101
|
Double Inversion Recovery Magnetic Resonance Imaging in Identifying Focal Cortical Dysplasia. Pediatr Neurol 2016; 61:87-93. [PMID: 27241231 DOI: 10.1016/j.pediatrneurol.2016.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal cortical dysplasia is commonly recognized in pediatric epilepsy surgery. Despite characteristic radiographic features, focal cortical dysplasia can be subtle on magnetic resonance imaging. Double inversion recovery acquisition suppresses the white matter signal, which may enhance visualization of abnormal features at the gray-white matter interface. We assessed the ability of double inversion recovery to distinguish focal cortical dysplasia from periventricular nodular heterotopia and normal brain. METHODS Patients with focal cortical dysplasia were identified from our patient database, as was a control group comprising patients with periventricular nodular heterotopia and healthy persons. A senior neuroradiologist reviewed all clinical images and classified them as patients with focal cortical dysplasia (n = 16) or control subjects (periventricular nodular heterotopia, n = 13; normal, n = 20). Four neuroradiologists reviewed the de-identified and randomized double inversion recovery and magnetization prepared rapid acquired gradient echoes (MPRAGE) sequences for each person and scored them as normal, focal cortical dysplasia, or periventricular nodular heterotopia. RESULTS Among individual reviewers, double inversion recovery showed sensitivity from 50% to 88% and specificity from 67% to 91% in detecting focal cortical dysplasia. The sensitivity was notably higher in reviewers with more clinical experience with the technique. Consensus agreement among the three most experienced reviewers gave a sensitivity of 88% (95% confidence interval [CI], 72% to 97%) and specificity of 88% (95% CI, 62% to 98%) for double inversion recovery and sensitivity of 44% (95% CI, 20% to 70%) and specificity of 100% (95% CI, 89% to 100%) for MPRAGE. CONCLUSIONS Double inversion recovery is sensitive for detection of focal cortical dysplasia with experienced users, particularly when there is consensus agreement. The use of two clinically available magnetic resonance imaging acquisitions-double inversion recovery and another sequence with high specificity such as MPRAGE-would be complementary in the evaluation of lesional epilepsy.
Collapse
|
102
|
Recent Developments in Combined PET/MRI. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
103
|
Hu WH, Zhang C, Zhang K, Shao XQ, Zhang JG. Hemispheric surgery for refractory epilepsy: a systematic review and meta-analysis with emphasis on seizure predictors and outcomes. J Neurosurg 2016; 124:952-61. [PMID: 26495944 DOI: 10.3171/2015.4.jns14438] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Conflicting conclusions have been reported regarding several factors that may predict seizure outcomes after hemispheric surgery for refractory epilepsy. The goal of this study was to identify the possible predictors of seizure outcome by pooling the rates of postoperative seizure freedom found in the published literature.
METHODS
A comprehensive literature search of PubMed, Embase, and the Cochrane Library identified English-language articles published since 1970 that describe seizure outcomes in patients who underwent hemispheric surgery for refractory epilepsy. Two reviewers independently assessed article eligibility and extracted the data. The authors pooled rates of seizure freedom from papers included in the study. Eight potential prognostic variables were identified and dichotomized for analyses. The authors also compared continuous variables within seizure-free and seizure-recurrent groups. Random- or fixed-effects models were used in the analyses depending on the presence or absence of heterogeneity.
RESULTS
The pooled seizure-free rate among the 1528 patients (from 56 studies) who underwent hemispheric surgery was 73%. Patients with an epilepsy etiology of developmental disorders, generalized seizures, nonlateralization on electroencephalography, and contralateral MRI abnormalities had reduced odds of being seizure-free after surgery.
CONCLUSIONS
Hemispheric surgery is an effective therapeutic modality for medically intractable epilepsy. This meta-analysis provides useful evidence-based information for the selection of candidates for hemispheric surgery, presurgical counseling, and explanation of seizure outcomes.
Collapse
Affiliation(s)
| | | | | | - Xiao-Qiu Shao
- 3Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- 1Beijing Neurosurgical Institute and
- Departments of 2Neurosurgery and
| |
Collapse
|
104
|
Computational analysis in epilepsy neuroimaging: A survey of features and methods. NEUROIMAGE-CLINICAL 2016; 11:515-529. [PMID: 27114900 PMCID: PMC4833048 DOI: 10.1016/j.nicl.2016.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy affects 65 million people worldwide, a third of whom have seizures that are resistant to anti-epileptic medications. Some of these patients may be amenable to surgical therapy or treatment with implantable devices, but this usually requires delineation of discrete structural or functional lesion(s), which is challenging in a large percentage of these patients. Advances in neuroimaging and machine learning allow semi-automated detection of malformations of cortical development (MCDs), a common cause of drug resistant epilepsy. A frequently asked question in the field is what techniques currently exist to assist radiologists in identifying these lesions, especially subtle forms of MCDs such as focal cortical dysplasia (FCD) Type I and low grade glial tumors. Below we introduce some of the common lesions encountered in patients with epilepsy and the common imaging findings that radiologists look for in these patients. We then review and discuss the computational techniques introduced over the past 10 years for quantifying and automatically detecting these imaging findings. Due to large variations in the accuracy and implementation of these studies, specific techniques are traditionally used at individual centers, often guided by local expertise, as well as selection bias introduced by the varying prevalence of specific patient populations in different epilepsy centers. We discuss the need for a multi-institutional study that combines features from different imaging modalities as well as computational techniques to definitively assess the utility of specific automated approaches to epilepsy imaging. We conclude that sharing and comparing these different computational techniques through a common data platform provides an opportunity to rigorously test and compare the accuracy of these tools across different patient populations and geographical locations. We propose that these kinds of tools, quantitative imaging analysis methods and open data platforms for aggregating and sharing data and algorithms, can play a vital role in reducing the cost of care, the risks of invasive treatments, and improve overall outcomes for patients with epilepsy. We introduce common epileptogenic lesions encountered in patients with drug resistant epilepsy. We discuss state of the art computational techniques used to detect lesions. There is a need for multi-institutional studies that combine these techniques. Clinically validated pipelines alongside the advances in imaging and electrophysiology will improve outcomes.
Collapse
Key Words
- DRE, drug resistant epilepsy
- DTI, diffusion tensor imaging
- DWI, diffusion weighted imaging
- Drug resistant epilepsy
- Epilepsy
- FCD, focal cortical dysplasia
- FLAIR, fluid-attenuated inversion recovery
- Focal cortical dysplasia
- GM, gray matter
- GW, gray-white junction
- HARDI, high angular resolution diffusion imaging
- MEG, magnetoencephalography
- MRS, magnetic resonance spectroscopy imaging
- Machine learning
- Malformations of cortical development
- Multimodal neuroimaging
- PET, positron emission tomography
- PNH, periventricular nodular heterotopia
- SBM, surface-based morphometry
- T1W, T1-weighted MRI
- T2W, T2-weighted MRI
- VBM, voxel-based morphometry
- WM, white matter
Collapse
|
105
|
Jin P, Wu D, Li X, Ren L, Wang Y. Towards precision medicine in epilepsy surgery. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:24. [PMID: 26889477 DOI: 10.3978/j.issn.2305-5839.2015.12.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Up to a third of all patients with epilepsy are refractory to medical therapy even in the context of the introduction of new antiepileptic drugs (AEDs) with considerable advantages in safety and tolerability over the last two decades. It has been widely accepted that epilepsy surgery is a highly effective therapeutic option in a selected subset of patients with refractory focal seizure. There is no doubt that accurate localization of the epileptogenic zone (EZ) is crucial to the success of resection surgery for intractable epilepsy. The pre-surgical evaluation requires a multimodality approach wherein each modality provides unique and complimentary information. Accurate localization of EZ still remains challenging, especially in patients with normal features on MRI. Whereas substantial progress has been made in the methods of pre-surgical assessment in recent years, which widened the applicability of surgical treatment for children and adults with refractory seizure. Advances in neuroimaging including voxel-based morphometric MRI analysis, multimodality techniques and computer-aided subtraction ictal SPECT co-registered to MRI have improved our ability to identify subtle structural and metabolic lesions causing focal seizure. Considerable observations from animal model with epilepsy and pre-surgical patients have consistently found a strong correlation between high frequency oscillations (HFOs) and epileptogenic brain tissue that suggest HFOs could be a potential biomarker of EZ. Since SEEG emphasizes the importance to study the spatiotemporal dynamics of seizure discharges, accounting for the dynamic, multidirectional spatiotemporal organization of the ictal discharges, it has greatly deep our understanding of the anatomo-electro-clinical profile of seizure. In this review, we focus on some state-of-the-art pre-surgical investigations that contribute to the precision medicine. Furthermore, advances also provide opportunity to achieve the minimal side effects and maximal benefit individually, which meets the need for the current concept of precision medicine in epilepsy surgery.
Collapse
Affiliation(s)
- Pingping Jin
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Dongyan Wu
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoxuan Li
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liankun Ren
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- 1 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China ; 2 Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China ; 3 Department of Neurology, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
106
|
Abstract
Imaging is pivotal in the evaluation and management of patients with seizure disorders. Elegant structural neuroimaging with magnetic resonance imaging (MRI) may assist in determining the etiology of focal epilepsy and demonstrating the anatomical changes associated with seizure activity. The high diagnostic yield of MRI to identify the common pathological findings in individuals with focal seizures including mesial temporal sclerosis, vascular anomalies, low-grade glial neoplasms and malformations of cortical development has been demonstrated. Positron emission tomography (PET) is the most commonly performed interictal functional neuroimaging technique that may reveal a focal hypometabolic region concordant with seizure onset. Single photon emission computed tomography (SPECT) studies may assist performance of ictal neuroimaging in patients with pharmacoresistant focal epilepsy being considered for neurosurgical treatment. This chapter highlights neuroimaging developments and innovations, and provides a comprehensive overview of the imaging strategies used to improve the care and management of people with epilepsy.
Collapse
|
107
|
Rubinger L, Chan C, D'Arco F, Moineddin R, Muthaffar O, Rutka JT, Snead OC, Smith ML, Widjaja E. Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia 2015; 57:32-40. [PMID: 26715387 DOI: 10.1111/epi.13229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Since 2008, we have changed our presurgical diagnostic imaging evaluation for medically refractory focal epilepsy to include high-resolution epilepsy protocol on 3 T magnetic resonance imaging (MRI), and combined magnetoencephalography and 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) in selected patients with normal or subtle changes on MRI or discordant diagnostic tests. The aim of this study was to evaluate the effectiveness of the change in imaging practice on epilepsy surgery outcome in a tertiary pediatric epilepsy surgery center. METHODS The change in practice occurred in early 2008, and patients were classified based on old or new practice. The patient characteristics, surgical variables, and seizure-free surgical outcome were compared, and the trend in seizure-free outcome over time was assessed. RESULTS There was a trend for increased abnormal MRI (92% vs. 86%, respectively, p = 0.062), and increased utilization of FDG-PET (34% vs. 3% respectively, p < 0.001) with new relative to old practice. There were no statistically significant differences in invasive monitoring, location, and type of surgery and histology between the two periods (all p > 0.05). During the old practice, there was no statistically significant change in yearly trend of seizure-free outcome (odds ratio [OR] 0.960, 95% confidence interval [CI] 0.875-1.053, p = 0.386). The change in practice in 2008 was associated with a significant improvement in seizure-free outcome (OR 1.535, 95% CI 1.100-2.142, p = 0.012). During the new practice, there was a significant positive trend in yearly seizure-free outcome (OR 1.219, 95% CI 1.053-1.411, p = 0.008), after adjusting for age at seizure onset, invasive monitoring, location and type of surgery, histology, MRI, magnetoencephalography, and FDG-PET. SIGNIFICANCE We have found an improvement in seizure-free surgical outcome following the change in imaging practice. This study highlights the importance of optimizing and improving presurgical diagnostic imaging evaluation to improve surgical outcome.
Collapse
Affiliation(s)
- Luc Rubinger
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carol Chan
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felice D'Arco
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Osama Muthaffar
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - James T Rutka
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Lou Smith
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
108
|
Nensa F, Beiderwellen K, Heusch P, Wetter A. Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol 2015; 20:438-47. [PMID: 25010371 DOI: 10.5152/dir.2014.14008] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fully integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners have been available for a few years. Since then, the number of scanner installations and published studies have been growing. While feasibility of integrated PET/MRI has been demonstrated for many clinical and preclinical imaging applications, now those applications where PET/MRI provides a clear benefit in comparison to the established reference standards need to be identified. The current data show that those particular applications demanding multiparametric imaging capabilities, high soft tissue contrast and/or lower radiation dose seem to benefit from this novel hybrid modality. Promising results have been obtained in whole-body cancer staging in non-small cell lung cancer and multiparametric tumor imaging. Furthermore, integrated PET/MRI appears to have added value in oncologic applications requiring high soft tissue contrast such as assessment of liver metastases of neuroendocrine tumors or prostate cancer imaging. Potential benefit of integrated PET/MRI has also been demonstrated for cardiac (i.e., myocardial viability, cardiac sarcoidosis) and brain (i.e., glioma grading, Alzheimer's disease) imaging, where MRI is the predominant modality. The lower radiation dose compared to PET/computed tomography will be particularly valuable in the imaging of young patients with potentially curable diseases.However, further clinical studies and technical innovation on scanner hard- and software are needed. Also, agreements on adequate refunding of PET/MRI examinations need to be reached. Finally, the translation of new PET tracers from preclinical evaluation into clinical applications is expected to foster the entire field of hybrid PET imaging, including PET/MRI.
Collapse
Affiliation(s)
- Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | | | | |
Collapse
|
109
|
Abstract
AbstractThe role of fludeoxyglucose F 18 positron emission tomography (PET) in the presurgical evaluation of patients with medically intractable epilepsy continues to be refined. The purpose of this study was to systematically review the literature to assess the diagnostic accuracy and utility of PET in this setting. Thirty-nine studies were identified through MEDLINE and EMBASE databases that met the inclusion criteria. In adult patients, PET hypometabolism showed a 56 to 90% agreement with seizure onset localized by intracranial electroencephalogram (pediatric: 21 to 86%). In temporal lobe epilepsy patients with good surgical outcome, PET displayed moderate to high sensitivity in localizing the seizure focus (range: 71 to 89%). The sensitivity increased by 8 to 23% when PET results were combined with magnetic resonance imaging or electroencephalogram. PET has been shown to affect patient management by improving the guidance of intracranial electrodes placement, altering the decision to perform surgery, or excluding patients from further evaluation.
Collapse
|
110
|
Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, Melani F, Polster T, Andre VM, Cepeda C, Krueger DA, Cross JH, Spreafico R, Cosottini M, Gotman J, Chassoux F, Ryvlin P, Bartolomei F, Bernasconi A, Stefan H, Miller I, Devaux B, Najm I, Giordano F, Vonck K, Barba C, Blumcke I. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015; 56:1669-86. [DOI: 10.1111/epi.13200] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
- IRCCS Stella Maris Foundation; Pisa Italy
| | - Michael Duchowny
- Neuroscience Program and the Comprehensive Epilepsy Center; Miami Children's Hospital; Miami Florida U.S.A
| | - Prasanna Jayakar
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| | - Pavel Krsek
- Department of Pediatric Neurology; 2nd Faculty of Medicine; Motol University Hospital; Charles University; Prague Czech Republic
| | - Philippe Kahane
- INSERM U836; University of Grenoble Alpes, GIN; Grenoble; France
- Epilepsy Unit; Michallon Hospital; Grenoble France
| | - Laura Tassi
- Epilepsy Surgery Center; Niguarda Hospital; Milan Italy
| | - Federico Melani
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Tilman Polster
- Department of Child Neurology; Bethel Epilepsy Center; Bielefeld Germany
| | | | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center; David Geffen School of Medicine; University of California at Los Angeles; Los Angeles California U.S.A
| | - Darcy A. Krueger
- Division of Neurology; Department of Pediatrics; Cincinnati Children's Hospital Medical Center; University of Cincinnati College of Medicine; Cincinnati Ohio U.S.A
| | - J. Helen Cross
- UCL-Institute of Child Health; Great Ormond Street Hospital for Children NHS Foundation Trust; London United Kingdom
- Young Epilepsy; Lingfield United Kingdom
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit; Neurological InstituteC. Besta”; Milan Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Jean Gotman
- Montreal Neurological Institute and Hospital; McGill University; Montreal Quebec Canada
| | | | - Philippe Ryvlin
- Department of Clinical Neurosciences; CHUV; Lausanne Switzerland
- Translational and Integrative Group in Epilepsy Research (TIGER) and Institute for Epilepsies (IDEE); Lyon's Neuroscience Center; INSERM U1028; CNRS 5292; UCBL; Le Vinatier Hospital; Bron; Lyon France
| | - Fabrice Bartolomei
- Faculty of Medicine; INSERM, U1106; Institute of Neurosciences of Systems; Marseille France
- Faculty of Medicine; Aix Marseille University; Marseille France
- Clinical Neurophysiology Unit; Department of Clinical Neurosciences; CHU Timone; Marseille France
- Henri-Gastaut Hospital; Saint-Paul Center; Marseille France
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Center; Montreal Neurological Institute and Hospital; McGill University; Montreal Quebec Canada
| | - Hermann Stefan
- Epilepsy Center Erlangen (ZEE); University Erlangen-Nürnberg; Erlangen Germany
| | - Ian Miller
- Department of Neurology and Comprehensive Epilepsy Program; Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
| | | | - Imad Najm
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland OH U.S.A
| | - Flavio Giordano
- Pediatric Neurosurgery Unit; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent Belgium
| | - Carmen Barba
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Ingmar Blumcke
- Department of Neuropathology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
111
|
Tschampa HJ, Urbach H, Malter M, Surges R, Greschus S, Gieseke J. Magnetic resonance imaging of focal cortical dysplasia: Comparison of 3D and 2D fluid attenuated inversion recovery sequences at 3T. Epilepsy Res 2015; 116:8-14. [DOI: 10.1016/j.eplepsyres.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/25/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022]
|
112
|
Does F-18 FDG-PET substantially alter the surgical decision-making in drug-resistant partial epilepsy? Epilepsy Behav 2015; 51:133-9. [PMID: 26276413 DOI: 10.1016/j.yebeh.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE There is a dearth of information on the critical utility of positron emission tomography (PET) in choosing candidates for epilepsy surgery especially in resource-poor countries where it is not freely available. This study aimed to critically analyze the utility of FDG-PET in the presurgical evaluation and surgical selection of patients with DRE based on the results obtained through its use in our comprehensive epilepsy program. METHODS From 2008 to 2012, 117 patients with drug-resistant epilepsy underwent F-18 fluoro-deoxy-glucose (FDG) PET in our center. We utilized their data to audit the utility of PET in choosing/deferring patients for surgery. RESULTS Of the 117 patients (age: 5-42years) who underwent F-18 FDG-PET, 64 had normal MRI, and 53 had lesions. Electroclinical data favored temporal ictal onset in 48 (41%), extratemporal in 60 (51.3%), and uncertain lobar localization in 9 (7.7%). The topography of PET hypometabolism was localizing in 53 (45.3%), lateralizing in 12 (10.3%), and 52 (44.4%) had either normal or discordant results. In the nonlesional group, focal hypometabolism was concordant to the area of ictal onset in 27 (41.5%) versus 38 (58.5%) in the lesional group (p=0.002). Greater concordance was noted in temporal lobe epilepsy (TLE) (78.0%) as compared to extratemporal epilepsy (ETPE) (28.6%) (p<0.001). Positron emission tomography was more concordant in patients with mesial temporal sclerosis than in those with other lesions (82.8% versus 50%) (p=0.033). Positron emission tomography helped in surgical decision-making in 68.8% of TLE and 23.3% of ETPE cases. Overall, 37 patients (31.6%) were directly selected for resective surgery based on PET results. CONCLUSIONS Positron emission tomography, when utilized judiciously, remained an ancillary tool in the surgical selection of one-third of patients with drug-resistant partial epilepsy, although its utility as an independent tool is not very promising.
Collapse
|
113
|
Dankbaar JW, Snijders TJ, Robe PA, Seute T, Eppinga W, Hendrikse J, De Keizer B. The use of (18)F-FDG PET to differentiate progressive disease from treatment induced necrosis in high grade glioma. J Neurooncol 2015; 125:167-75. [PMID: 26384811 PMCID: PMC4592487 DOI: 10.1007/s11060-015-1883-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022]
Abstract
In the follow-up of patients treated for high grade glioma, differentiation between progressive disease (PD) and treatment-induced necrosis (TIN) is challenging. The purpose of this study is to evaluate the diagnostic accuracy of FDG PET for the differentiation between TIN and PD after high grade glioma treatment. We retrospectively identified patients between January 2011 and July 2013 that met the following criteria: age >18; glioma grade 3 or 4; treatment with radiotherapy or chemoradiotherapy; new or progressive enhancement on post treatment MRI; FDG PET within 4 weeks of MRI. Absolute and relative (to contralateral white matter) values of SUVmax and SUVpeak were determined in new enhancing lesions on MRI. The outcome of PD or TIN was determined by neurosurgical biopsy/resection, follow-up MRI, or clinical deterioration. The association between FDG PET and outcome was analyzed with univariate logistic regression and ROC analysis for: all lesions, lesions >10, >15, and >20 mm. We included 30 patients (5 grade 3 and 25 grade 4), with 39 enhancing lesions on MRI. Twenty-nine lesions represented PD and 10 TIN. Absolute and relative values of SUVmax and SUVpeak showed no significant differences between PD and TIN. ROC analysis showed highest AUCs for relative SUVpeak in all lesion sizes. Relative SUVpeak for lesions >20 mm showed reasonable discriminative properties [AUC 0.69 (0.41–0.96)]. FDG PET has reasonable discriminative properties for differentiation of PD from TIN in high grade gliomas larger than 20 mm. Overall diagnostic performance is insufficient to guide clinical decision-making.
Collapse
Affiliation(s)
- J W Dankbaar
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - T J Snijders
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P A Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T Seute
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W Eppinga
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Hendrikse
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - B De Keizer
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
114
|
All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur J Nucl Med Mol Imaging 2015; 42:1133-43. [PMID: 25893383 DOI: 10.1007/s00259-015-3045-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE In patients with pharmacoresistant focal epilepsy, resection of the epileptic focus can lead to freedom from seizures or significant improvement in well-selected candidates. Localization of the epileptic focus with multimodal concordance is crucial for a good postoperative outcome. Beyond the detection of epileptogenic lesions on structural MRI and focal hypometabolism on FDG PET, EEG-based Electric Source Imaging (ESI) and simultaneous EEG and functional MRI (EEG-fMRI) are increasingly applied for mapping epileptic activity. We here report presurgical multimodal interictal imaging using a hybrid PET/MR scanner for single-session FDG PET, MRI, EEG-fMRI and ESI. METHODS This quadrimodal imaging procedure was performed in a single session in 12 patients using a high-density (256 electrodes) MR-compatible EEG system and a hybrid PET/MR scanner. EEG was used to exclude subclinical seizures during uptake of the PET tracer, to compute ESI on interictal epileptiform discharges and to guide fMRI analysis for mapping haemodynamic changes correlated with interictal epileptiform activity. RESULTS The whole multimodal recording was performed in less than 2 hours with good patient comfort and data quality. Clinically contributory examinations with at least two modalities were obtained in nine patients and with all modalities in five patients. CONCLUSION This single-session quadrimodal imaging procedure provided reliable and contributory interictal clinical data. This procedure avoids multiple scanning sessions and is associated with less radiation exposure than PET-CT. Moreover, it guarantees the same medication level and medical condition for all modalities. The procedure improves workflow and could reduce the duration and cost of presurgical epilepsy evaluations.
Collapse
|
115
|
Harvey AS, Mandelstam SA, Maixner WJ, Leventer RJ, Semmelroch M, MacGregor D, Kalnins RM, Perchyonok Y, Fitt GJ, Barton S, Kean MJ, Fabinyi GCA, Jackson GD. The surgically remediable syndrome of epilepsy associated with bottom-of-sulcus dysplasia. Neurology 2015; 84:2021-8. [PMID: 25888556 DOI: 10.1212/wnl.0000000000001591] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine clinical and EEG features that might help identify patients with epilepsy harboring small, intrinsically epileptogenic, surgically treatable, bottom-of-sulcus dysplasias (BOSDs). METHODS Retrospective review of clinical records, EEG, MRI, and histopathology in 32 patients with drug-resistant epilepsy and MRI-positive (72% 3.0 tesla), pathologically proven (type 2B cortical dysplasia) BOSDs operated at our centers during 2005-2013. RESULTS Localization of BOSDs was frontal in 19, insula in 5, parietal in 5, and temporal in 3, on the convexity or interhemispheric surfaces. BOSDs were missed on initial MRI at our centers in 22% of patients. Patients presented with focal seizures during infancy in 9, preschool years in 15, and school years in 8 (median age 5 years). Seizures were stereotyped, predominantly nocturnal, and typically nonconvulsive, with semiology referable to the fronto-central or perisylvian regions. Seizures occurred at high frequency during active periods, but often went into prolonged remission with carbamazepine or phenytoin. Intellect was normal or borderline, except in patients with seizure onset during infancy. Scalp EEG frequently revealed localized interictal epileptiform discharges and ictal rhythms. Patients underwent lesionectomy (median age 14 years) guided by electrocorticography and MRI, with prior intracranial EEG monitoring in only one patient. Twenty-eight patients (88%) became seizure-free, and 20 discontinued antiepileptic medication (median follow-up 4.1 years). CONCLUSIONS In patients with cryptogenic focal epilepsy, this clinical presentation and course should prompt review of or repeat MRI, looking for a BOSD in the frontal, parietal, or insula cortex. If a BOSD is identified, the patient might be considered for single-stage lesionectomy.
Collapse
Affiliation(s)
- A Simon Harvey
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia.
| | - Simone A Mandelstam
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Wirginia J Maixner
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Richard J Leventer
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Mira Semmelroch
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Duncan MacGregor
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Renate M Kalnins
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Yuliya Perchyonok
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Gregory J Fitt
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Sarah Barton
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Michael J Kean
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Gavin C A Fabinyi
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| | - Graeme D Jackson
- From the Departments of Neurology (A.S.H., R.J.L., G.D.J.), Medical Imaging (S.A.M., M.J.K.), Neurosurgery (W.J.M.), and Anatomical Pathology (D.M.), The Royal Children's Hospital, Parkville; Departments of Neurology (G.D.J.), Radiology (Y.P., G.J.F.), Neurosurgery (G.C.A.F.), and Anatomical Pathology (R.M.K.), Austin Health, Heidelberg; Departments of Paediatrics (A.S.H., S.A.M., R.J.L.), Medicine (G.D.J.), Surgery (G.C.A.F.), Pathology (D.M., R.M.K.), and Radiology (S.A.M., Y.P., G.J.F.), The University of Melbourne; Florey Institute of Neuroscience and Mental Health (A.S.H., S.A.M., M.S., G.D.J.), Heidelberg; Neurosciences (A.S.H., W.J.M., R.J.L.) and Developmental Imaging (S.B., M.J.K.) Groups, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
116
|
Martin P, Bender B, Focke NK. Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 2015; 5:188-203. [PMID: 25853079 DOI: 10.3978/j.issn.2223-4292.2015.01.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/28/2015] [Indexed: 11/14/2022]
Abstract
Currently, a relevant proportion of all histopathologically proven focal cortical dysplasia (FCD) escape visual detection; this shows the need for additional improvements in analyzing MRI data. A positive MRI is still the strongest prognostic factor for postoperative freedom of seizures. Among several post-processing methods voxel-based morphometry (VBM) of T1- and T2-weighted sequences and T2 relaxometry are routinely applied in pre-surgical diagnostics of cryptogenic epilepsy in epilepsy centers. VBM is superior to conventional visual analysis with 9-15% more identified epileptogenic foci, while T2 relaxometry has its main application in (mesial) temporal lobe epilepsy. Further methods such as surface-based morphometry (SBM) or diffusion tensor imaging are promising but there is a lack of current studies comparing their individual diagnostic value. Post-processing methods represent an important addition to conventional visual analysis but need to be interpreted with expertise and experience so that they should be apprehended as a complementary tool within the context of the multi-modal evaluation of epilepsy patients. This review will give an overview of existing post-processing methods of structural MRI and outline their clinical relevance in detection of epileptogenic structural changes.
Collapse
Affiliation(s)
- Pascal Martin
- 1 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, 2 Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Bender
- 1 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, 2 Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, 72076 Tübingen, Germany
| | - Niels K Focke
- 1 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, 2 Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
117
|
Ramli N, Rahmat K, Lim KS, Tan CT. Neuroimaging in refractory epilepsy. Current practice and evolving trends. Eur J Radiol 2015; 84:1791-800. [PMID: 26187861 DOI: 10.1016/j.ejrad.2015.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/09/2015] [Accepted: 03/21/2015] [Indexed: 11/16/2022]
Abstract
Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.
Collapse
Affiliation(s)
- N Ramli
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Malaysia
| | - K Rahmat
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Malaysia.
| | - K S Lim
- Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - C T Tan
- Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
118
|
Fernández S, Donaire A, Serès E, Setoain X, Bargalló N, Falcón C, Sanmartí F, Maestro I, Rumià J, Pintor L, Boget T, Aparicio J, Carreño M. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res 2015; 111:1-9. [PMID: 25769367 DOI: 10.1016/j.eplepsyres.2014.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/19/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022]
Abstract
We aimed to investigate the usefulness of coregistration of positron emission tomography (PET) and magnetic resonance imaging (MRI) findings (PET/MRI) and of coregistration of PET/MRI with subtraction ictal single-photon emission computed tomography (SPECT) coregistered to MRI (SISCOM) (PET/MRI/SISCOM) in localizing the potential epileptogenic zone in patients with drug-resistant epilepsy. We prospectively included 35 consecutive patients with refractory focal epilepsy whose presurgical evaluation included a PET study. Separately acquired PET and structural MRI images were coregistered for each patient. When possible, ictal SPECT and SISCOM were obtained and coregistered with PET/MRI. The potential location of the epileptogenic zone determined by neuroimaging was compared with the seizure onset zone determined by long-term video-EEG monitoring and with invasive EEG studies in patients who were implanted. Structural MRI showed no lesions in 15 patients. In these patients, PET/MRI coregistration showed a hypometabolic area in 12 (80%) patients that was concordant with seizure onset zone on EEG in 9. In 7 patients without MRI lesions, PET/MRI detected a hypometabolism that was undetected on PET alone. SISCOM, obtained in 25 patients, showed an area of hyperperfusion concordant with the seizure onset zone on EEG in 7 (58%) of the 12 of these patients who had normal MRI findings. SISCOM hyperperfusion was less extensive than PET hypometabolism. A total of 19 patients underwent surgery; 11 of these underwent invasive-EEG monitoring and the seizure onset zone was concordant with PET/MRI in all cases. PET/MRI/SISCOM coregistration, performed in 4 of these patients, was concordant in 3 (75%). After epilepsy surgery, 13 (68%) patients are seizure-free after a mean follow-up of 4.5 years. PET/MRI and PET/MRI/SISCOM coregistration are useful for determining the potential epileptogenic zone and thus for planning invasive EEG studies and surgery more precisely, especially in patients without lesions on MRI.
Collapse
Affiliation(s)
- S Fernández
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Neurology Unit, Medical Division, Hospital Plató, Barcelona, Spain.
| | - A Donaire
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - E Serès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - X Setoain
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - N Bargalló
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - C Falcón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - F Sanmartí
- Pediatric Epilepsy Unit, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - I Maestro
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain.
| | - J Rumià
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain.
| | - L Pintor
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - T Boget
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - J Aparicio
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| | - M Carreño
- Epilepsy Unit, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain.
| |
Collapse
|
119
|
Yang H, Zhang T, Zhou J, Carney PR, Jiang H. In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia 2015; 56:94-100. [PMID: 25524046 PMCID: PMC4308439 DOI: 10.1111/epi.12880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The goal of this work is to establish a new dual-modal brain-mapping technique based on diffuse optical tomography (DOT) and electroencephalographic source localization (ESL) that can chronically/intracranially record optical/electroencephalography (EEG) data to precisely map seizures and localize the seizure-onset zone and associated epileptic brain network. METHODS The dual-modal imaging system was employed to image seizures in an experimental acute bicuculline methiodide rat model of focal epilepsy. Depth information derived from DOT was used as constraint in ESL to enhance the image reconstruction. Groups of animals were compared based on localization of seizure foci, either at different positions or at different depths. RESULTS This novel imaging technique successfully localized the seizure-onset zone in rat induced by bicuculline methiodide injected at a depth of 1, 2, and 3 mm, respectively. The results demonstrated that the incorporation of the depth information from DOT into the ESL image reconstruction resulted in more accurate and reliable ESL images. Although the ESL images showed a horizontal shift of the source localization, the DOT identified the seizure focus accurately. In one case, when the bicuculline methiodide (BMI) was injected at a site outside the field of view (FOV) of the DOT/ESL interface, ESL gave false-positive detection of the focus, while DOT showed negative detection. SIGNIFICANCE This study represents the first to identify seizure-onset zone using implantable DOT. In addition, the combination of DOT/ESL has never been documented in neuroscience and epilepsy imaging. This technology will enable us to precisely measure the neural activity and hemodynamic response at exactly the same tissue site and at both cortical and subcortical levels.
Collapse
Affiliation(s)
- Hao Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Tao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Junli Zhou
- Department of Pediatrics, University of Florida, Gainesville, FL 32611
| | - Paul R. Carney
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Pediatrics, University of Florida, Gainesville, FL 32611
- Department of Neurology, University of Florida, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL 32611
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
120
|
Cepeda C, Chang JW, Owens GC, Huynh MN, Chen JY, Tran C, Vinters HV, Levine MS, Mathern GW. In Rasmussen encephalitis, hemichannels associated with microglial activation are linked to cortical pyramidal neuron coupling: a possible mechanism for cellular hyperexcitability. CNS Neurosci Ther 2014; 21:152-63. [PMID: 25438677 DOI: 10.1111/cns.12352] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS Rasmussen encephalitis (RE) is a rare but devastating condition, mainly in children, characterized by sustained brain inflammation, atrophy of one cerebral hemisphere, epilepsy, and progressive cognitive deterioration. The etiology of RE-induced seizures associated with the inflammatory process remains unknown. METHODS Cortical tissue samples from children undergoing surgical resections for the treatment of RE (n = 16) and non-RE (n = 12) were compared using electrophysiological, morphological, and immunohistochemical techniques to examine neuronal properties and the relationship with microglial activation using the specific microglia/macrophage calcium-binding protein, IBA1 in conjunction with connexins and pannexin expression. RESULTS Compared with non-RE cases, pyramidal neurons from RE cases displayed increased cell capacitance and reduced input resistance. However, neuronal somatic areas were not increased in size. Instead, intracellular injection of biocytin led to increased dye coupling between neurons from RE cases. By Western blot, expression of IBA1 and pannexin was increased while connexin 32 was decreased in RE cases compared with non-RE cases. IBA1 immunostaining overlapped with pannexin and connexin 36 in RE cases. CONCLUSIONS In RE, these results support the notion that a possible mechanism for cellular hyperexcitability may be related to increased intercellular coupling from pannexin linked to increased microglial activation. Such findings suggest that a possible antiseizure treatment for RE may involve the use of gap junction blockers.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abdijadid S, Mathern GW, Levine MS, Cepeda C. Basic mechanisms of epileptogenesis in pediatric cortical dysplasia. CNS Neurosci Ther 2014; 21:92-103. [PMID: 25404064 DOI: 10.1111/cns.12345] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Cortical dysplasia (CD) is a neurodevelopmental disorder due to aberrant cell proliferation and differentiation. Advances in neuroimaging have proven effective in early identification of the more severe lesions and timely surgical removal to treat epilepsy. However, the exact mechanisms of epileptogenesis are not well understood. This review examines possible mechanisms based on anatomical and electrophysiological studies. CD can be classified as CD type I consisting of architectural abnormalities, CD type II with the presence of dysmorphic cytomegalic neurons and balloon cells, and CD type III which occurs in association with other pathologies. Use of freshly resected brain tissue has allowed a better understanding of basic mechanisms of epileptogenesis and has delineated the role of abnormal cells and synaptic activity. In CD type II, it was demonstrated that balloon cells do not initiate epileptic activity, whereas dysmorphic cytomegalic and immature neurons play an important role in generation and propagation of epileptic discharges. An unexpected finding in pediatric CD was that GABA synaptic activity is not reduced, and in fact, it may facilitate the occurrence of epileptic activity. This could be because neuronal circuits display morphological and functional signs of dysmaturity. In consequence, drugs that increase GABA function may prove ineffective in pediatric CD. In contrast, drugs that counteract depolarizing actions of GABA or drugs that inhibit the mammalian target of rapamycin (mTOR) pathway could be more effective.
Collapse
Affiliation(s)
- Sara Abdijadid
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
122
|
Epilepsy surgery in children and adolescents with malformations of cortical development—Outcome and impact of the new ILAE classification on focal cortical dysplasia. Epilepsy Res 2014; 108:1652-61. [DOI: 10.1016/j.eplepsyres.2014.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/08/2014] [Accepted: 08/21/2014] [Indexed: 11/24/2022]
|
123
|
Dorfmüller G, Ferrand-Sorbets S, Fohlen M, Bulteau C, Archambaud F, Delalande O, Chipaux M, Taussig D. Outcome of surgery in children with focal cortical dysplasia younger than 5 years explored by stereo-electroencephalography. Childs Nerv Syst 2014; 30:1875-83. [PMID: 25296549 DOI: 10.1007/s00381-014-2464-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Focal cortical dysplasia (FCD) is the most frequent etiology for drug-resistant epilepsy in young children. Complete removal of the lesion is mandatory to cure the epilepsy. Stereo-EEG (SEEG) is an excellent method to delimitate the zone to be resected in older children and adults. We studied its feasibility in younger children. METHODS We retrospectively studied 19 children under 5 years of age who underwent SEEG between January 2009 and December 2012 and were subsequently operated on. FCD was diagnosed in all. We reviewed magnetic resonance imaging (MRI), electrophysiological and clinical data, as well as postoperative seizure outcome. We also included fluoro-deoxyglucose positron emission tomography (FDG-PET) studies, which had been systematically performed before invasive recording in 16 of the 19 children. RESULTS The mean patient's age at the time of SEEG was 38.6 months, and the mean age at seizure onset was 8 months. Three patients had normal MRI. No SEEG-associated complications occurred. We were able to delineate the epileptogenic zone in all children, and electrode stimulation localized the motor area when necessary (12 patients). Hypometabolic areas on FDG-PET included the epileptogenic zone in 13 of the 16 children, with a lobar concordance in 9 (56 %) and the same anatomical extent in 6 (38 %). Twelve children subsequently underwent focal or sublobar resection, six had multilobar resection, and one had hemispherotomy. The etiology was FCD type 2 in 15 and FCD type 1 or type 3 in three children. Eighty-four percent of our population have remained seizure-free at a mean follow-up of 29 months (12-48 months). CONCLUSION Although children with FCD can successfully undergo resective surgery without invasive EEG, poor seizure semiology at this age inclines to perform SEEG when the dysplastic lesion is ill-defined and/or the electroclinical correlation is unclear. In cases with normal imaging as well as with suspected huge malformations, as was the case in 52 % of our patients, we consider it to be indispensable.
Collapse
Affiliation(s)
- G Dorfmüller
- Department of Pediatric Neurosurgery, Fondation Rothschild, Paris, France,
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Teixeira SR, Martinez-Rios C, Hu L, Bangert BA. Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49:353-66. [PMID: 25498232 DOI: 10.1053/j.ro.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sara R Teixeira
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Division of Radiology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Claudia Martinez-Rios
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | | | - Barbara A Bangert
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
125
|
|
126
|
Abuelem T, Friedman DE, Agadi S, Wilfong AA, Yoshor D. Interhemispheric subdural electrodes: technique, utility, and safety. Neurosurgery 2014; 73:ons253-60; discussion ons260. [PMID: 23615084 DOI: 10.1227/01.neu.0000430287.08552.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Invasive monitoring using subdural electrodes is often valuable for characterizing the anatomic source of seizures in intractable epilepsy. Covering the interhemispheric surface with subdural electrodes represents a particular challenge, with a potentially higher risk of complications than covering the dorsolateral cortex. OBJECTIVE To better understand the safety and utility of interhemispheric subdural electrodes (IHSE). METHODS We retrospectively reviewed the charts of 24 patients who underwent implantation of IHSE by a single neurosurgeon from 2003 to 2010. Generous midline exposure, meticulous preservation of veins, and sharp microdissection were used to facilitate safe interhemispheric grid placement under direct visualization. RESULTS The number of IHSE contacts implanted ranged from 10 to 106 (mean = 39.8) per patient. Monitoring lasted for 5.5 days on average (range, 2-24 days), with an adequate sample of seizures captured in all patients before explantation, and with a low complication rate similar to that reported for grid implantation of the dorsolateral cortex. One patient (of 24) experienced symptomatic mass effect. No other complications clearly related to grid implantation and monitoring, such as clinically evident neurological deficits, infection, hematoma, or infarction, were noted. Among patients implanted with IHSE, monitoring led to a paramedian cortical resection in 67%, a resection in a region not covered by IHSE in 17%, and explantation without resection in 17%. CONCLUSION When clinical factors suggest the possibility of an epileptic focus at or near the midline, invasive monitoring of the paramedian cortex with interhemispheric grids can be safely used to define the epileptogenic zone and map local cortical function.
Collapse
Affiliation(s)
- Tarek Abuelem
- *Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; ‡Department of Neurology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | |
Collapse
|
127
|
Hess S, Blomberg BA, Rakheja R, Friedman K, Kwee TC, Høilund-Carlsen PF, Alavi A. A brief overview of novel approaches to FDG PET imaging and quantification. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
128
|
Editorial comment: Intractable epilepsy, hemispheric malformation and generalized EEG abnormalities. Semin Pediatr Neurol 2014; 21:76. [PMID: 25149928 DOI: 10.1016/j.spen.2014.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
129
|
Abstract
Over the past 35 years or so, PET brain imaging has allowed powerful and unique insights into brain function under normal conditions and in disease states. Initially, as PET instrumentation continued to develop, studies were focused on brain perfusion and glucose metabolism. This permitted refinement of brain imaging for important, non-oncologic clinical indications. The ability of PET to not only provide spatial localization of metabolic changes but also to accurately and consistently quantify their distribution proved valuable for applications in the clinical setting. Specifically, glucose metabolism brain imaging using (F-18) fluorodeoxyglucose continues to be invaluable for evaluating patients with intractable seizures for identifying seizure foci and operative planning. Cerebral glucose metabolism also contributes to diagnosis of neurodegenerative diseases that cause dementia. Alzheimer disease, dementia with Lewy bodies, and the several variants of frontotemporal lobar degeneration have differing typical patterns of hypometabolism. In Alzheimer disease, hypometabolism has furthermore been associated with poorer cognitive performance and ensuing cognitive and functional decline. As the field of radiochemistry evolved, novel radioligands including radiolabeled flumazenil, dopamine transporter ligands, nicotine receptor ligands, and others have allowed for further understanding of molecular changes in the brain associated with various diseases. Recently, PET brain imaging reached another milestone with the approval of (F-18) florbetapir imaging by the United States Federal Drug Administration for detection of amyloid plaque accumulation in brain, the major histopathologic hallmark of Alzheimer disease, and efforts have been made to define the clinical role of this imaging agent in the setting of the currently limited treatment options. Hopefully, this represents the first of many new radiopharmaceuticals that would allow improved diagnostic and prognostic information in these and other clinical applications, including Parkinson disease and traumatic brain injury.
Collapse
Affiliation(s)
- Ilya Nasrallah
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
130
|
Wang ZI, Alexopoulos AV, Jones SE, Najm IM, Ristic A, Wong C, Prayson R, Schneider F, Kakisaka Y, Wang S, Bingaman W, Gonzalez-Martinez JA, Burgess RC. Linking MRI postprocessing with magnetic source imaging in MRI-negative epilepsy. Ann Neurol 2014; 75:759-70. [PMID: 24777960 DOI: 10.1002/ana.24169] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE MRI-negative (MRI-) pharmacoresistant focal epilepsy (PFE) patients are most challenging for epilepsy surgical management. This study utilizes a voxel-based MRI postprocessing technique, implemented using a morphometric analysis program (MAP), aiming to facilitate detection of subtle focal cortical dysplasia (FCD) in MRI- patients. Furthermore, the study examines the concordance between MAP-identified regions and localization from magnetic source imaging (MSI). METHODS Included in this retrospective study were 25 MRI- surgical patients. MAP was performed on T1-weighted MRI, with comparison to a normal database. The pertinence of MAP+ areas was confirmed by MSI, surgical outcome and pathology. Analyses of MAP and MSI were performed blindly from patients' clinical information and independently from each other. RESULTS The detection rate of subtle changes by MAP was 48% (12/25). Once MAP+ areas were resected, patients were more likely to be seizure-free (p=0.02). There were no false positives in the 25 age-matched normal controls. Seven patients had a concordant MSI correlate. Patients in whom a concordant area was identified by both MAP and MSI had a significantly higher chance of achieving a seizure-free outcome following complete resection of this area (p=0.008). In the 9 resected MAP+ areas, pathology revealed FCD type IA in 7 and type IIB in 2. INTERPRETATION MAP shows promise in identifying subtle FCD abnormalities and increasing the diagnostic yield of conventional MRI visual analysis in presurgical evaluation of PFE. Concordant MRI postprocessing and MSI analyses may lead to the noninvasive identification of a structurally and electrically abnormal subtle lesion that can be surgically targeted.
Collapse
Affiliation(s)
- Zhong I Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Haneef Z, Chen DK. Functional neuro-imaging as a pre-surgical tool in epilepsy. Ann Indian Acad Neurol 2014; 17:S56-64. [PMID: 24791091 PMCID: PMC4001213 DOI: 10.4103/0972-2327.128659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/20/2013] [Accepted: 10/02/2013] [Indexed: 12/03/2022] Open
Abstract
Functional neuro-imaging techniques are helpful in the pre-surgical evaluation of epilepsy for localization of the epileptogenic zone as ancillary tools to electroencephalography (EEG) and magnetic resonance imaging (MRI) or when other localization techniques are normal, non-concordant or discordant. Positron emission tomography (PET) and ictal single photon emission computed tomography (ictal SPECT) imaging are traditional tests that have been reported to have good sensitivity and specificity although the results are better with more expertise as is true for any technique. More recently magnetoencephalogram/magnetic source imaging (MEG/MSI), diffusion tensor imaging and functional magnetic resonance imaging (fMRI) have been used in localization and functional mapping during the pre-surgical work-up of epilepsy. Newer techniques such as fMRI-EEG, functional connectivity magnetic resonance imaging and near infra-red spectroscopy, magnetic resonance spectroscopy and magneto nanoparticles hold promise for further development that could then be applied in the work-up of epilepsy surgery. In this manuscript, we review these techniques and their current position in the pre-surgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Zulfi Haneef
- Kellaway Section of Neurophysiology, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Kellaway Section of Neurophysiology, Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - David K. Chen
- Kellaway Section of Neurophysiology, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Kellaway Section of Neurophysiology, Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
133
|
Jayakar P, Gaillard WD, Tripathi M, Libenson MH, Mathern GW, Cross JH. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia 2014; 55:507-18. [DOI: 10.1111/epi.12544] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Prasanna Jayakar
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| | - William D. Gaillard
- Department of Epilepsy and Neurophysiology; Children's National Medical Center; Washington Washington U.S.A
| | - Manjari Tripathi
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - Mark H. Libenson
- Department of Neurology; Children's Hospital Boston; Boston Massachusetts U.S.A
| | - Gary W. Mathern
- Division of Neurosurgery; UCLA School of Medicine; Los Angeles California U.S.A
| | - J. Helen Cross
- UCL-Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust; London United Kingdom
| | | |
Collapse
|
134
|
Leach JL, Greiner HM, Miles L, Mangano FT. Imaging Spectrum of Cortical Dysplasia in Children. Semin Roentgenol 2014; 49:99-111. [DOI: 10.1053/j.ro.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Flanagan EP, Hunt CH, Lowe V, Mandrekar J, Pittock SJ, O'Neill BP, Keegan BM. [(18)F]-fluorodeoxyglucose-positron emission tomography in patients with active myelopathy. Mayo Clin Proc 2013; 88:1204-12. [PMID: 24182701 DOI: 10.1016/j.mayocp.2013.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To report and compare spinal cord [(18)F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) metabolism in 51 patients with active myelopathy. PATIENTS AND METHODS We retrospectively identified patients from January 1, 2001, through December 31, 2011, with active myelopathy in whom FDG-PET was performed. Inclusion criteria were (1) intramedullary myelopathy, (2) neoplastic/inflammatory etiology, and (3) FDG-PET performed after myelopathy onset. Exclusion criteria were (1) extramedullary myelopathy, (2) radiation-associated myelopathy, (3) no pathological confirmation of neoplasm, and (4) inactive myelopathy. Diagnostic categories of nonsarcoid inflammatory, neoplastic, and neurosarcoid were based on their final myelopathic diagnosis. Two radiologists who independently assessed FDG-PET for spinal cord hypermetabolism and maximum standardized uptake value (SUVmax) were blinded to the underlying etiology. RESULTS Fifty-one patients (53% women) with a median age of 60 years (range, 20-82 years) were included. Inflammatory myelopathic diagnoses (n=24) were as follows: paraneoplastic (n=13), autoimmune/other (n=5), inflammatory demyelinating (n=4), and transverse myelitis (n=2). Neoplastic diagnoses (n=21) were as follows: intramedullary metastases (n=12), intramedullary lymphoma/leukemia (n=7), and primary intramedullary neoplasm (n=2). Six patients had neurosarcoid myelopathy. Spinal cord hypermetabolism was more common with neoplastic myelopathy than with nonsarcoid inflammatory myelopathy (17 of 21 [81%] vs 6 of 24 [25%]; P<.001). Agreement between radiologist's assessments was excellent (κ=0.88). Median SUVmax was greater in neoplastic than in nonsarcoid inflammatory causes of myelopathy (3.3 g/mL vs 1.9 g/mL; P<.001). The FDG-PET hypermetabolism was seen in 3 of the 6 patients (50%) with neurosarcoid myelopathy (median SUVmax, 2.6 g/mL; range, 1.8-12.2 g/mL). CONCLUSION Spinal cord FDG-PET hypermetabolism in patients with active myelopathy may be reliably detected and was more common in neoplastic than in inflammatory myelopathies in this study. Future investigation of spinal cord FDG-PET is indicated to assess its potential contributions in evaluating active myelopathies.
Collapse
|
136
|
Cepeda C, Chen JY, Wu JY, Fisher RS, Vinters HV, Mathern GW, Levine MS. Pacemaker GABA synaptic activity may contribute to network synchronization in pediatric cortical dysplasia. Neurobiol Dis 2013; 62:208-17. [PMID: 24121115 DOI: 10.1016/j.nbd.2013.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 12/17/2022] Open
Abstract
Spontaneous pacemaker γ-aminobutyric acid (GABA) receptor-mediated synaptic activity (PGA) occurs in a subset of tissue samples from pediatric epilepsy surgery patients. In the present study, based on single-cell electrophysiological recordings from 120 cases, we describe the etiologies, cell types, and primary electrophysiological features of PGA. Cells displaying PGA occurred more frequently in the areas of greatest anatomical abnormality in cases of focal cortical dysplasia (CD), often associated with hemimegalencephaly (HME), and only rarely in non-CD etiologies. PGA was characterized by rhythmic synaptic events (5-10Hz) and was observed in normal-like, dysmorphic cytomegalic, and immature pyramidal neurons. PGA was action potential-dependent, mediated by GABAA receptors, and unaffected by antagonism of glutamate receptors. We propose that PGA is a unique electrophysiological characteristic associated with CD and HME. It could represent an abnormal signal that may contribute to epileptogenesis in malformed postnatal cortex by facilitating pyramidal neuron synchrony.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA.
| | - Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Joyce Y Wu
- Division of Pediatric Neurology, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Robin S Fisher
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Harry V Vinters
- Department of Neurology, Section of Neuropathology, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Gary W Mathern
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| |
Collapse
|
137
|
Wang ZI, Ristic AJ, Wong CH, Jones SE, Najm IM, Schneider F, Wang S, Gonzalez-Martinez JA, Bingaman W, Alexopoulos AV. Neuroimaging characteristics of MRI-negative orbitofrontal epilepsy with focus on voxel-based morphometric MRI postprocessing. Epilepsia 2013; 54:2195-2203. [PMID: 24116733 DOI: 10.1111/epi.12390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE The orbitofrontal (OF) region is one of the least explored regions of the cerebral cortex. There are few studies on patients with electrophysiologically and surgically confirmed OF epilepsy and a negative magnetic resonance imaging (MRI) study. We aimed to examine the neuroimaging characteristics of MRI-negative OF epilepsy with the focus on a voxel-based morphometric MRI postprocessing technique. METHODS We included six patients with OF epilepsy, who met the following criteria: surgical resection of the OF lobe with/without adjacent cortex, seizure-free for ≥12 months, invasive video-electroencephalography (EEG) monitoring showing ictal onset from the OF area, and preoperative MRI regarded as negative. Patients were investigated in terms of their image postprocessing and functional neuroimaging characteristics, electroclinical characteristics obtained from noninvasive and invasive evaluations, and surgical pathology. MRI postprocessing on T1 -weighted high-resolution scans was implemented with a morphometric analysis program (MAP) in MATLAB. KEY FINDINGS Single MAP+ abnormalities were found in four patients; three were in the OF region and one in the ipsilateral mesial frontal area. These abnormalities were included in the resection. One patient had bilateral MAP+ abnormalities in the OF region, with the ipsilateral one completely removed. The MAP+ foci were concordant with invasive electrophysiologic data in the majority of MAP+ patients (four of five). The localization value of 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) and ictal single-photon emission computed tomography (SPECT) is low in this cohort. Surgical pathology included focal cortical dysplasia, remote infarct, Rosenthal fiber formation and gliosis. SIGNIFICANCE Our study highlights the importance of MRI postprocessing in the process of presurgical evaluation of patients with suspected orbitofrontal epilepsy and "normal" MRI. Using MAP, we were able to positively identify subtle focal abnormalities in the majority of the patients. MAP results need to be interpreted in the context of their electroclinical findings and can provide valuable targets in the process of planning invasive evaluation.
Collapse
Affiliation(s)
| | - Aleksandar J Ristic
- Epilepsy Center Neurology Clinic, Clinical Center of Serbia Dr Subotica 6, 11000 Belgrade, Serbia
| | - Chong H Wong
- Department of Neurology, Westmead Hospital, Sydney, Australia
| | | | | | - Felix Schneider
- Department of Neurology, Epilepsy Center, University of Greifswald, Greifswald, Germany
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
138
|
Surgical management of cortical dysplasia in infancy and early childhood. Brain Dev 2013; 35:802-9. [PMID: 23694756 DOI: 10.1016/j.braindev.2013.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 11/22/2022]
Abstract
PURPOSE To describe operative procedures, seizure control and complications of surgery for cortical dysplasia (CD) causing intractable epilepsy in infancy and early childhood. METHODS Fifty-six consecutive children (less than 6years old) underwent resective epilepsy surgery for CD from December 2000 to August 2011. Age at surgery ranged from 2 to 69months (mean 23months) and the follow-up was from 1 to 11years (mean 4years 4months). RESULTS Half of the children underwent surgery during infancy at an age less than 10months, and the majority (80%) of these infants needed extensive surgical procedures, such as hemispherotomy and multi-lobar disconnection. Seizure free (ILAE class 1) outcome was obtained in 66% of the cases (class 1a; 55%): 85% with focal resection (n=13), 50% with lobar resection (n=18), 71% with multilobar disconnection (n=7) and 67% with hemispherotomy (n=18). Peri-ventricular and insular structures were resected in 23% of focal and 61% of lobar resections. Repeated surgery was performed in 9 children and 5 (56%) became seizure free. Histological subtypes included hemimegalencephaly (16 patients), polymicrogyria (5 patients), and FCD type I (6 patients), type IIA (19 patients), type IIB (10 patients). Polymicrogyria had the worst seizure outcome compared to other pathologies. Surgical complications included 1 post-operative hydrocephalus, 1 chronic subdural hematoma, 2 intracranial cysts, and 1 case of meningitis. No mortality or severe morbidities occurred. CONCLUSIONS Early surgical intervention in children with CD and intractable seizures in infancy and early childhood can yield favorable seizure outcome without mortality or severe morbidities although younger children often need extensive surgical procedures.
Collapse
|
139
|
Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW, Parisi MT. FDG PET of the Brain in Pediatric Patients: Imaging Spectrum with MR Imaging Correlation. Radiographics 2013; 33:1279-303. [DOI: 10.1148/rg.335125152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
140
|
Abstract
Surgical treatment for epilepsy has made tremendous strides in the past few decades as a result of advances in neurodiagnostics-particularly structural and functional neuroimaging-and improved surgical techniques. This has not only resulted in better outcomes with respect to epileptic seizures and quality of life, and reduced surgical morbidity and mortality, but it has also increased the population of patients now considered as surgical candidates, particularly in the pediatric age range, and enhanced cost-effectiveness sufficient to make surgical treatment available to countries with limited resources. Yet surgical treatment for epilepsy remains arguably the most underutilized of all accepted medical interventions. In the United States, less than 1% of patients with pharmacoresistant epilepsy are referred to epilepsy centers. Although the number of epilepsy surgery centers has increased appreciably over the past two decades, the number of therapeutic surgical procedures performed for epilepsy has not increased at all. For patients who are referred, the average delay from onset of epilepsy to surgery is more than 20 years-too late for many to avoid a lifetime of disability or premature death. Not only has there been no consistent message to convince neurologists and primary care physicians to refer patients for surgery, but the increase in epilepsy surgery centers in the United States has appeared to result in a divergence of approaches to surgical treatment. Efforts are still needed to further improve the safety and efficacy of surgical treatment, including the identification of biomarkers that can reliably determine the extent of the epileptogenic region; however, the greatest benefits would derive from increasing access for potential surgical candidates to epilepsy surgery facilities. Information is needed to determine why appropriate surgical referrals are not being made. Consensus conferences are necessary to resolve controversies that still exist regarding presurgical evaluation and surgical approaches. Standards should be established for certifying epilepsy centers as recommended by the Institute of Medicine's report on epilepsy. Finally, the epilepsy community should not be promoting epilepsy surgery per se but instead emphasize that epilepsy centers do more than epilepsy surgery, promoting the message: All patients with disabling pharmacoresistant seizures deserve evaluation by specialists at epilepsy centers who can provide a variety of advanced diagnostic and therapeutic services.
Collapse
Affiliation(s)
- J Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
141
|
Jin SH, Jeong W, Chung CK. Information source in multiple MEG spike clusters can be identified by effective connectivity in focal cortical dysplasia. Epilepsy Res 2013; 105:118-24. [DOI: 10.1016/j.eplepsyres.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/07/2012] [Accepted: 01/22/2013] [Indexed: 11/28/2022]
|
142
|
Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol 2013; 83:84-94. [PMID: 23791129 DOI: 10.1016/j.ejrad.2013.05.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 02/08/2023]
Abstract
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Patrick M Colletti
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
143
|
Memarian N, Thompson PM, Engel J, Staba RJ. Quantitative analysis of structural neuroimaging of mesial temporal lobe epilepsy. ACTA ACUST UNITED AC 2013; 5. [PMID: 24319498 DOI: 10.2217/iim.13.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common of the surgically remediable drug-resistant epilepsies. MRI is the primary diagnostic tool to detect anatomical abnormalities and, when combined with EEG, can more accurately identify an epileptogenic lesion, which is often hippocampal sclerosis in cases of MTLE. As structural imaging technology has advanced the surgical treatment of MTLE and other lesional epilepsies, so too have the analysis techniques that are used to measure different structural attributes of the brain. These techniques, which are reviewed here and have been used chiefly in basic research of epilepsy and in studies of MTLE, have identified different types and the extent of anatomical abnormalities that can extend beyond the affected hippocampus. These results suggest that structural imaging and sophisticated imaging analysis could provide important information to identify networks capable of generating spontaneous seizures and ultimately help guide surgical therapy that improves postsurgical seizure-freedom outcomes.
Collapse
Affiliation(s)
- Negar Memarian
- Department of Neurology, Reed, Neurological Research Center, Suite, 2155, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
144
|
Abstract
PURPOSE We tested the performance and clinical applicability of combined protocols for brain imaging studies acquired on a new whole-body hybrid PET/MR scanner. PATIENTS AND METHODS Fifteen patients [6 male and 9 female patients; mean (SD) age, 51 (30) y; range, 6-89 y] were scanned on a Philips Ingenuity TF PET/MR. Standard imaging protocols of both modalities were combined, using a "head coil" and contrast-enhanced fully diagnostic MR protocols. Attenuation correction of the PET images was performed using tissue segmentation of the MR image and incorporation of attenuation templates measured for coils and table.The clinical indications evaluated are as follows: patients with cognitive disturbance of suspected neurodegenerative origin, presurgical evaluation of drug-refractory epilepsy, and brain tumor staging. For the first 2 indications, FDG PET imaging was performed, whereas for the last, fluoroethyltyrosine, an amino acid tracer, was used. RESULTS In all cases (4 patients with neurodegenerative disease, 6 patients with epilepsy, and 5 patients with high-grade tumor), we obtained full diagnostic quality of both modalities and the total duration of the examination remained within a tolerable range (<2 hours). Twelve subjects had pathological findings: 11 of which were confirmed by clinical follow-up as true positive and 1 was confirmed as a false-positive result. For the 3 normal studies, the clinical follow-up confirmed the imaging findings as true-negative. CONCLUSIONS Acquiring both PET and MR in a single session on a hybrid system minimized patient discomfort while maximizing clinical information and optimizing registration of both modalities. In addition, in comparison to PET/CT, the effective dose (related to CT) was reduced, and this is particularly beneficial in the pediatric population.
Collapse
|
145
|
Hauptman JS, Pedram K, Sison CA, Sankar R, Salamon N, Vinters HV, Mathern GW. Pediatric epilepsy surgery: long-term 5-year seizure remission and medication use. Neurosurgery 2013; 71:985-93. [PMID: 22895408 DOI: 10.1227/neu.0b013e31826cdd5a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is unclear whether long-term seizure outcomes in children are similar to those in adult epilepsy surgery patients. OBJECTIVE To determine 5-year outcomes and antiepilepsy drug (AED) use in pediatric epilepsy surgery patients from a single institution. METHODS The cohort consisted of children younger than 18 years of age whose 5-year outcome data would have been available by 2010. Comparisons were made between patients with and without 5-year data (n = 338), patients with 5-year data for seizure outcome (n = 257), and seizure-free patients on and off AEDs (n = 137). RESULTS Five-year data were available from 76% of patients. More seizure-free patients with focal resections for hippocampal sclerosis and tumors lacked 5-year data compared with other cases. Of those with 5-year data, 53% were continuously seizure free, 18% had late seizure recurrence, 3% became seizure free after initial failure, and 25% were never seizure free. Patients were more likely to be continuously seizure free if their surgery was performed during the period 2001 to 2005 (68%) compared with surgery performed from 1996 to 2000 (61%), 1991 to 1995 (36%), and 1986 to 1990 (46%). More patients had 1 or fewer seizures per month in the late seizure recurrence (47%) compared with the not seizure-free group (20%). Four late deaths occurred in the not seizure-free group compared with 1 in the seizure-free group. Of patients who were continuously seizure free, 55% were not taking AEDs, and more cortical dysplasia patients (74%) had stopped taking AEDs compared with hemimegalencephaly patients (18%). CONCLUSION In children, 5-year outcomes improved over 20 years of clinical experience. Our results are similar to those of adult epilepsy surgery patients despite mostly extratemporal and hemispheric operations for diverse developmental etiologies.
Collapse
Affiliation(s)
- Jason S Hauptman
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, Alavi A. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013; 267:26-44. [PMID: 23525716 DOI: 10.1148/radiol.13121038] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Instruments that combine positron emission tomography (PET) and magnetic resonance (MR) imaging have recently been assembled for use in humans, and may have diagnostic performance superior to that of PET/computed tomography (CT) for particular clinical and research applications. MR imaging has major strengths compared with CT, including superior soft-tissue contrast resolution, multiplanar image acquisition, and functional imaging capability through specialized techniques such as diffusion-tensor imaging, diffusion-weighted (DW) imaging, functional MR imaging, MR elastography, MR spectroscopy, perfusion-weighted imaging, MR imaging with very short echo times, and the availability of some targeted MR imaging contrast agents. Furthermore, the lack of ionizing radiation from MR imaging is highly appealing, particularly when pediatric, young adult, or pregnant patients are to be imaged, and the safety profile of MR imaging contrast agents compares very favorably with iodinated CT contrast agents. MR imaging also can be used to guide PET image reconstruction, partial volume correction, and motion compensation for more accurate disease quantification and can improve anatomic localization of sites of radiotracer uptake, improve diagnostic performance, and provide for comprehensive regional and global structural, functional, and molecular assessment of various clinical disorders. In this review, we discuss the historical development, software-based registration, instrumentation and design, quantification issues, potential clinical applications, potential clinical roles of image segmentation and global disease assessment, and challenges related to PET/MR imaging. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13121038/-/DC1.
Collapse
Affiliation(s)
- Drew A Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104-4283, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Hur YJ, Lee JS, Lee JD, Yun MJ, Kim HD. Quantitative analysis of simultaneous EEG features during PET studies for childhood partial epilepsy. Yonsei Med J 2013; 54:572-7. [PMID: 23549798 PMCID: PMC3635630 DOI: 10.3349/ymj.2013.54.3.572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To demonstrate the significance of simultaneous electroencephalography (EEG) recording during 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG)-positron emission tomography (PET) in childhood partial epilepsy. MATERIALS AND METHODS We included 46 children with partial epilepsy who underwent simultaneous EEG during PET. We compared the epileptogenic area of several EEG features including epileptiform discharges, focal polymorphic slow waves, and electrographic seizures, with the abnormal metabolic region on PET. We also compared the epileptogenic area of simultaneous EEG and PET with findings on magnetic resonance imaging (MRI) and video/EEG, as well as the histopathological diagnosis of the resected cortical area, in eight patients who underwent surgical resection of the epileptogenic area. RESULTS Hypometabolic regions on interictal PET were concordant with epileptogenic areas of epileptiform discharges and focal polymorphic slow waves, according to their frequency and/or severity, with odds ratios of 1.35 and 1.81, respectively (p<0.05). Hypermetabolic PET was also concordant with epileptogenic areas of ictal events longer than 20 seconds during the period of FDG uptake. Among the eight patients who underwent surgical resection, six patients, including two with non-lesional MRI, had concordant EEG and PET findings, were confirmed pathologically, and became seizure-free after surgery. CONCLUSION Simultaneous EEG is useful in identifying epileptogenic areas due to a high concordance with abnormal PET metabolic areas. Moreover, simultaneous EEG may also prevent false lateralization of PET from postictal and mixed metabolism during ictal events, as well as abnormal hypermetabolism, during frequent interictal epileptiform discharges.
Collapse
Affiliation(s)
- Yun Jung Hur
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinic, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Doo Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jin Yun
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinic, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
148
|
Abstract
Hybrid PET/magnetic resonance (MR) imaging, which combines the excellent anatomic information and functional MR imaging parameters with the metabolic and molecular information obtained with PET, may be superior to PET/computed tomography or MR imaging alone for a wide range of disease conditions. This review highlights potential clinical applications in neurologic, cardiovascular, and musculoskeletal disease conditions, with special attention to applications in oncologic imaging.
Collapse
|
149
|
Kerr WT, Nguyen ST, Cho AY, Lau EP, Silverman DH, Douglas PK, Reddy NM, Anderson A, Bramen J, Salamon N, Stern JM, Cohen MS. Computer-Aided Diagnosis and Localization of Lateralized Temporal Lobe Epilepsy Using Interictal FDG-PET. Front Neurol 2013; 4:31. [PMID: 23565107 PMCID: PMC3615243 DOI: 10.3389/fneur.2013.00031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially before structural MRI, that does not require rare and transient epileptiform discharges or seizures on EEG. The visual interpretation of iPET is challenging and requires years of epilepsy-specific expertise. We have developed an automated computer-aided diagnostic (CAD) tool that has the potential to work both independent of and synergistically with expert analysis. Our tool operates on distributed metabolic changes across the whole brain measured by iPET to both diagnose and lateralize temporal lobe epilepsy (TLE). When diagnosing left TLE (LTLE) or right TLE (RTLE) vs. non-epileptic seizures (NES), our accuracy in reproducing the results of the gold standard long term video-EEG monitoring was 82% [95% confidence interval (CI) 69-90%] or 88% (95% CI 76-94%), respectively. The classifier that both diagnosed and lateralized the disease had overall accuracy of 76% (95% CI 66-84%), where 89% (95% CI 77-96%) of patients correctly identified with epilepsy were correctly lateralized. When identifying LTLE, our CAD tool utilized metabolic changes across the entire brain. By contrast, only temporal regions and the right frontal lobe cortex, were needed to identify RTLE accurately, a finding consistent with clinical observations and indicative of a potential pathophysiological difference between RTLE and LTLE. The goal of CADs is to complement - not replace - expert analysis. In our dataset, the accuracy of manual analysis (MA) of iPET (∼80%) was similar to CAD. The square correlation between our CAD tool and MA, however, was only 30%, indicating that our CAD tool does not recreate MA. The addition of clinical information to our CAD, however, did not substantively change performance. These results suggest that automated analysis might provide clinically valuable information to focus treatment more effectively.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Biomathematics, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Stefan T. Nguyen
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Andrew Y. Cho
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Edward P. Lau
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Daniel H. Silverman
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Pamela K. Douglas
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Navya M. Reddy
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Ariana Anderson
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Jennifer Bramen
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
| | - Noriko Salamon
- Department of Neurology, Seizure Disorder Center, University of California Los AngelesLos Angeles, CA, USA
| | - John M. Stern
- Department of Neurology, Seizure Disorder Center, University of California Los AngelesLos Angeles, CA, USA
| | - Mark S. Cohen
- Laboratory of Integrative Neuroimaging Technology, Department of Psychiatry, Neuropsychiatric Institute, University of California Los AngelesLos Angeles, CA, USA
- Laboratory of Integrative Neuroimaging Technology, Departments of Psychiatry, Neurology, Radiology, Biomedical Physics, Psychology and Bioengineering, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
150
|
Juhász C. The impact of positron emission tomography imaging on the clinical management of patients with epilepsy. Expert Rev Neurother 2013; 12:719-32. [PMID: 22650174 DOI: 10.1586/ern.12.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical positron emission tomography (PET) imaging of human epilepsy has a 30-year history, but it is still searching for its exact role among rapidly advancing neuroimaging techniques. The vast majority of epilepsy PET studies used this technique to improve detection of epileptic foci for surgical resection. Here, we review the main trends emerging from three decades of PET research in epilepsy, with a particular emphasis on how PET imaging has impacted on the clinical management of patients with intractable epilepsy. While reviewing the latest studies, we also present an argument for a changing role of PET and molecular imaging in the future, with an increasing focus on epileptogenesis and newly discovered molecular mechanisms of epilepsy. These new applications will be facilitated by technological advances, such as the use of integrated PET/MRI systems and utilization of novel radiotracers, which may also enhance phenotype-genotype correlations and assist rational, individualized treatment strategies.
Collapse
Affiliation(s)
- Csaba Juhász
- Department of Pediatrics, Wayne State University School of Medicine, PET Center, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| |
Collapse
|