team. This process will probably improve morbidity and mortality for patients. Genetic treatments have been successfully used in in-vitro and animal models to reverse the physiological, histopathological and transcriptomic features. SUMMARY Molecular therapeutics for myotonic dystrophy will probably bridge the translational gap between bench and bedside in the near future. There will still be a requirement for clinical screening of patients with myotonic dystrophy with proactive and systematic management of complications.
Collapse
|
125
|
Nojszewska M, Łusakowska A, Szmidt-Salkowska E, Gaweł M, Lipowska M, Sułek A, Krysa W, Rajkiewicz M, Seroka A, Kaczmarek K, Kamińska AM. Peripheral nerve involvement in myotonic dystrophy type 2 - similar or different than in myotonic dystrophy type 1? Neurol Neurochir Pol 2015; 49:164-70. [PMID: 26048604 DOI: 10.1016/j.pjnns.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/28/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multisystem manifestations of myotonic dystrophies type 1 (DM1) and 2 (DM2) are well known. Peripheral nerve involvement has been reported in DM1 but not in genetically confirmed DM2. The aim of our study was to assess peripheral nerve involvement in DM2 using nerve conduction studies and to compare these results with findings in DM1. METHODS We prospectively studied patients with genetically confirmed DM2 (n=30) and DM1 (n=32). All patients underwent detailed neurological examination and nerve conduction studies. RESULTS Abnormalities in electrophysiological studies were found in 26.67% of patients with DM2 and in 28.13% of patients with DM1 but the criteria of polyneuropathy were fulfilled in only 13.33% of patients with DM2 and 12.5% of patients with DM1. The polyneuropathy was subclinical, and no correlation was found between its presence and patient age or disease duration. CONCLUSIONS Peripheral nerves are quite frequently involved in DM2, but abnormalities meeting the criteria of polyneuropathy are rarely found. The incidence of peripheral nerve involvement is similar in both types of myotonic dystrophy.
Collapse
Affiliation(s)
- Monika Nojszewska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Gaweł
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland.
| | - Marta Lipowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Andrzej Seroka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Anna M Kamińska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
126
|
Abstract
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion.
Collapse
Affiliation(s)
- Xiao-Nan Zhao
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Karen Usdin
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
127
|
Papadimas GK, Kekou K, Papadopoulos C, Kararizou E, Kanavakis E, Manta P. Phenotypic variability and molecular genetics in proximal myotonic myopathy. Muscle Nerve 2015; 51:686-91. [DOI: 10.1002/mus.24440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- George Konstantinos Papadimas
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| | - Kiriaki Kekou
- Department of Medical Genetics; University of Athens, Medical School of Athens; Greece
| | - Constantinos Papadopoulos
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| | - Evangelia Kararizou
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| | - Emmanuel Kanavakis
- Department of Medical Genetics; University of Athens, Medical School of Athens; Greece
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Aghia Sophia Children's Hospital; Athens Greece
| | - Panagiota Manta
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| |
Collapse
|
128
|
Nam TS, Choi SY, Park DJ, Lee SS, Kim YO, Kim MK. The Overlap between Fibromyalgia Syndrome and Myotonia Congenita. J Clin Neurol 2015; 11:188-91. [PMID: 25749817 PMCID: PMC4387486 DOI: 10.3988/jcn.2015.11.2.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/02/2022] Open
Abstract
Background Fibromyalgia syndrome (FMS) is a complex disorder characterized by chronic widespread pain (CWP), multiple areas of tenderness, sleep disturbance, fatigue, and mood or cognitive dysfunction. Myotonia congenita (MC) is an inherited myopathic disorder that is caused by mutations in the gene encoding the skeletal muscle chloride channel, which can infrequently manifest as generalized muscle cramps or myalgia. Case Report The first case was a 33-year-old woman who complained of CWP and chronic headache occurring during pregnancy, and the second case was a 37-year-old man with CWP and depression who suffered from cold-induced muscle cramps. These two patients were initially diagnosed with FMS by rheumatologists, based on CWP of longer than 3 months duration and mechanical tenderness in specific body regions. However, these two FMS patients were subsequently also diagnosed with MC. Conclusions These two cases are the first report of an overlap of CWP between FMS and MC.
Collapse
Affiliation(s)
- Tai Seung Nam
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea.; Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seok Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Dong Jin Park
- Department of Rheumatology, Chonnam National University Medical School, Gwangju, Korea
| | - Shin Seok Lee
- Department of Rheumatology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Ok Kim
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| | - Myeong Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
129
|
Abstract
Myotonic dystrophy (dystrophia myotonica, DM) is one of the most common lethal monogenic disorders in populations of European descent. DM type 1 was first described over a century ago. More recently, a second form of the disease, DM type 2 was recognized, which results from repeat expansion in a different gene. Both disorders have autosomal dominant inheritance and multisystem features, including myotonic myopathy, cataract, and cardiac conduction disease. This article reviews the clinical presentation and pathophysiology of DM and discusses current management and future potential for developing targeted therapies.
Collapse
Affiliation(s)
- Charles A Thornton
- Department of Neurology, Center for Neural Development and Disease, Center for RNA Biology, University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
130
|
Hanisch F, Kronenberger C, Zierz S, Kornhuber M. The significance of pathological spontaneous activity in various myopathies. Clin Neurophysiol 2014; 125:1485-90. [DOI: 10.1016/j.clinph.2013.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 10/26/2022]
|
131
|
Cardani R, Giagnacovo M, Rossi G, Renna LV, Bugiardini E, Pizzamiglio C, Botta A, Meola G. Progression of muscle histopathology but not of spliceopathy in myotonic dystrophy type 2. Neuromuscul Disord 2014; 24:1042-53. [PMID: 25139674 DOI: 10.1016/j.nmd.2014.06.435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/07/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant progressive disease involving skeletal and cardiac muscle and brain. It is caused by a tetranucleotide repeat within the first intron of the CNBP gene that leads to an alteration of the alternative splicing of several genes. To understand the molecular mechanisms that play a role in DM2 progression, the evolution of skeletal muscle histopathology and biomolecular findings in successive biopsies have been studied. Biceps brachii biopsies from 5 DM2 patients who underwent two successive biopsies at different years of age have been used. Muscle histopathology has been assessed on sections immunostained with fast or slow myosin. FISH in combination with MBNL1-immunofluorescence has been performed to evaluate ribonuclear inclusion and MBNL1 foci dimensions in myonuclei. Gene and protein expression and alteration of alternative splicing of several genes have been evaluated over time. All DM2 patients examined show a worsening of muscle histopathology and an increase of foci dimensions over time. The progressive worsening of myotonia in DM2 patients may be due to the decrease of CLCN1 mRNA observed in all patients examined. However, a worsening of alternative splicing alterations has not been evidenced over time. The data obtained in this study confirm that DM2 is a slow progression disease since histological and biomolecular alterations observed in skeletal muscle are minimal even after 10-year interval. The data indicate that muscle morphological alterations evolve more rapidly over time than the molecular changes thus indicating that muscle biopsy is a more sensitive tool than biomolecular markers to assess disease progression at muscle level.
Collapse
Affiliation(s)
- Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Marzia Giagnacovo
- Department of Biology and Biotechnologies, University of Pavia, Pavia, Italy
| | - Giulia Rossi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Laura V Renna
- Department of Biosciences, University of Milan, Milan, Italy
| | - Enrico Bugiardini
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Chiara Pizzamiglio
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy; Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy.
| |
Collapse
|
132
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
133
|
Ulane CM, Teed S, Sampson J. Recent Advances in Myotonic Dystrophy Type 2. Curr Neurol Neurosci Rep 2014; 14:429. [DOI: 10.1007/s11910-013-0429-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
134
|
Nakayama T, Nakamura H, Oya Y, Kimura T, Imahuku I, Ohno K, Nishino I, Abe K, Matsuura T. Clinical and genetic analysis of the first known Asian family with myotonic dystrophy type 2. J Hum Genet 2014; 59:129-33. [PMID: 24430576 PMCID: PMC3973124 DOI: 10.1038/jhg.2013.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 12/03/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is more common than DM1 in Europe and is considered a rare cause of myotonic dystrophies in Asia. Its clinical course is also milder with more phenotypic variability than DM1. We herein describe the first known Asian family (three affected siblings) with DM2 based on clinical and genetic analyses. Notably, two of the affected siblings were previously diagnosed with limb-girdle muscular dystrophy. Myotonia (the inability of the muscle to relax) was absent or only faintly present in these individuals. The third sibling had grip myotonia and is the first known Asian DM2 patient. The three DM2 siblings share several systemic characteristics, including late-onset, proximal-dominant muscle weakness, diabetes, cataracts and asthma. Repeat-primed PCR across the DM2 repeat revealed a characteristic ladder pattern of a CCTG expansion in all siblings. Southern blotting analysis identified the presence of 3400 repeats. Further DM2 studies in Asian populations are needed to define the clinical presentation of Asian DM2 and as yet unidentified phenotypic differences from Caucasian patients.
Collapse
Affiliation(s)
| | - Harumasa Nakamura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Kimura
- Department of Neurology, Asahikawa Medical Center, National Hospital Organization, Asahikawa, Japan
| | - Ichiro Imahuku
- Department of Neurology, Yokohama Rosai Hospital, Yokohama, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tohru Matsuura
- 1] Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan [2] Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
135
|
Grosse L, Traber J, Grieben UI, Utz W, Dieringer MA, Kellman P, Spuler S, Schulz-Menger J. Cardiac involvement of the systemic disorder myotonic dystrophy type II - detection by CMR. J Cardiovasc Magn Reson 2014. [PMCID: PMC4045020 DOI: 10.1186/1532-429x-16-s1-p390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
136
|
Cardani R, Bugiardini E, Renna LV, Rossi G, Colombo G, Valaperta R, Novelli G, Botta A, Meola G. Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2. PLoS One 2013; 8:e83777. [PMID: 24376746 PMCID: PMC3869793 DOI: 10.1371/journal.pone.0083777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are progressive multisystemic disorders caused by similar mutations at two different genetic loci. The common key feature of DM pathogenesis is nuclear accumulation of mutant RNA which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of two RNA binding proteins, MBNL1 and CUGBP1. However, DM1 and DM2 show disease-specific features that make them clearly separate diseases suggesting that other cellular and molecular pathways may be involved. In this study we have analysed the histopathological, and biomolecular features of skeletal muscle biopsies from DM1 and DM2 patients in relation to presenting phenotypes to better define the molecular pathogenesis. Particularly, the expression of CUGBP1 protein has been examined to clarify if this factor may act as modifier of disease-specific manifestations in DM. The results indicate that the splicing and muscle pathological alterations observed are related to the clinical phenotype both in DM1 and in DM2 and that CUGBP1 seems to play a role in classic DM1 but not in DM2. In conclusion, our results indicate that multisystemic disease spectrum of DM pathologies may not be explained only by spliceopathy thus confirming that the molecular pathomechanism of DM is more complex than that actually suggested.
Collapse
Affiliation(s)
- Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Enrico Bugiardini
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura V. Renna
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulia Rossi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | | | - Rea Valaperta
- Research Laboratories - Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
- * E-mail:
| |
Collapse
|
137
|
Prevalence and clinical correlates of sleep disordered breathing in myotonic dystrophy types 1 and 2. Sleep Breath 2013; 18:579-89. [DOI: 10.1007/s11325-013-0921-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 01/30/2023]
|
138
|
Cagnetti C, Buratti L, Foschi N, Balestrini S, Provinciali L. Generalized epilepsy in a patient with myotonic dystrophy type 2. Neurol Sci 2013; 35:489-90. [PMID: 24277201 DOI: 10.1007/s10072-013-1578-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Affiliation(s)
- C Cagnetti
- Department of Experimental and Clinical Medicine, Neurologic Clinic, Polytechnic University of Marche, Via Conca 71, 60020, Ancona, AN, Italy
| | | | | | | | | |
Collapse
|
139
|
Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:692026. [PMID: 26316996 PMCID: PMC4437277 DOI: 10.1155/2013/692026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/19/2013] [Accepted: 08/03/2013] [Indexed: 01/19/2023]
Abstract
Myotonic dystrophy is the most common type of muscular dystrophy in adults and is characterized by progressive myopathy, myotonia, and multiorgan involvement. Two genetically distinct entities have been identified, myotonic dystrophy type 1 (DM1 or Steinert's Disease) and myotonic dystrophy type 2 (DM2). Myotonic dystrophies are strongly associated with sleep dysfunction. Sleep disturbances in DM1 are common and include sleep-disordered breathing (SDB), periodic limb movements (PLMS), central hypersomnia, and REM sleep dysregulation (high REM density and narcoleptic-like phenotype). Interestingly, drowsiness in DM1 seems to be due to a central dysfunction of sleep-wake regulation more than SDB. To date, little is known regarding the occurrence of sleep disorders in DM2. SDB (obstructive and central apnoea), REM sleep without atonia, and restless legs syndrome have been described. Further polysomnographic, controlled studies are strongly needed, particularly in DM2, in order to clarify the role of sleep disorders in the myotonic dystrophies.
Collapse
|
140
|
Hilbert JE, Ashizawa T, Day JW, Luebbe EA, Martens WB, McDermott MP, Tawil R, Thornton CA, Moxley RT. Diagnostic odyssey of patients with myotonic dystrophy. J Neurol 2013; 260:2497-504. [PMID: 23807151 PMCID: PMC4162528 DOI: 10.1007/s00415-013-6993-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. This report analyzes the diagnostic delay (time from onset of first symptom to diagnosis) in a large sample of myotonic dystrophy (DM) patients enrolled in the US National Registry [679 DM type 1 (DM1) and 135 DM type 2 (DM2) patients]. Age of onset averaged 34.0 ± 14.1 years in DM2 patients compared to 26.1 ± 13.2 years in DM1 (p < 0.0001). The most common initial symptom in DM2 patients was leg weakness (32.6 %) compared to grip myotonia in DM1 (38.3 %). Pain was reported as the first symptom in 11.1 % of DM2 and 3.0 % of DM1 patients (p < 0.0001). Reaching the correct diagnosis in DM2 took 14 years on average (double the time compared to DM1) and a significantly higher percentage of patients underwent extended workup including electromyography, muscle biopsies, and finally genetic testing. DM patients who were index cases experienced similar diagnostic delays to non-index cases of DM. Further evaluation of how to shorten these diagnostic delays and limit their impact on burdens of disease, family planning, and symptom management is needed.
Collapse
Affiliation(s)
- James E Hilbert
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Sansone V, Brigonzi E, Schoser B, Villani S, Gaeta M, De Ambroggi G, Bandera F, De Ambroggi L, Meola G. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): Long-term outcomes. Int J Cardiol 2013; 168:1147-53. [DOI: 10.1016/j.ijcard.2012.11.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/11/2012] [Indexed: 11/29/2022]
|
142
|
Trivedi JR, Bundy B, Statland J, Salajegheh M, Rayan DR, Venance SL, Wang Y, Fialho D, Matthews E, Cleland J, Gorham N, Herbelin L, Cannon S, Amato A, Griggs RC, Hanna MG, Barohn RJ. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. ACTA ACUST UNITED AC 2013; 136:2189-200. [PMID: 23771340 DOI: 10.1093/brain/awt133] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Few prospective studies have evaluated the sensitivity of symptoms and signs of myotonia in a large cohort of patients. We performed a prospective observational study of 95 participants with definite or clinically suspected non-dystrophic myotonia recruited from six sites in the USA, UK and Canada between March 2006 and March 2009. We used the common infrastructure and data elements provided by the NIH-funded Rare Disease Clinical Research Network. Outcomes included a standardized symptom interview and physical exam; the Short Form-36 and the Individualized Neuromuscular Quality of Life instruments; electrophysiological short and prolonged exercise tests; manual muscle testing; and a modified get-up-and-go test. Thirty-two participants had chloride channel mutations, 34 had sodium channel mutations, nine had myotonic dystrophy type 2, one had myotonic dystrophy type 1, and 17 had no identified mutation. Phenotype comparisons were restricted to those with sodium channel mutations, chloride channel mutations, and myotonic dystrophy type 2. Muscle stiffness was the most prominent symptom overall, seen in 66.7% to 100% of participants. In comparison with chloride channel mutations, participants with sodium mutations had an earlier age of onset of stiffness (5 years versus 10 years), frequent eye closure myotonia (73.5% versus 25%), more impairment on the Individualized Neuromuscular Quality of Life summary score (20.0 versus 9.44), and paradoxical eye closure myotonia (50% versus 0%). Handgrip myotonia was seen in three-quarters of participants, with warm up of myotonia in 75% chloride channel mutations, but also 35.3% of sodium channel mutations. The short exercise test showed ≥10% decrement in the compound muscle action potential amplitude in 59.3% of chloride channel participants compared with 27.6% of sodium channel participants, which increased post-cooling to 57.6% in sodium channel mutations. In evaluation of patients with clinical and electrical myotonia, despite considerable phenotypic overlap, the presence of eye closure myotonia, paradoxical myotonia, and an increase in short exercise test sensitivity post-cooling suggest sodium channel mutations. Outcomes designed to measure stiffness or the electrophysiological correlates of stiffness may prove useful for future clinical trials, regardless of underlying mutation, and include patient-reported stiffness, bedside manoeuvres to evaluate myotonia, muscle specific quality of life instruments and short exercise testing.
Collapse
Affiliation(s)
- Jaya R Trivedi
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Centre, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Johnson NE, Heatwole CR. Teaching video neuroimages: trapezius myotonia percussion sign in myotonic dystrophy type 2. Neurology 2013; 80:e251. [PMID: 23751923 DOI: 10.1212/wnl.0b013e318296e905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
144
|
Santoro M, Masciullo M, Bonvissuto D, Bianchi MLE, Michetti F, Silvestri G. Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Mol Cell Biochem 2013; 380:259-65. [PMID: 23666741 DOI: 10.1007/s11010-013-1681-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies.
Collapse
|
145
|
Malatesta M, Giagnacovo M, Costanzo M, Cisterna B, Cardani R, Meola G. Muscleblind-like1 undergoes ectopic relocation in the nuclei of skeletal muscles in myotonic dystrophy and sarcopenia. Eur J Histochem 2013; 57:e15. [PMID: 23807294 PMCID: PMC3794341 DOI: 10.4081/ejh.2013.e15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/24/2023] Open
Abstract
Muscleblind-like 1 (MBNL1) is an alternative splicing factor involved in postnatal development of skeletal muscles and heart in humans and mice, and its deregulation is known to be pivotal in the onset and development of myotonic dystrophy (DM). In fact, in DM patients this protein is ectopically sequestered into intranuclear foci, thus compromising the regulation of the alternative splicing of several genes. However, despite the numerous biochemical and molecular studies, scarce attention has been paid to the intranuclear location of MBNL1 outside the foci, although previous data demonstrated that in DM patients various splicing and cleavage factors undergo an abnormal intranuclear distribution suggestive of impaired RNA processing. Interestingly, these nuclear alterations strongly remind those observed in sarcopenia i.e., the loss of muscle mass and function which physiologically occurs during ageing. On this basis, in the present investigation the ultrastructural localization of MBNL1 was analyzed in the myonuclei of skeletal muscles from healthy and DM patients as well as from adult and old (sarcopenic) mice, in the attempt to elucidate possible changes in its distribution and amount. Our data demonstrate that in both dystrophic and sarcopenic muscles MBNL1 undergoes intranuclear relocation, accumulating in its usual functional sites but also ectopically moving to domains which are usually devoid of this protein in healthy adults. This accumulation/delocalization could contribute to hamper the functionality of the whole splicing machinery, leading to a lower nuclear metabolic activity and, consequently, to a less efficient protein synthesis. Moreover, the similar nuclear alterations found in DM and sarcopenia may account for the similar muscle tissue features (myofibre atrophy, fibre size variability and centrally located nuclei), and, in general, for the aging-reminiscent phenotype observed in DM patients.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, Università di Verona, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
146
|
Hanisch F, Kraya T, Kornhuber M, Zierz S. Diagnostic impact of myotonic discharges in myofibrillar myopathies. Muscle Nerve 2013; 47:845-8. [PMID: 23605961 DOI: 10.1002/mus.23716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Frank Hanisch
- Department of Neurology; Martin-Luther-University Halle-Wittenberg; Ernst-Grube-Str. 40 D-06120 Halle (Saale) Germany
| | - Torsten Kraya
- Department of Neurology; Martin-Luther-University Halle-Wittenberg; Ernst-Grube-Str. 40 D-06120 Halle (Saale) Germany
| | - Malte Kornhuber
- Department of Neurology; Martin-Luther-University Halle-Wittenberg; Ernst-Grube-Str. 40 D-06120 Halle (Saale) Germany
| | - Stephan Zierz
- Department of Neurology; Martin-Luther-University Halle-Wittenberg; Ernst-Grube-Str. 40 D-06120 Halle (Saale) Germany
| |
Collapse
|
147
|
Heatwole CR, Statland JM, Logigian EL. The diagnosis and treatment of myotonic disorders. Muscle Nerve 2013; 47:632-48. [PMID: 23536309 DOI: 10.1002/mus.23683] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
Abstract
Myotonia is a defining clinical symptom and sign common to a relatively small group of muscle diseases, including the myotonic dystrophies and the nondystrophic myotonic disorders. Myotonia can be observed on clinical examination, as can its electrical correlate, myotonic discharges, on electrodiagnostic testing. Research interest in the myotonic disorders continues to expand rapidly, which justifies a review of the scientific bases, clinical manifestations, and numerous therapeutic approaches associated with these disorders. We review the pathomechanisms of myotonia, the clinical features of the dystrophic and nondystrophic myotonic disorders, and the diagnostic approach and treatment options for patients with symptomatic myotonia.
Collapse
Affiliation(s)
- Chad R Heatwole
- Department of Neurology, Box 673, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, New York 14642, USA.
| | | | | |
Collapse
|
148
|
Da YW, Wang M, Li Y, Lu Y, Jia JP. An unusual case with myotonia. Kaohsiung J Med Sci 2013; 29:172-5. [PMID: 23465422 DOI: 10.1016/j.kjms.2012.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/29/2012] [Indexed: 11/16/2022] Open
Abstract
We report an unusual case involving a patient with myotonia. A 57-year-old man had multisystemic symptoms including skeletal muscle weakness, atrophy and percussion myotonia, cataract, heart involved, gastrointestinal tract symptoms, and urinary incontinence. The electromyography revealed myotonic discharges. Muscle biopsy showed myopathic features and a striking number of ring fibers. It was genetically proven that the case was not myotonic dystrophy type 1 (DM1) or 2 (DM2). The case might be DM3 or an unusual case of unclassified myopathy with multisystemic damage.
Collapse
Affiliation(s)
- Yu-Wei Da
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
149
|
Statland JM, Bundy BN, Wang Y, Trivedi JR, Raja Rayan D, Herbelin L, Donlan M, McLin R, Eichinger KJ, Findlater K, Dewar L, Pandya S, Martens WB, Venance SL, Matthews E, Amato AA, Hanna MG, Griggs RC, Barohn RJ. A quantitative measure of handgrip myotonia in non-dystrophic myotonia. Muscle Nerve 2012; 46:482-9. [PMID: 22987687 DOI: 10.1002/mus.23402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-dystrophic myotonia (NDM) is characterized by myotonia without muscle wasting. A standardized quantitative myotonia assessment (QMA) is important for clinical trials. METHODS Myotonia was assessed in 91 individuals enrolled in a natural history study using a commercially available computerized handgrip myometer and automated software. Average peak force and 90% to 5% relaxation times were compared with historical normal controls studied with identical methods. RESULTS Thirty subjects had chloride channel mutations, 31 had sodium channel mutations, 6 had DM2 mutations, and 24 had no identified mutation. Chloride channel mutations were associated with prolonged first handgrip relaxation times and warm-up on subsequent handgrips. Sodium channel mutations were associated with prolonged first handgrip relaxation times and paradoxical myotonia or warm-up, depending on underlying mutations. DM2 subjects had normal relaxation times but decreased peak force. Sample size estimates are provided for clinical trial planning. CONCLUSION QMA is an automated, non-invasive technique for evaluating myotonia in NDM.
Collapse
Affiliation(s)
- Jeffrey M Statland
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Shepard P, Lam EM, St Louis EK, Dominik J. Sleep disturbances in myotonic dystrophy type 2. Eur Neurol 2012; 68:377-80. [PMID: 23108384 DOI: 10.1159/000342895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022]
Abstract
Sleep disorders in myotonic dystrophy type 1 (DM1) are common and include sleep-disordered breathing, hypersomnia, and fatigue. Little is known regarding the occurrence of sleep disturbance in myotonic dystrophy type 2 (DM2). We hypothesized that DM2 patients may frequently harbor sleep disorders. We reviewed medical records of all genetically confirmed cases of DM2 seen at our sleep center between 1997 and 2010 for demographic, laboratory, overnight oximetry, and polysomnography (PSG) data. Eight patients (5 women, 3 men) with DM2 were identified. Excessive daytime sleepiness was seen in 6 patients (75%), insomnia in 5 (62.5%), and excessive fatigue in 4 (50%). Obstructive sleep apnea was diagnosed in 3 of 5 patients (60%) studied with PSG. Respiratory muscle weakness was present in all 6 patients (100%) who received pulmonary function testing. Four of 8 (50%) met criteria for diagnosis of restless legs syndrome. The clinical spectrum of DM2 may include a wide range of sleep disturbances. Although respiratory muscle weakness was frequent, sustained sleep-related hypoxia suggestive of hypoventilation was not seen in our patients. Further prospective studies are needed to examine the frequency and scope of sleep disturbances in DM2.
Collapse
Affiliation(s)
- Paul Shepard
- Mayo Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|