101
|
Harumoto T, Ito M, Shimada Y, Kobayashi TJ, Ueda HR, Lu B, Uemura T. Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev Cell 2010; 19:389-401. [PMID: 20817616 PMCID: PMC2951474 DOI: 10.1016/j.devcel.2010.08.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 06/04/2010] [Accepted: 08/11/2010] [Indexed: 01/07/2023]
Abstract
How global organ asymmetry and individual cell polarity are connected to each other is a central question in studying planar cell polarity (PCP). In the Drosophila wing, which develops PCP along its proximal-distal (P-D) axis, we previously proposed that the core PCP mediator Frizzled redistributes distally in a microtubule (MT)-dependent manner. Here, we performed organ-wide analysis of MT dynamics by introducing quantitative in vivo imaging. We observed MTs aligning along the P-D axis at the onset of redistribution and a small but significant excess of + ends-distal MTs in the proximal region of the wing. This characteristic alignment and asymmetry of MT growth was controlled by atypical cadherins Dachsous (Ds) and Fat (Ft). Furthermore, the action of Ft was mediated in part by PAR-1. All these data support the idea that the active reorientation of MT growth adjusts cell polarity along the organ axis.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masayoshi Ito
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuko Shimada
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tetsuya J. Kobayashi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroki R. Ueda
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
102
|
Grusche FA, Richardson HE, Harvey KF. Upstream Regulation of the Hippo Size Control Pathway. Curr Biol 2010; 20:R574-82. [DOI: 10.1016/j.cub.2010.05.023] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
103
|
Franke JD, Montague RA, Kiehart DP. Nonmuscle myosin II is required for cell proliferation, cell sheet adhesion and wing hair morphology during wing morphogenesis. Dev Biol 2010; 345:117-32. [PMID: 20599890 DOI: 10.1016/j.ydbio.2010.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/19/2010] [Accepted: 06/21/2010] [Indexed: 01/22/2023]
Abstract
Metazoan development involves a myriad of dynamic cellular processes that require cytoskeletal function. Nonmuscle myosin II plays essential roles in embryonic development; however, knowledge of its role in post-embryonic development, even in model organisms such as Drosophila melanogaster, is only recently being revealed. In this study, truncation alleles were generated and enable the conditional perturbation, in a graded fashion, of nonmuscle myosin II function. During wing development they demonstrate novel roles for nonmuscle myosin II, including in adhesion between the dorsal and ventral wing epithelial sheets; in the formation of a single actin-based wing hair from the distal vertex of each cell; in forming unbranched wing hairs; and in the correct positioning of veins and crossveins. Many of these phenotypes overlap with those observed when clonal mosaic analysis was performed in the wing using loss of function alleles. Additional requirements for nonmuscle myosin II are in the correct formation of other actin-based cellular protrusions (microchaetae and macrochaetae). We confirm and extend genetic interaction studies to show that nonmuscle myosin II and an unconventional myosin, encoded by crinkled (ck/MyoVIIA), act antagonistically in multiple processes necessary for wing development. Lastly, we demonstrate that truncation alleles can perturb nonmuscle myosin II function via two distinct mechanisms--by titrating light chains away from endogenous heavy chains or by recruiting endogenous heavy chains into intracellular aggregates. By allowing myosin II function to be perturbed in a controlled manner, these novel tools enable the elucidation of post-embryonic roles for nonmuscle myosin II during targeted stages of fly development.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
104
|
Zecca M, Struhl G. A feed-forward circuit linking wingless, fat-dachsous signaling, and the warts-hippo pathway to Drosophila wing growth. PLoS Biol 2010; 8:e1000386. [PMID: 20532238 PMCID: PMC2879410 DOI: 10.1371/journal.pbio.1000386] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 04/22/2010] [Indexed: 01/15/2023] Open
Abstract
The secreted morphogen Wingless promotes Drosophila wing growth by fueling a wave front of Fat-Dachsous signaling that recruits new cells into the wing primordium. During development, the Drosophila wing primordium undergoes a dramatic increase in cell number and mass under the control of the long-range morphogens Wingless (Wg, a Wnt) and Decapentaplegic (Dpp, a BMP). This process depends in part on the capacity of wing cells to recruit neighboring, non-wing cells into the wing primordium. Wing cells are defined by activity of the selector gene vestigial (vg) and recruitment entails the production of a vg-dependent “feed-forward signal” that acts together with morphogen to induce vg expression in neighboring non-wing cells. Here, we identify the protocadherins Fat (Ft) and Dachsous (Ds), the Warts-Hippo tumor suppressor pathway, and the transcriptional co-activator Yorkie (Yki, a YES associated protein, or YAP) as components of the feed-forward signaling mechanism, and we show how this mechanism promotes wing growth in response to Wg. We find that vg generates the feed-forward signal by creating a steep differential in Ft-Ds signaling between wing and non-wing cells. This differential down-regulates Warts-Hippo pathway activity in non-wing cells, leading to a burst of Yki activity and the induction of vg in response to Wg. We posit that Wg propels wing growth at least in part by fueling a wave front of Ft-Ds signaling that propagates vg expression from one cell to the next. Under normal conditions, animals and their various body parts grow until they achieve a genetically predetermined size and shape—a process governed by secreted organizer proteins called morphogens. How morphogens control growth remains unknown. In Drosophila, wings develop at the larval stage from wing primordia. Recently, we discovered that the morphogen Wingless promotes growth of the Drosophila wing by inducing the recruitment of neighboring cells into the wing primordium. Wing cells are defined by the expression of the “selector” gene vestigial. Recruitment depends on the capacity of wing cells to send a short-range, feed-forward signal that allows Wingless to activate vestigial in adjacent non-wing cells. Here, we identify the molecular components and circuitry of the recruitment process. We define the protocadherins Fat and Dachsous as a bidirectional ligand-receptor system that is controlled by vestigial to generate the feed-forward signal. Further, we show that the signal is transduced by the conserved Warts-Hippo tumor suppressor pathway via activation of its transcriptional effector Yorkie. Finally, we propose that Wingless propels wing growth by fueling a wave front of Fat-Dachsous signaling and Yorkie activity that propagates vestigial expression from one cell to the next.
Collapse
Affiliation(s)
- Myriam Zecca
- Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Gary Struhl
- Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
105
|
Simon MA, Xu A, Ishikawa HO, Irvine KD. Modulation of fat:dachsous binding by the cadherin domain kinase four-jointed. Curr Biol 2010; 20:811-7. [PMID: 20434335 PMCID: PMC2884055 DOI: 10.1016/j.cub.2010.04.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/25/2010] [Accepted: 04/12/2010] [Indexed: 11/17/2022]
Abstract
In addition to quantitative differences in morphogen signaling specifying cell fates, the vector and slope of morphogen gradients influence planar cell polarity (PCP) and growth. The cadherin Fat plays a central role in this process. Fat regulates PCP and growth through distinct downstream pathways, each involving the establishment of molecular polarity within cells. Fat is regulated by the cadherin Dachsous (Ds) and the protein kinase Four-jointed (Fj), which are expressed in gradients in many tissues. Previous studies have implied that Fat is regulated by the vector and slope of these expression gradients. Here, we characterize how cells interpret the Fj gradient. We demonstrate that Fj both promotes the ability of Fat to bind to its ligand Ds and inhibits the ability of Ds to bind Fat. Consequently, the juxtaposition of cells with differing Fj expression results in asymmetric Fat:Ds binding. We also show that the influence of Fj on Fat is a direct consequence of Fat phosphorylation and identify a phosphorylation site important for the stimulation of Fat:Ds binding by Fj. Our results define a molecular mechanism by which a morphogen gradient can drive the polarization of Fat activity to influence PCP and growth.
Collapse
Affiliation(s)
- Michael A Simon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
106
|
Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 2010; 18:288-99. [PMID: 20159598 PMCID: PMC2858562 DOI: 10.1016/j.devcel.2009.12.012] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/25/2009] [Accepted: 12/24/2009] [Indexed: 01/15/2023]
Abstract
The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. Central to this pathway is a kinase cascade wherein Hippo (Hpo), in complex with Salvador (Sav), phosphorylates and activates Warts (Wts), which in turn phosphorylates and inactivates the Yorkie (Yki) oncoprotein, known as the YAP coactivator in mammalian cells. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are upstream components that regulate Hpo activity through unknown mechanisms. Here we identify Kibra as another upstream component of the Hippo signaling pathway. We show that Kibra functions together with Mer and Ex in a protein complex localized to the apical domain of epithelial cells, and that this protein complex regulates the Hippo kinase cascade via direct binding to Hpo and Sav. These results shed light on the mechanism of Ex and Mer function and implicate Kibra as a potential tumor suppressor with relevance to neurofibromatosis.
Collapse
Affiliation(s)
- Jianzhong Yu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
- Department of Molecular Biology & Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Yonggang Zheng
- Department of Molecular Biology & Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Jixin Dong
- Department of Molecular Biology & Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Stephen Klusza
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Duojia Pan
- Department of Molecular Biology & Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| |
Collapse
|
107
|
Sasaki H. Mechanisms of trophectoderm fate specification in preimplantation mouse development. Dev Growth Differ 2010; 52:263-73. [PMID: 20100249 DOI: 10.1111/j.1440-169x.2009.01158.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During preimplantation mouse development, embryos establish two distinct cell lineages by the time of blastocyst formation: trophectoderm (TE) and inner cell mass (ICM). To explain the mechanism of this cell fate specification, two classical models, namely the inside-outside model and polarity model have been proposed based on experimental manipulation studies on embryos. This review summarizes recent findings on the molecular mechanisms of fate specification, and discusses how these findings fit into the classical models. TE development is regulated by a transcription factor cascade, the core transcription factors of which are Tead4 and Cdx2. The transcriptional activity of Tead4 is regulated by the position-dependent Hippo signaling pathway, thus supporting the inside-outside model. In contrast, several findings support the polarity model; some other findings suggest different mechanisms. We also discuss how the two classical models could be further developed in the light of recent molecular findings.
Collapse
Affiliation(s)
- Hiroshi Sasaki
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| |
Collapse
|
108
|
Abstract
Planar cell polarity (PCP) signaling regulates the establishment of polarity within the plane of an epithelium and allows cells to obtain directional information. Its results are as diverse as the determination of cell fates, the generation of asymmetric but highly aligned structures (e.g., stereocilia in the human ear or hairs on a fly wing), or the directional migration of cells during convergent extension during vertebrate gastrulation. Aberrant PCP establishment can lead to human birth defects or kidney disease. PCP signaling is governed by the noncanonical Wnt or Fz/PCP pathway. Traditionally, PCP establishment has been best studied in Drosophila, mainly due to the versatility of the fly as a genetic model system. In Drosophila, PCP is essential for the orientation of wing and abdominal hairs, the orientation of the division axis of sensory organ precursors, and the polarization of ommatidia in the eye, the latter requiring a highly coordinated movement of groups of photoreceptor cells during the process of ommatidial rotation. Here, I review our current understanding of PCP signaling in the Drosophila eye and allude to parallels in vertebrates.
Collapse
Affiliation(s)
- Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
109
|
Abstract
We review the role of cadherins and cadherin-related proteins in human cancer. Cellular and animal models for human cancer are also dealt with whenever appropriate. E-cadherin is the prototype of the large cadherin superfamily and is renowned for its potent malignancy suppressing activity. Different mechanisms for inactivating E-cadherin/CDH1 have been identified in human cancers: inherited and somatic mutations, aberrant protein processing, increased promoter methylation, and induction of transcriptional repressors such as Snail and ZEB family members. The latter induce epithelial mesenchymal transition, which is also associated with induction of "mesenchymal" cadherins, a hallmark of tumor progression. VE-cadherin/CDH5 plays a role in tumor-associated angiogenesis. The atypical T-cadherin/CDH13 is often silenced in cancer cells but up-regulated in tumor vasculature. The review also covers the status of protocadherins and several other cadherin-related molecules in human cancer. Perspectives for emerging cadherin-related anticancer therapies are given.
Collapse
Affiliation(s)
- Geert Berx
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | |
Collapse
|
110
|
Abstract
In addition to specifying cell fate, there is a wealth of evidence that molecular gradients are also primarily responsible for specifying cell polarity, particularly in the plane of epithelial sheets ("planar polarity"). The first compelling evidence of a role for gradients in specifying planar polarity came from transplantation experiments in the insect cuticle. More recent molecular genetic analyses in the fruit fly Drosophila have begun to give insights into the molecular nature of the gradients involved, and how they are interpreted at the cellular level.
Collapse
Affiliation(s)
- David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, United Kingdom.
| |
Collapse
|
111
|
Li W, Kale A, Baker NE. Oriented cell division as a response to cell death and cell competition. Curr Biol 2009; 19:1821-6. [PMID: 19853449 DOI: 10.1016/j.cub.2009.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 08/24/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
The imaginal disc epithelia that give rise to the adult ectoderm of Drosophila can compensate to produce normal adult organs after damage. We looked at the local response to cell death by using two genetic methods to elevate cell death rates. During cell competition, sporadic cell death occurs predictably along the boundaries between populations of competing wild-type and "Minute" cells (M/+). Boundaries between M/+ and wild-type populations show an unusual degree of mixing, associated with mitotic reorientation of wild-type cells toward M/+ territory that they take over. Apoptosis of M/+ cells was the cue, and reoriented mitosis required the planar cell polarity genes dachsous, fat, and atrophin. Clones mutated for pineapple eye, an essential gene, elevate apoptosis by a noncompetitive mechanism. Mitosis was also reoriented near cells mutant for pineapple eye, likewise dependent on the planar cell polarity genes. These findings show that planar cell polarity genes are required for responses to cell death. Oriented mitosis may help maintain morphology as dividing cells replace those that have been lost.
Collapse
Affiliation(s)
- Wei Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
112
|
Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol 2009; 21:837-43. [PMID: 19846288 DOI: 10.1016/j.ceb.2009.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 01/15/2023]
Abstract
Control of cell number requires the coordinate regulation of cell proliferation and cell death. Studies in both the fly and mouse have identified the Hippo kinase pathway as a key signaling pathway that controls cell proliferation and apoptosis. Several studies have implicated the Hippo pathway in a variety of cancers. Recent studies have also revealed a role for the Hippo pathway in the control of cell fate decisions during development. In this review, we will cover the current model of Hippo signaling in development. We will explore the differences between the Hippo pathway in invertebrates and mammals, and focus on recent advances in understanding how this conserved pathway is regulated.
Collapse
|
113
|
|
114
|
Sopko R, McNeill H. The skinny on Fat: an enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity. Curr Opin Cell Biol 2009; 21:717-23. [PMID: 19679459 DOI: 10.1016/j.ceb.2009.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 06/25/2009] [Accepted: 07/06/2009] [Indexed: 01/05/2023]
Abstract
Fat is an extremely large atypical cadherin involved in the regulation of cell adhesion, tissue growth, and planar cell polarity (PCP). Recent studies have begun to illuminate the mechanisms by which Fat performs these functions during development. Fat relays signals to the Hippo pathway to regulate tissue growth, and to PCP proteins to regulate tissue patterning. In this review we briefly cover the historical data demonstrating that Fat regulates tissue growth and tissue patterning, and then focus on advances in the past three years illuminating the mechanisms by which Fat controls growth and planar polarity in flies and mammals.
Collapse
Affiliation(s)
- Richelle Sopko
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Department of Molecular Genetics, University of Toronto, 600 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
115
|
Abstract
The Drosophila tumor suppressors fat and discs overgrown (dco) function within an intercellular signaling pathway that controls growth and polarity. fat encodes a transmembrane receptor, but post-translational regulation of Fat has not been described. We show here that Fat is subject to a constitutive proteolytic processing, such that most or all cell surface Fat comprises a heterodimer of stably associated N- and C-terminal fragments. The cytoplasmic domain of Fat is phosphorylated, and this phosphorylation is promoted by the Fat ligand Dachsous. dco encodes a kinase that influences Fat signaling, and Dco is able to promote the phosphorylation of the Fat intracellular domain in cultured cells and in vivo. Evaluation of dco mutants indicates that they affect Fat's influence on growth and gene expression but not its influence on planar cell polarity. Our observations identify processing and phosphorylation as post-translational modifications of Fat, correlate the phosphorylation of Fat with its activation by Dachsous in the Fat-Warts pathway, and enhance our understanding of the requirement for Dco in Fat signaling.
Collapse
Affiliation(s)
- Yongqiang Feng
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway NJ 08854
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway NJ 08854
| |
Collapse
|
116
|
Sopko R, Silva E, Clayton L, Gardano L, Barrios-Rodiles M, Wrana J, Varelas X, Arbouzova NI, Shaw S, Saburi S, Matakatsu H, Blair S, McNeill H. Phosphorylation of the tumor suppressor fat is regulated by its ligand Dachsous and the kinase discs overgrown. Curr Biol 2009; 19:1112-7. [PMID: 19540118 PMCID: PMC2851237 DOI: 10.1016/j.cub.2009.05.049] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/15/2023]
Abstract
The Drosophila tumor suppressor gene fat encodes a large cadherin that regulates growth and a form of tissue organization known as planar cell polarity (PCP). Fat regulates growth via the Hippo kinase pathway, which controls expression of genes promoting cell proliferation and inhibiting apoptosis (reviewed in). The Hippo pathway is highly conserved and is implicated in the regulation of mammalian growth and cancer development. Genetic studies suggest that Fat activity is regulated by binding to another large cadherin, Dachsous (Ds). The tumor suppressor discs overgrown (dco)/Casein Kinase I delta/epsilon also regulates Hippo activity and PCP. The biochemical nature of how Fat, Ds, and Dco interact to regulate these pathways is poorly understood. Here we demonstrate that Fat is cleaved to generate 450 kDa and 110 kDa fragments (Fat(450) and Fat(110)). Fat(110) contains the cytoplasmic and transmembrane domain. The cytoplasmic domain of Fat binds Dco and is phosphorylated by Dco at multiple sites. Importantly, we show Fat forms cis-dimers and that Fat phosphorylation is regulated by Dachsous and Dco in vivo. We propose that Ds regulates Dco-dependent phosphorylation of Fat and Fat-associated proteins to control Fat signaling in growth and PCP.
Collapse
Affiliation(s)
- Richelle Sopko
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Renal cystic diseases are a major clinical concern as they are the most common genetic cause of end-stage renal disease. While many of the genes causing cystic disease have been identified in recent years, knowing the molecular nature of the mutations has not clarified the mechanisms underlying cyst formation. Recent research in model organisms has suggested that cyst formation may be because of defective planar cell polarity (PCP) and/or ciliary defects. In this review, we first outline the clinical features of renal cystic diseases and then discuss current research linking our understanding of cystic kidney disease to PCP and cilia.
Collapse
Affiliation(s)
- R L Bacallao
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
118
|
Strutt H, Strutt D. Asymmetric localisation of planar polarity proteins: Mechanisms and consequences. Semin Cell Dev Biol 2009; 20:957-63. [PMID: 19751618 DOI: 10.1016/j.semcdb.2009.03.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/02/2009] [Accepted: 03/12/2009] [Indexed: 01/30/2023]
Abstract
Planar polarisation of tissues is essential for many aspects of developmental patterning. It is regulated by a conserved group of core planar polarity proteins, which localise asymmetrically within cells prior to morphological signs of polarisation. A subset of these core proteins also interact across cell boundaries, mediating intercellular communication that co-ordinates polarity between neighbouring cells. Core protein localisation subsequently mediates changes in the actin cytoskeleton which lead to overt polarisation. In this review we discuss the mechanisms by which the core planar polarity proteins become asymmetrically localised, and the significance of this subcellular localisation for both intercellular communication and downstream effects on the cytoskeleton.
Collapse
Affiliation(s)
- Helen Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
119
|
Abstract
The branch of the Wnt pathway, related to planar cell polarity signaling in Drosophila, is fundamental not only to the establishment of tissue polarity but also to a variety of morphogenetic processes in vertebrates. The genetic pathway has been noted for its similarity as well as divergence of between vertebrates and Drosophila. This review focuses on issues related to the complexity of the output of the planar cell polarity pathway during gastrulation in zebrafish and Xenopus and, to a lesser extent, during gastrulation/neurulation in mice.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
120
|
Abstract
Initially discovered in Drosophila, the Hippo (Hpo) pathway has been recognized as a conserved signaling pathway that controls organ size during development by restricting cell growth and proliferation and by promoting apoptosis. In addition, abnormal activities of several Hpo pathway components have been implicated in human cancer. Here, we review the current understanding of the molecular and cellular basis of Hpo signaling in development and tumorigenesis, and discuss how the Hpo pathway integrates spatial and temporal signals to control tissue growth and organ size.
Collapse
Affiliation(s)
- Lei Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
121
|
Lawrence PA, Struhl G, Casal J. Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs? Nat Cell Biol 2008; 10:1379-82. [PMID: 19043429 PMCID: PMC2747020 DOI: 10.1038/ncb1208-1379] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Most, perhaps all cells in epithelial sheets are polarized in the plane of the sheet. This type of polarity, referred to as planar cell polarity (PCP), can be expressed in the orientation of cilia and stereocilia, in oriented outgrowths such as hairs, in the plane of cell division, in directed cell movement and possibly in the orientation of axon extension. Another popular area in current research is growth: there is an attempt to find systems that fix the shape and size of organs. Although both polarity and growth are subject to overall control by morphogen gradients, the mechanisms of this control are almost completely unknown. Here we discuss recent evidence for a 'steepness hypothesis' that links these two apparently disconnected features of animal development.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
122
|
Abstract
Planar cell polarity (PCP) pathways have been defined by their ability to direct the development of obviously polarized cellular architectures. Recent studies indicate that PCP pathways also regulate aspects of cell morphology that are not restricted to the plane of the epithelium. In the developing nervous system, PCP-mediated changes in the cytoskeleton are fundamental to neuronal migration, neuronal polarity, axon guidance, and dendritic arborization, highlighting the importance of "planar polarity" genes for defining the shape of a neuron in all dimensions.
Collapse
Affiliation(s)
- Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
123
|
Badouel C, McNeill H. Apical junctions and growth control in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:755-60. [PMID: 18952051 DOI: 10.1016/j.bbamem.2008.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 12/25/2022]
Abstract
Recent studies have revealed unexpected links between cell polarity and proliferation, suggesting that the polarized organization of cells is necessary to regulate growth. Drosophila melanogaster is a genetically simple model that is especially suited for the study of polarity and growth control, as polarized tissues undergo a well-defined pattern of proliferation and differentiation during the development. In addition, genetic studies have identified a number of tumor suppressor genes, which later studies have shown to be associated with junctions, or in the regulation of junctional proteins. We will explore in this review the links between growth and apical junction proteins in the regulation of growth control in Drosophila.
Collapse
Affiliation(s)
- Caroline Badouel
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
124
|
Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2008; 41:349-69. [PMID: 18848899 DOI: 10.1016/j.biocel.2008.09.027] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 02/02/2023]
Abstract
This review deals with the large and pleiotropic superfamily of cadherins and its molecular evolution. We compiled literature data and an in-depth phylogenetic analysis of more than 350 members of this superfamily from about 30 species, covering several but not all representative branches within metazoan evolution. We analyzed the sequence homology between either ectodomains or cytoplasmic domains, and we reviewed protein structural data and genomic architecture. Cadherins and cadherin-related molecules are defined by having an ectodomain in which at least two consecutive calcium-binding cadherin repeats are present. There are usually 5 or 6 domains, but in some cases as many as 34. Additional protein modules in the ectodomains point at adaptive evolution. Despite the occurrence of several conserved motifs in subsets of cytoplasmic domains, these domains are even more diverse than ectodomains and most likely have evolved separately from the ectodomains. By fine tuning molecular classifications, we reduced the number of solitary superfamily members. We propose a cadherin major branch, subdivided in two families and 8 subfamilies, and a cadherin-related major branch, subdivided in four families and 11 subfamilies. Accordingly, we propose a more appropriate nomenclature. Although still fragmentary, our insight into the molecular evolution of these remarkable proteins is steadily growing. Consequently, we can start to propose testable hypotheses for structure-function relationships with impact on our models of molecular evolution. An emerging concept is that the ever evolving diversity of cadherin structures is serving dual and important functions: specific cell adhesion and intricate cell signaling.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | |
Collapse
|
125
|
Matakatsu H, Blair SS. The DHHC palmitoyltransferase approximated regulates Fat signaling and Dachs localization and activity. Curr Biol 2008; 18:1390-5. [PMID: 18804377 PMCID: PMC2597019 DOI: 10.1016/j.cub.2008.07.067] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 01/15/2023]
Abstract
Signaling via the large protocadherin Fat (Ft), regulated in part by its binding partner Dachsous (Ds) and the Golgi-resident kinase Four-jointed (Fj), is required for a variety of developmental functions in Drosophila. Ft and, to a lesser extent, Ds suppress overgrowth of the imaginal discs from which appendages develop and regulate the Hippo pathway [1-5] (reviewed in [6]). Ft, Ds, and Fj are also required for normal planar cell polarity (PCP) in the wing, abdomen, and eye and for the normal patterning of appendages, including the spacing of crossveins in the wing and the segmentation of the leg tarsus (reviewed in [7-9]). Ft signaling was recently shown to be negatively regulated by the atypical myosin Dachs [10, 11]. We identify here an additional negative regulator of Ft signaling in growth control, PCP, and appendage patterning, the Approximated (App) protein. We show that App encodes a member of the DHHC family, responsible for the palmitoylation of selected cytoplasmic proteins, and provide evidence that App acts by controlling the normal subcellular localization and activity of Dachs.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology University of Wisconsin 250 North Mills Street Madison, WI 53706 (608) 262-1345
| | - Seth S. Blair
- Department of Zoology University of Wisconsin 250 North Mills Street Madison, WI 53706 (608) 262-1345
| |
Collapse
|
126
|
Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation. Proc Natl Acad Sci U S A 2008; 105:14897-902. [PMID: 18809931 DOI: 10.1073/pnas.0805201105] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved Hippo tumor suppressor pathway is a key signaling pathway that controls organ size in Drosophila. To date a signal transduction cascade from the Cadherin Fat at the plasma membrane into the nucleus has been discovered. However, how the Hippo pathway is regulated by extracellular signals is poorly understood. Fat not only regulates growth but also planar cell polarity, for which it interacts with the Dachsous (Ds) Cadherin, and Four-jointed (Fj), a transmembrane kinase that modulates the interaction between Ds and Fat. Ds and Fj are expressed in gradients and manipulation of their expression causes abnormal growth. However, how Ds and Fj regulate growth and whether they act through the Hippo pathway is not known. Here, we report that Ds and Fj regulate Hippo signaling to control growth. Interestingly, we found that Ds/Fj regulate the Hippo pathway through a remarkable logic. Induction of Hippo target genes is not proportional to the amount of Ds or Fj presented to a cell, as would be expected if Ds and Fj acted as traditional ligands. Rather, Hippo target genes are up-regulated when neighboring cells express different amounts of Ds or Fj. Consistent with a model that differences in Ds/Fj levels between cells regulate the Hippo pathway, we found that artificial Ds/Fj boundaries induce extra cell proliferation, whereas flattening the endogenous Ds and Fj gradients results in growth defects. The Ds/Fj signaling system thus defines a cell-to-cell signaling mechanism that regulates the Hippo pathway, thereby contributing to the control of organ size.
Collapse
|
127
|
Strutt H, Strutt D. Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr Biol 2008; 18:1555-64. [PMID: 18804371 PMCID: PMC2593845 DOI: 10.1016/j.cub.2008.08.063] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/01/2008] [Accepted: 08/28/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND The planar polarization of developing tissues is controlled by a conserved set of core planar polarity proteins. In the Drosophila pupal wing, these proteins adopt distinct proximal and distal localizations in apicolateral junctions that act as subcellular polarity cues to control morphological events. The core polarity protein Flamingo (Fmi) localizes to both proximal and distal cell boundaries and is known to have asymmetric activity, but the molecular basis of this asymmetric activity is unknown. RESULTS We examine the role of Fmi in controlling asymmetric localization of polarity proteins in pupal wing cells. We find that Fmi interacts preferentially with distal-complex components, rather than with proximal components, and present evidence that there are different domain requirements for Fmi to associate with distal and proximal components. We further show that distally and proximally localized proteins cooperate to allow stable accumulation of Fmi at apicolateral junctions and present evidence that the rates of endocytic trafficking of Fmi are increased when Fmi is not in a stable asymmetric complex. Finally, we provide evidence that Fmi is trafficked from junctions via both Dishevelled-dependent and Dishevelled-independent mechanisms. CONCLUSIONS We present a model in which the primary function of Fmi is to participate in the formation of inherently stable asymmetric junctional complexes: Removal from junctions of Fmi that is not in stable complexes, combined with directional trafficking of Frizzled and Fmi to the distal cell edge, drives the establishment of cellular asymmetry.
Collapse
Affiliation(s)
- Helen Strutt
- MRC Centre for Developmental and Biomedical Genetics and, Department of Biomedical Science, University of Sheffield, Western Bank, S10 2TN Sheffield, United Kingdom
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and, Department of Biomedical Science, University of Sheffield, Western Bank, S10 2TN Sheffield, United Kingdom
- Corresponding author
| |
Collapse
|
128
|
Reddy BVVG, Irvine KD. The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 2008; 135:2827-38. [PMID: 18697904 DOI: 10.1242/dev.020974] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
A cassette of cytoplasmic Drosophila tumor suppressors, including the kinases Hippo and Warts, has recently been linked to the transmembrane tumor suppressor Fat. These proteins act within interconnected signaling pathways, the principal functions of which are to control the growth and polarity of developing tissues. Recent studies have enhanced our understanding of the basis for signal transduction by Fat and Warts pathways, including the identification of a DNA-binding protein at the end of the pathway, have established the conservation of Fat and Warts signaling from flies to mammals, and have given us new insights into their regulation and biological functions.
Collapse
Affiliation(s)
- B V V G Reddy
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
129
|
Rogulja D, Rauskolb C, Irvine KD. Morphogen control of wing growth through the Fat signaling pathway. Dev Cell 2008; 15:309-21. [PMID: 18694569 PMCID: PMC2613447 DOI: 10.1016/j.devcel.2008.06.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/05/2008] [Accepted: 06/05/2008] [Indexed: 12/27/2022]
Abstract
Organ growth is influenced by organ patterning, but the molecular mechanisms that link patterning to growth have remained unclear. We show that the Dpp morphogen gradient in the Drosophila wing influences growth by modulating the activity of the Fat signaling pathway. Dpp signaling regulates the expression and localization of Fat pathway components, and Fat signaling through Dachs is required for the effect of the Dpp gradient on cell proliferation. Juxtaposition of cells that express different levels of the Fat pathway regulators four-jointed and dachsous stimulates expression of Fat/Hippo pathway target genes and cell proliferation, consistent with the hypothesis that the graded expression of these genes contributes to wing growth. Moreover, uniform expression of four-jointed and dachsous in the wing inhibits cell proliferation. These observations identify Fat as a signaling pathway that links the morphogen-mediated establishment of gradients of positional values across developing organs to the regulation of organ growth.
Collapse
Affiliation(s)
| | - Cordelia Rauskolb
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854 USA
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854 USA
| |
Collapse
|
130
|
Ishikawa HO, Takeuchi H, Haltiwanger RS, Irvine KD. Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 2008; 321:401-4. [PMID: 18635802 PMCID: PMC2562711 DOI: 10.1126/science.1158159] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The atypical cadherin Fat acts as a receptor for a signaling pathway that regulates growth, gene expression, and planar cell polarity. Genetic studies in Drosophila identified the four-jointed gene as a regulator of Fat signaling. We show that four-jointed encodes a protein kinase that phosphorylates serine or threonine residues within extracellular cadherin domains of Fat and its transmembrane ligand, Dachsous. Four-jointed functions in the Golgi and is the first molecularly defined kinase that phosphorylates protein domains destined to be extracellular. An acidic sequence motif (Asp-Asn-Glu) within Four-jointed was essential for its kinase activity in vitro and for its biological activity in vivo. Our results indicate that Four-jointed regulates Fat signaling by phosphorylating cadherin domains of Fat and Dachsous as they transit through the Golgi.
Collapse
Affiliation(s)
- Hiroyuki O. Ishikawa
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854 USA
| | - Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854 USA
| |
Collapse
|
131
|
Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 2008; 40:1010-5. [PMID: 18604206 DOI: 10.1038/ng.179] [Citation(s) in RCA: 418] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/16/2008] [Indexed: 11/09/2022]
Abstract
Tissue organization in Drosophila is regulated by the core planar cell polarity (PCP) proteins Frizzled, Dishevelled, Prickle, Van Gogh and Flamingo. Core PCP proteins are conserved in mammals and function in mammalian tissue organization. Recent studies have identified another group of Drosophila PCP proteins, consisting of the protocadherins Fat and Dachsous (Ds) and the transmembrane protein Four-jointed (Fj). In Drosophila, Fat represses fj transcription, and Ds represses Fat activity in PCP. Here we show that Fat4 is an essential gene that has a key role in vertebrate PCP. Loss of Fat4 disrupts oriented cell divisions and tubule elongation during kidney development, leading to cystic kidney disease. Fat4 genetically interacts with the PCP genes Vangl2 and Fjx1 in cyst formation. In addition, Fat4 represses Fjx1 expression, indicating that Fat signaling is conserved. Together, these data suggest that Fat4 regulates vertebrate PCP and that loss of PCP signaling may underlie some cystic diseases in humans.
Collapse
Affiliation(s)
- Sakura Saburi
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Posy S, Shapiro L, Honig B. Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J Mol Biol 2008; 378:954-68. [PMID: 18395225 PMCID: PMC2435303 DOI: 10.1016/j.jmb.2008.02.063] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/06/2008] [Accepted: 02/27/2008] [Indexed: 11/19/2022]
Abstract
Cadherins are cell surface adhesion proteins important for tissue development and integrity. Type I and type II, or classical, cadherins form adhesive dimers via an interface formed through the exchange, or "swapping", of the N-terminal beta-strands from their membrane-distal EC1 domains. Here, we ask which sequence and structural features in EC1 domains are responsible for beta-strand swapping and whether members of other cadherin families form similar strand-swapped binding interfaces. We created a comprehensive database of multiple alignments of each type of cadherin domain. We used the known three-dimensional structures of classical cadherins to identify conserved positions in multiple sequence alignments that appear to be crucial determinants of the cadherin domain structure. We identified features that are unique to EC1 domains. On the basis of our analysis, we conclude that all cadherin domains have very similar overall folds but, with the exception of classical and desmosomal cadherin EC1 domains, most of them do not appear to bind through a strand-swapping mechanism. Thus, non-classical cadherins that function in adhesion are likely to use different protein-protein interaction interfaces. Our results have implications for the evolution of molecular mechanisms of cadherin-mediated adhesion in vertebrates.
Collapse
Affiliation(s)
- Shoshana Posy
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
133
|
Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 2008; 18:435-41. [PMID: 18313299 DOI: 10.1016/j.cub.2008.02.034] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 01/12/2023]
Abstract
In Drosophila, SCALLOPED (SD) belongs to a family of evolutionarily conserved proteins characterized by the presence of a TEA/ATTS DNA-binding domain [1, 2]. SD physically interacts with the product of the vestigial (vg) gene, where the dimer functions as a master gene controlling wing formation [3, 4]. The VG-SD dimer activates the transcription of several specific wing genes, including sd and vg themselves [5, 6]. The dimer drives cell-cycle progression by inducing expression of the dE2F1 transcription factor [7], which regulates genes involved in DNA replication and cell-cycle progression. Recently, YORKIE (YKI) was identified as a transcriptional coactivator that is the downstream effector of the Hippo signaling pathway, which controls cell proliferation and apoptosis in Drosophila[8]. We identified SD as a partner for YKI. We show that interaction between YKI and SD increases SD transcriptional activity both ex vivo in Drosophila S2 cells and in vivo in Drosophila wing discs and promotes YKI nuclear localization. We also show that YKI overexpression induces vg and dE2F1 expression and that proliferation induced by YKI or by a dominant-negative form of FAT in wing disc is significantly reduced in a sd hypomorphic mutant context. Contrary to YKI, SD is not required in all imaginal tissues. This indicates that YKI-SD interaction acts in a tissue-specific fashion and that other YKI partners must exist.
Collapse
Affiliation(s)
- Youlian Goulev
- Department of Developmental Biology, Unité Mixte de Recherche 7592, Université Paris 7 Denis-Diderot, Tour 43 2, Place Jussieu, F-75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
134
|
Taylor J, Adler PN. Cell rearrangement and cell division during the tissue level morphogenesis of evaginating Drosophila imaginal discs. Dev Biol 2008; 313:739-51. [PMID: 18082159 PMCID: PMC2258245 DOI: 10.1016/j.ydbio.2007.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/05/2007] [Accepted: 11/08/2007] [Indexed: 11/22/2022]
Abstract
The evagination of Drosophila imaginal discs is a classic system for studying tissue level morphogenesis. Evagination involves a dramatic change in morphology and published data argue that this is mediated by cell shape changes. We have reexamined the evagination of both the leg and wing discs and find that the process involves cell rearrangement and that cell divisions take place during the process. The number of cells across the width of the ptc domain in the wing and the omb domain in the leg decreased as the tissue extended during evagination and we observed cell rearrangement to be common during this period. In addition, almost half of the cells in the region of the leg examined divided between 4 and 8 h after white prepupae formation. Interestingly, these divisions were not typically oriented parallel to the axis of elongation. Our observations show that disc evagination involves multiple cellular behaviors, as is the case for many other morphogenetic processes.
Collapse
Affiliation(s)
- Job Taylor
- Biology Department, Institute for Morphogenesis and Regenerative Medicine, Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
135
|
Abstract
Most, if not all, cell types and tissues display several aspects of polarization. In addition to the ubiquitous epithelial cell polarity along the apical-basolateral axis, many epithelial tissues and organs are also polarized within the plane of the epithelium. This is generally referred to as planar cell polarity (PCP; or historically, tissue polarity). Genetic screens in Drosophila pioneered the discovery of core PCP factors, and subsequent work in vertebrates has established that the respective pathways are evolutionarily conserved. PCP is not restricted only to epithelial tissues but is also found in mesenchymal cells, where it can regulate cell migration and cell intercalation. Moreover, particularly in vertebrates, the conserved core PCP signaling factors have recently been found to be associated with the orientation or formation of cilia. This review discusses new developments in the molecular understanding of PCP establishment in Drosophila and vertebrates; these developments are integrated with new evidence that links PCP signaling to human disease.
Collapse
Affiliation(s)
- Matias Simons
- Mount Sinai School of Medicine, Department of Developmental & Regenerative Biology, New York, NY 10029;
| | - Marek Mlodzik
- Mount Sinai School of Medicine, Department of Developmental & Regenerative Biology, New York, NY 10029;
| |
Collapse
|
136
|
Feng Y, Irvine KD. Fat and expanded act in parallel to regulate growth through warts. Proc Natl Acad Sci U S A 2007; 104:20362-7. [PMID: 18077345 PMCID: PMC2154436 DOI: 10.1073/pnas.0706722105] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Indexed: 01/15/2023] Open
Abstract
The conserved Drosophila tumor suppressors Fat and Expanded have both recently been implicated in regulating the activity of the Warts tumor suppressor. However, there has been disagreement as to the nature of the links among Fat, Expanded, and Warts and the significance of these links to growth control. We report here that mutations in either expanded or fat can be rescued to viability simply by overexpressing Warts, indicating that their essential function is their influence on Warts rather than reported effects on endocytosis or other pathways. These rescue experiments also separate the transcriptional from the planar cell polarity branches of Fat signaling and reveal that Expanded does not directly affect polarity. We also investigate the relationship between expanded and fat and show, contrary to prior reports, that they have additive effects on imaginal disk growth and development. Although mutation of fat can cause partial loss of Expanded protein from the membrane, mutation of fat promotes growth even when Expanded is overexpressed and accumulates at its normal subapical location. These observations argue against recent proposals that Fat acts simply as a receptor for the Hippo signaling pathway and instead support the proposal that Fat and Expanded can act in parallel to regulate Warts through distinct mechanisms.
Collapse
Affiliation(s)
- Yongqiang Feng
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
137
|
Abstract
The positioning and elaboration of ectodermal veins in the wing of Drosophila melanogaster rely on widely utilized developmental signals, including those mediated by EGF, BMP, Hedgehog, Notch, and Wnt. Analysis of vein patterning mutants, using the molecular and genetic mosaic techniques available in Drosophila, has provided important insights into how a combination of short-range and long-range signaling can pattern a simple epidermal tissue. Moreover, venation has become a powerful system for isolating and analyzing novel components in these signaling pathways. I here review the basic events of vein patterning and give examples of how changes in venation have been used to identify important features of cell signaling pathways.
Collapse
Affiliation(s)
- Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
138
|
Abstract
How cell numbers are controlled during organ development is a problem that is still in need of answers. Recent studies in Drosophila melanogaster have delineated a novel signalling pathway, the Hippo pathway, which has an important role in restraining cell proliferation and promoting apoptosis in differentiating epithelial cells. Much like cancer cells, cells that contain mutations for components of the Hippo pathway proliferate inappropriately and have a competitive edge in genetically mosaic tissues. Although poorly characterized in mammals, several components of the Hippo pathway seem to be tumour suppressors in humans.
Collapse
Affiliation(s)
- Leslie J Saucedo
- Department of Biology, University of Puget Sound, 1500 North Warner Street, Tacoma, Washington 98416, USA.
| | | |
Collapse
|
139
|
Abstract
In multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies - marked cells of different genotypes help us to understand how polarizing information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude that there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
140
|
Abstract
Planar polarity is a global, tissue-level phenomenon that coordinates cell behavior in a two-dimensional plane. The Frizzled/planar cell polarity (PCP) and anterior-posterior (AP) patterning systems for planar polarity operate in a variety of cell types and provide direction to cells with different morphologies and behaviors. These two systems involve different sets of proteins but both use directional cues provided locally by communication between neighboring cells. This review describes our current understanding of the mechanisms that transmit directional signals from cell to cell and compares the strategies for generating global systems of spatial information in stationary and dynamic cell populations.
Collapse
Affiliation(s)
- Jennifer A Zallen
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA.
| |
Collapse
|
141
|
Abstract
The control of organ (or organism) size is a fundamental aspect of life that has long captured human imagination. What makes an elephant grow a million times larger than a mouse? How do our two hands develop independently of each other yet reach very similar size? How does a liver precisely regenerate its original mass when two-thirds of it is removed? The recent discovery of a novel signaling network in Drosophila, known as the Hippo (Hpo) pathway, might provide an important entry point to these fascinating questions. The Hpo pathway consists of several negative growth regulators acting in a kinase cascade that ultimately phosphorylates and inactivates Yorkie (Yki), a transcriptional coactivator that positively regulates cell growth, survival, and proliferation. Components of the Hpo pathway are highly conserved throughout evolution, suggesting that this pathway may function as a global regulator of tissue homeostasis in all metazoan animals. Here, I provide a historical review of this potent growth-regulatory pathway and highlight outstanding questions that will likely be the focus of future investigation.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
142
|
Yin F, Pan D. Fat flies expanded the hippo pathway: a matter of size control. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2007; 2007:pe12. [PMID: 17406009 DOI: 10.1126/stke.3802007pe12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
By simultaneously inhibiting cell proliferation while promoting apoptosis, the Hippo signaling pathway provides a robust mechanism to restrict organ size during Drosophila development. Despite impressive progress in revealing the key intracellular components of this growth-regulatory pathway, the nature of the signal that regulates Hippo signaling in vivo has remained elusive. Several studies now implicate the atypical cadherin protein Fat as a cell surface receptor for the Hippo signaling pathway, thus potentially linking the Hippo kinase cascade with the extracellular milieu.
Collapse
Affiliation(s)
- Feng Yin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
143
|
Seifert JRK, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8:126-38. [PMID: 17230199 DOI: 10.1038/nrg2042] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.
Collapse
Affiliation(s)
- Jessica R K Seifert
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
144
|
Tyler DM, Baker NE. Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol 2007; 305:187-201. [PMID: 17359963 PMCID: PMC2075468 DOI: 10.1016/j.ydbio.2007.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 12/29/2022]
Abstract
Mutations in the expanded gene act as hyperplastic tumor suppressors, interfere with cell competition and elevate Dpp signaling. Unlike Dpp overexpression, ex causes few patterning defects. Our data suggest that patterning effects are partly masked by antagonistic roles of other signaling pathways that are also activated. ex causes proliferation of cells in the posterior eye disc that are normally postmitotic. ex mutations elevate Wg signaling, but Dpp signaling antagonizes patterning effects of Wg. By contrast, if Dpp signaling is blocked in ex mutant cells, the elevated Wg signaling preserves an immature developmental state and prevents retinal differentiation. An effect of ex mutations on vesicle transport is suggested by evidence for altered sterol distribution. Mutations in ft show effects on proliferation, Wg signaling and sterols very similar to those of ex mutations. During disc growth, ex was largely epistatic to ft, and the Warts pathway mutation hippo largely epistatic to ex. Our data suggest that ft and ex act partially through the Warts pathway.
Collapse
Affiliation(s)
- David M. Tyler
- Correspondence to : ,, Tel 718-430-2854, Fax 718-430-8778
| | | |
Collapse
|
145
|
Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2007; 20:3199-214. [PMID: 17158740 DOI: 10.1101/gad.1486806] [Citation(s) in RCA: 759] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue morphogenesis during development is dependent on activities of the cadherin family of cell-cell adhesion proteins that includes classical cadherins, protocadherins, and atypical cadherins (Fat, Dachsous, and Flamingo). The extracellular domain of cadherins contains characteristic repeats that regulate homophilic and heterophilic interactions during adhesion and cell sorting. Although cadherins may have originated to facilitate mechanical cell-cell adhesion, they have evolved to function in many other aspects of morphogenesis. These additional roles rely on cadherin interactions with a wide range of binding partners that modify their expression and adhesion activity by local regulation of the actin cytoskeleton and diverse signaling pathways. Here we examine how different members of the cadherin family act in different developmental contexts, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jennifer M Halbleib
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
146
|
Sun S, Zhao S, Wang Z. Genes of Hippo signaling network act unconventionally in the control of germline proliferation inDrosophila. Dev Dyn 2007; 237:270-5. [DOI: 10.1002/dvdy.21411] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
147
|
Casares F, Luque CM, Tavares MJ. Of Fat flies and Hippos, or the magic of animal size. Nat Struct Mol Biol 2006; 13:1051-3. [PMID: 17146460 DOI: 10.1038/nsmb1206-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
148
|
Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 2006; 133:4561-72. [PMID: 17075008 PMCID: PMC2747022 DOI: 10.1242/dev.02641] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Planar polarity is a fundamental property of epithelia in animals and plants. In Drosophila it depends on at least two sets of genes: one set, the Ds system, encodes the cadherins Dachsous (Ds) and Fat (Ft), as well as the Golgi protein Four-jointed. The other set, the Stan system, encodes Starry night (Stan or Flamingo) and Frizzled. The prevailing view is that the Ds system acts via the Stan system to orient cells. However, using the Drosophila abdomen, we find instead that the two systems operate independently: each confers and propagates polarity, and can do so in the absence of the other. We ask how the Ds system acts; we find that either Ds or Ft is required in cells that send information and we show that both Ds and Ft are required in the responding cells. We consider how polarity may be propagated by Ds-Ft heterodimers acting as bridges between cells.
Collapse
Affiliation(s)
- José Casal
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK
| | - Peter A. Lawrence
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK
| | - Gary Struhl
- HHMI, University of Columbia, 701 W 168th St, NY, NY 10032, USA
| |
Collapse
|
149
|
Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD. Delineation of a Fat tumor suppressor pathway. Nat Genet 2006; 38:1142-50. [PMID: 16980976 DOI: 10.1038/ng1887] [Citation(s) in RCA: 367] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/18/2006] [Indexed: 11/09/2022]
Abstract
Recent studies in Drosophila melanogaster of the protocadherins Dachsous and Fat suggest that they act as ligand and receptor, respectively, for an intercellular signaling pathway that influences tissue polarity, growth and gene expression, but the basis for signaling downstream of Fat has remained unclear. Here, we characterize functional relationships among D. melanogaster tumor suppressors and identify the kinases Discs overgrown and Warts as components of a Fat signaling pathway. fat, discs overgrown and warts regulate a common set of downstream genes in multiple tissues. Genetic experiments position the action of discs overgrown upstream of the Fat pathway component dachs, whereas warts acts downstream of dachs. Warts protein coprecipitates with Dachs, and Warts protein levels are influenced by fat, dachs and discs overgrown in vivo, consistent with its placement as a downstream component of the pathway. The tumor suppressors Merlin, expanded, hippo, salvador and mob as tumor suppressor also share multiple Fat pathway phenotypes but regulate Warts activity independently. Our results functionally link what had been four disparate groups of D. melanogaster tumor suppressors, establish a basic framework for Fat signaling from receptor to transcription factor and implicate Warts as an integrator of multiple growth control signals.
Collapse
Affiliation(s)
- Eunjoo Cho
- Howard Hughes Medical Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
150
|
Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 2006; 16:2081-9. [PMID: 16996266 DOI: 10.1016/j.cub.2006.09.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 09/04/2006] [Accepted: 09/05/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND The tight control of cell proliferation and cell death is essential to normal tissue development, and the loss of this control is a hallmark of cancers. Cell growth and cell death are coordinately regulated during development by the Hippo signaling pathway. The Hippo pathway consists of the Ste20 family kinase Hippo, the WW adaptor protein Salvador, and the NDR kinase Warts. Loss of Hippo signaling in Drosophila leads to enhanced cell proliferation and decreased apoptosis, resulting in massive tissue overgrowth through increased expression of targets such as Cyclin E and Diap1. The cytoskeletal proteins Merlin and Expanded colocalize at apical junctions and function redundantly upstream of Hippo. It is not clear how they regulate growth or how they are localized to apical junctions. RESULTS We find that another Drosophila tumor-suppressor gene, the atypical cadherin fat, regulates both cell proliferation and cell death in developing imaginal discs. Loss of fat leads to increased Cyclin E and Diap1 expression, phenocopying loss of Hippo signaling. Ft can regulate Hippo phosphorylation, a measure of its activation, in tissue culture. Importantly, fat is needed for normal localization of Expanded at apical junctions in vivo. Genetic-epistasis experiments place fat with expanded in the Hippo pathway. CONCLUSIONS Together, these data suggest that Fat functions as a cell-surface receptor for the Expanded branch of the conserved Hippo growth control pathway.
Collapse
Affiliation(s)
- Elizabeth Silva
- Samuel Lunenfeld Research Institute and Department of Medical Genetics and Microbiology, University of Toronto, Toronto M5G 1X5, Canada
| | | | | | | | | |
Collapse
|