101
|
Li X, Yan M, Guo Z, Yan L, Feng R, Zhu H, Tu X, Yu S, Chen JG. Inhibition of Sar1b, the Gene Implicated in Chylomicron Retention Disease, Impairs Migration and Morphogenesis of Developing Cortical Neurons. Neuroscience 2020; 449:228-240. [DOI: 10.1016/j.neuroscience.2020.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
|
102
|
Myosin X Interaction with KIF13B, a Crucial Pathway for Netrin-1-Induced Axonal Development. J Neurosci 2020; 40:9169-9185. [PMID: 33097641 PMCID: PMC7687062 DOI: 10.1523/jneurosci.0929-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting. SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.
Collapse
|
103
|
Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, Zhang H. SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis 2020; 9:95-107. [PMID: 35005110 PMCID: PMC8720659 DOI: 10.1016/j.gendis.2020.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.
Collapse
Affiliation(s)
- Xia Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Qiuman Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fang Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fugui Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David S Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| |
Collapse
|
104
|
Li X, Han X, Tu X, Zhu D, Feng Y, Jiang T, Yang Y, Qu J, Chen JG. An Autism-Related, Nonsense Foxp1 Mutant Induces Autophagy and Delays Radial Migration of the Cortical Neurons. Cereb Cortex 2020; 29:3193-3208. [PMID: 30124790 DOI: 10.1093/cercor/bhy185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that has a strong genetic component. Disruptions of FOXP1, a transcription factor expressed in the developing cerebral cortex, were associated with ASD. FOXP1(R525X) is a de novo heterozygous mutation found in patients with autism and severe mental retardation. To explore the neuronal basis of FOXP1(R525X) in ASD, we created Foxp1(R521X), a mouse homolog of the human variant. Ectopic expression of Foxp1(R521X) led to cytoplasmic aggregates and activated macroautophagy in neuroblastoma N2a cells and the developing neuronal cells. Cortical neurons expressing Foxp1(R521X) exhibited delayed migration and altered dendritic morphology. As a control, mutant Y435X that was expressed diffusively in the cytoplasm did not induce autophagy and migration delay in the cortex. The embryonic cortical cells had a minimal activity of nonsense-mediated mRNA decay (NMD) as assayed by a splicing-dependent NMD reporter. We hypothesize that the developing neuronal cells use autophagy but not NMD as a safeguard mechanism against nonsense mutant aggregates, resulting in impairment of the cortical development. This study suggests a novel mechanism other than heterozygous loss of FOXP1 for the development of ASD and may advance our understanding of the complex relationships between gene mutation and the related psychiatric disorders.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xin Han
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Dan Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Yue Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Youping Yang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| |
Collapse
|
105
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
106
|
Transcription factor expression defines subclasses of developing projection neurons highly similar to single-cell RNA-seq subtypes. Proc Natl Acad Sci U S A 2020; 117:25074-25084. [PMID: 32948690 DOI: 10.1073/pnas.2008013117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We are only just beginning to catalog the vast diversity of cell types in the cerebral cortex. Such categorization is a first step toward understanding how diversification relates to function. All cortical projection neurons arise from a uniform pool of progenitor cells that lines the ventricles of the forebrain. It is still unclear how these progenitor cells generate the more than 50 unique types of mature cortical projection neurons defined by their distinct gene-expression profiles. Moreover, exactly how and when neurons diversify their function during development is unknown. Here we relate gene expression and chromatin accessibility of two subclasses of projection neurons with divergent morphological and functional features as they develop in the mouse brain between embryonic day 13 and postnatal day 5 in order to identify transcriptional networks that diversify neuron cell fate. We compare these gene-expression profiles with published profiles of single cells isolated from similar populations and establish that layer-defined cell classes encompass cell subtypes and developmental trajectories identified using single-cell sequencing. Given the depth of our sequencing, we identify groups of transcription factors with particularly dense subclass-specific regulation and subclass-enriched transcription factor binding motifs. We also describe transcription factor-adjacent long noncoding RNAs that define each subclass and validate the function of Myt1l in balancing the ratio of the two subclasses in vitro. Our multidimensional approach supports an evolving model of progressive restriction of cell fate competence through inherited transcriptional identities.
Collapse
|
107
|
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and
unprovoked seizures due to neuronal hyperactivity. A large proportion
of epilepsy cases begin during childhood. Causes of epilepsy include
stroke, infections, brain injury, genetic factors, or other factors
that alter brain structure and development, but in up to 50% of cases
the cause is unknown. Approximately 35% of patients have refractory
seizures that do not respond to medication. Animal models and in vitro
cultures have contributed to our understanding of epilepsy, but there
is a clear need for better models to explore the human brain in normal
and pathological conditions. Human pluripotent stem cell (PSC)
technologies opened the door for new models for analyzing brain
development and disease, especially conditions with a genetic
component. Initially, PSCs were differentiated into 2-dimensional
cultures of a homogenous population of neural cells, such as
glutamatergic excitatory or γ-aminobutyric acidergic inhibitory
neurons, as well as glial cells. Nevertheless, these cultures lacked
the structure and complexity of a human brain. In the last decade, PSC
technology has advanced to the next level through the development of
3-dimensional culture, called organoids. These organoids recapitulate
features of the human brain that are missing in animal models,
enabling a deeper study of the human brain. In this review, we will
summarize the current status of organoid research and its application
to epilepsy.
Collapse
Affiliation(s)
- Vanesa Nieto-Estévez
- Department of Biology and Brain Health Consortium, 414492The University of Texas at San Antonio, TX, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, 414492The University of Texas at San Antonio, TX, USA
| |
Collapse
|
108
|
In utero exposure to endogenous maternal polyclonal anti-Caspr2 antibody leads to behavioral abnormalities resembling autism spectrum disorder in male mice. Sci Rep 2020; 10:14446. [PMID: 32879327 PMCID: PMC7468145 DOI: 10.1038/s41598-020-71201-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
The concept that exposure in utero to maternal anti-brain antibodies contributes to the development of autism spectrum disorders (ASD) has been entertained for over a decade. We determined that antibodies targeting Caspr2 are present at high frequency in mothers with brain-reactive serology and a child with ASD, and further demonstrated that exposure in utero to a monoclonal anti-Caspr2 antibody, derived from a mother of an ASD child, led to an-ASD like phenotype in male offspring. Now we propose a new model to study the effects of in utero exposure to anti-Caspr2 antibody. Dams immunized with the extracellular portion of Caspr2 express anti-Caspr2 antibodies throughout gestation to better mimic the human condition. Male but not female mice born to dams harboring polyclonal anti-Caspr2 antibodies showed abnormal cortical development, decreased dendritic complexity of excitatory neurons and reduced numbers of inhibitory neurons in the hippocampus, as well as repetitive behaviors and impairments in novelty interest in the social preference test as adults. These data supporting the pathogenicity of anti-Caspr2 antibodies are consistent with the concept that anti-brain antibodies present in women during gestation can alter fetal brain development, and confirm that males are peculiarly susceptible.
Collapse
|
109
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
110
|
The COMPASS Family Protein ASH2L Mediates Corticogenesis via Transcriptional Regulation of Wnt Signaling. Cell Rep 2020; 28:698-711.e5. [PMID: 31315048 DOI: 10.1016/j.celrep.2019.06.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/12/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Histone methylation is essential for regulating gene expression during organogenesis to maintain stem cells and execute a proper differentiation program for their descendants. Here we show that the COMPASS family histone methyltransferase co-factor ASH2L is required for maintaining neural progenitor cells (NPCs) and the production and positioning of projection neurons during neocortex development. Specifically, loss of Ash2l in NPCs results in malformation of the neocortex; the mutant neocortex has fewer neurons, which are also abnormal in composition and laminar position. Moreover, ASH2L loss impairs trimethylation of H3K4 and the transcriptional machinery specific for Wnt-β-catenin signaling, inhibiting the proliferation ability of NPCs at late stages of neurogenesis by disrupting S phase entry to inhibit cell cycle progression. Overexpressing β-catenin after ASH2L elimination rescues the proliferation deficiency. Therefore, our findings demonstrate that ASH2L is crucial for modulating Wnt signaling to maintain NPCs and generate a full complement of neurons during mammalian neocortex development.
Collapse
|
111
|
Fan X, Fu Y, Zhou X, Sun L, Yang M, Wang M, Chen R, Wu Q, Yong J, Dong J, Wen L, Qiao J, Wang X, Tang F. Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. SCIENCE ADVANCES 2020; 6:eaaz2978. [PMID: 32923614 PMCID: PMC7450478 DOI: 10.1126/sciadv.aaz2978] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/09/2020] [Indexed: 05/19/2023]
Abstract
Neurogenesis processes differ in different areas of the cortex in many species, including humans. Here, we performed single-cell transcriptome profiling of the four cortical lobes and pons during human embryonic and fetal development. We identified distinct subtypes of neural progenitor cells (NPCs) and their molecular signatures, including a group of previously unidentified transient NPCs. We specified the neurogenesis path and molecular regulations of the human deep-layer, upper-layer, and mature neurons. Neurons showed clear spatial and temporal distinctions, while glial cells of different origins showed development patterns similar to those of mice, and we captured the developmental trajectory of oligodendrocyte lineage cells until the human mid-fetal stage. Additionally, we verified region-specific characteristics of neurons in the cortex, including their distinct electrophysiological features. With systematic single-cell analysis, we decoded human neuronal development in temporal and spatial dimensions from GW7 to GW28, offering deeper insights into the molecular regulations underlying human neurogenesis and cortical development.
Collapse
Affiliation(s)
- Xiaoying Fan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Fu
- Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Yang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Mengdi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Brain-Intelligence Science and Technology, Zhangjing Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
112
|
Symmetric neural progenitor divisions require chromatin-mediated homologous recombination DNA repair by Ino80. Nat Commun 2020; 11:3839. [PMID: 32737294 PMCID: PMC7395731 DOI: 10.1038/s41467-020-17551-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin regulates spatiotemporal gene expression during neurodevelopment, but it also mediates DNA damage repair essential to proliferating neural progenitor cells (NPCs). Here, we uncover molecularly dissociable roles for nucleosome remodeler Ino80 in chromatin-mediated transcriptional regulation and genome maintenance in corticogenesis. We find that conditional Ino80 deletion from cortical NPCs impairs DNA double-strand break (DSB) repair, triggering p53-dependent apoptosis and microcephaly. Using an in vivo DSB repair pathway assay, we find that Ino80 is selectively required for homologous recombination (HR) DNA repair, which is mechanistically distinct from Ino80 function in YY1-associated transcription. Unexpectedly, sensitivity to loss of Ino80-mediated HR is dependent on NPC division mode: Ino80 deletion leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions. This division mode dependence is phenocopied following conditional deletion of HR gene Brca2. Thus, distinct modes of NPC division have divergent requirements for Ino80-dependent HR DNA repair.
Collapse
|
113
|
Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports 2020; 15:467-481. [PMID: 32679062 PMCID: PMC7419717 DOI: 10.1016/j.stemcr.2020.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/23/2023] Open
Abstract
The reconstruction of lost neural circuits by cell replacement is a possible treatment for neurological deficits after cerebral cortex injury. Cerebral organoids can be a novel source for cell transplantation, but because the cellular composition of the organoids changes along the time course of the development, it remains unclear which developmental stage of the organoids is most suitable for reconstructing the corticospinal tract. Here, we transplanted human embryonic stem cell-derived cerebral organoids at 6 or 10 weeks after differentiation (6w- or 10w-organoids) into mouse cerebral cortices. 6w-organoids extended more axons along the corticospinal tract but caused graft overgrowth with a higher percentage of proliferative cells. Axonal extensions from 10w-organoids were smaller in number but were enhanced when the organoids were grafted 1 week after brain injury. Finally, 10w-organoids extended axons in cynomolgus monkey brains. These results contribute to the development of a cell-replacement therapy for brain injury and stroke.
Collapse
|
114
|
Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. Int J Mol Sci 2020; 21:E4471. [PMID: 32586047 PMCID: PMC7352860 DOI: 10.3390/ijms21124471] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The signaling pathway of the microtubule-associated protein kinase or extracellular regulated kinase (MAPK/ERK) is a common mechanism of extracellular information transduction from extracellular stimuli to the intracellular space. The transduction of information leads to changes in the ongoing metabolic pathways and the modification of gene expression patterns. In the central nervous system, ERK is expressed ubiquitously, both temporally and spatially. As for the temporal ubiquity, this signaling system participates in three key moments: (i) Embryonic development; (ii) the early postnatal period; and iii) adulthood. During embryonic development, the system is partly responsible for the patterning of segmentation in the encephalic vesicle through the FGF8-ERK pathway. In addition, during this period, ERK directs neurogenesis migration and the final fate of neural progenitors. During the early postnatal period, ERK participates in the maturation process of dendritic trees and synaptogenesis. During adulthood, ERK participates in social and emotional behavior and memory processes, including long-term potentiation. Alterations in mechanisms related to ERK are associated with different pathological outcomes. Genetic alterations in any component of the ERK pathway result in pathologies associated with neural crest derivatives and mental dysfunctions associated with autism spectrum disorders. The MAP-ERK pathway is a key element of the neuroinflammatory pathway triggered by glial cells during the development of neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, as well as prionic diseases. The process triggered by MAPK/ERK activation depends on the stage of development (mature or senescence), the type of cellular element in which the pathway is activated, and the anatomic neural structure. However, extensive gaps exist with regards to the targets of the phosphorylated ERK in many of these processes.
Collapse
Affiliation(s)
- Héctor Albert-Gascó
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0AH, UK;
| | - Francisco Ros-Bernal
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
| | - Esther Castillo-Gómez
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Planta 0, 28029 Madrid, Spain
| | - Francisco E. Olucha-Bordonau
- U.P Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Avda. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain; (F.R.-B.); (E.C.-G.)
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Planta 0, 28029 Madrid, Spain
| |
Collapse
|
115
|
Bhatia S, Bukkapatnam S, Van Court B, Phan A, Oweida A, Gadwa J, Mueller AC, Piper M, Darragh L, Nguyen D, Gilani A, Knitz M, Bickett T, Green A, Venkataraman S, Vibhakar R, Cittelly D, Karam SD. The effects of ephrinB2 signaling on proliferation and invasion in glioblastoma multiforme. Mol Carcinog 2020; 59:1064-1075. [PMID: 32567728 DOI: 10.1002/mc.23237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022]
Abstract
The aggressive nature of glioblastoma multiforme (GBM) may be attributed to the dysregulation of pathways driving both proliferation and invasion. EphrinB2, a membrane-bound ligand for some of the Eph receptors, has emerged as a critical target regulating these pathways. In this study, we investigated the role of ephrinB2 in regulating proliferation and invasion in GBM using intracranial and subcutaneous xenograft models. The Cancer Genome Atlas analysis suggested high transcript and low methylation levels of ephrinB2 as poor prognostic indicators in GBM, consistent with its role as an oncogene. EphrinB2 knockdown, however, increased tumor growth, an effect that was reversed by ephrinB2 Fc protein. This was associated with EphB4 receptor activation, consistent with the data showing a significant decrease in tumor growth with ephrinB2 overexpression. Mechanistic analyses showed that ephrinB2 knockdown has anti-invasive but pro-proliferative effects in GBM. EphB4 stimulation following ephrinB2 Fc treatment in ephrinB2 knockdown tumors was shown to impart strong anti-proliferative and anti-invasive effects, which correlated with decrease in PCNA, p-ERK, vimentin, Snail, Fak, and increase in the E-cadherin levels. Overall, our study suggests that ephrinB2 cannot be used as a sole therapeutic target. Concomitant inhibition of ephrinB2 signaling with EphB4 activation is required to achieve maximal therapeutic benefit in GBM.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Aurora, Colorado
| | - Andy Phan
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Laurel Darragh
- Department of Immunology, University of Colorado Denver, Aurora, Colorado
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Ahmed Gilani
- Department of Pathology, Children's Hospital, University of Colorado Denver, Aurora, Colorado
| | - Michael Knitz
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Thomas Bickett
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Adam Green
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Diana Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
116
|
Heide M, Haffner C, Murayama A, Kurotaki Y, Shinohara H, Okano H, Sasaki E, Huttner WB. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science 2020; 369:546-550. [PMID: 32554627 DOI: 10.1126/science.abb2401] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
The neocortex has expanded during mammalian evolution. Overexpression studies in developing mouse and ferret neocortex have implicated the human-specific gene ARHGAP11B in neocortical expansion, but the relevance for primate evolution has been unclear. Here, we provide functional evidence that ARHGAP11B causes expansion of the primate neocortex. ARHGAP11B expressed in fetal neocortex of the common marmoset under control of the gene's own (human) promoter increased the numbers of basal radial glia progenitors in the marmoset outer subventricular zone, increased the numbers of upper-layer neurons, enlarged the neocortex, and induced its folding. Thus, the human-specific ARHGAP11B drives changes in development in the nonhuman primate marmoset that reflect the changes in evolution that characterize human neocortical development.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ayako Murayama
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yoko Kurotaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Haruka Shinohara
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
117
|
Lee M, Kim EJ, Woo DC, Shim WH, Yum MS. In vivo MRI Successfully Reveals the Malformation of Cortical Development in Infant Rats. Front Neurosci 2020; 14:510. [PMID: 32508585 PMCID: PMC7251149 DOI: 10.3389/fnins.2020.00510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Objective: Malformations of cortical development (MCDs) are major causes of intractable epilepsies. To characterize the early neuroimaging findings of MCDs, we tried to identify the MRI features consistent with pathological findings in an infant rat MCD model, prenatally exposed to methylazoxymethanol (MAM), by using newly developed MRI techniques. Methods: At gestational day 15, two doses of MAM (15 mg/kg intraperitoneally) or normal saline were injected into pregnant rats. The offspring underwent in vivo MRI, including glutamate chemical exchange saturation transfer (GluCEST), 1H-MR spectroscopy, and diffusion tensor imaging, at postnatal day (P) 15 using a 7T small-animal imaging system. Another set of prenatally MAM-exposed rats were sacrificed for histological staining. Results: At P15, the retrosplenial cortex (RSC) of rats with MCDs showed decreased neuronal nuclei, parvalbumin, and reelin expressions. Moreover, dendritic arborization of pyramidal cells in the RSC significantly decreased in infant rats with MCDs. In vivo MRI showed significantly decreased GluCEST (%) in the RSC of rats with MCDs (p = 0.000) and a significant correlation between GluCEST (%) and RSC thickness (r = 0.685, p = 0.003). The rats with MCDs showed reduced glutamate (p = 0.002), N-acetylaspartate (p = 0.002), and macromolecule and lipid levels (p = 0.027) and significantly reduced fractional anisotropy values in the RSC. Conclusion: In vivo MRI revealed reduced neuronal population and dendritic arborization in the RSC of infant rats with MCDs during the early postnatal period. These pathological changes of the cortex could serve as clinical imaging biomarkers of MCDs in infants.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Pediatrics, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Eun-Jin Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Woo-Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Radiology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
118
|
Chen A, Guo Z, Fang L, Bian S. Application of Fused Organoid Models to Study Human Brain Development and Neural Disorders. Front Cell Neurosci 2020; 14:133. [PMID: 32670022 PMCID: PMC7326106 DOI: 10.3389/fncel.2020.00133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Human brain organoids cultured from human pluripotent stem cells provide a promising platform to recapitulate histological features of the human brain and model neural disorders. However, unlike animal models, brain organoids lack a reproducible topographic organization, which limits their application in modeling intricate biology, such as the interaction between different brain regions. To overcome these drawbacks, brain organoids have been pre-patterned into specific brain regions and fused to form an assembloid that represents reproducible models recapitulating more complex biological processes of human brain development and neurological diseases. This approach has been applied to model interneuron migration, neuronal projections, tumor invasion, oligodendrogenesis, forebrain axis establishment, and brain vascularization. In this review article, we will summarize the usage of this technology to understand the fundamental biology underpinning human brain development and disorders.
Collapse
Affiliation(s)
- Augustin Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lipao Fang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| |
Collapse
|
119
|
Fragola G, Mabb AM, Taylor-Blake B, Niehaus JK, Chronister WD, Mao H, Simon JM, Yuan H, Li Z, McConnell MJ, Zylka MJ. Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration. Nat Commun 2020; 11:1962. [PMID: 32327659 PMCID: PMC7181881 DOI: 10.1038/s41467-020-15794-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD+) with nicotinamide riboside partially blocked neurodegeneration, and increased the lifespan of Top1 cKO mice by 30%. A reduction of p53 also partially rescued cortical neuron loss. While neurodegeneration was partially rescued, behavioral decline was not prevented. These data indicate that reducing neuronal loss is not sufficient to limit behavioral decline when TOP1 function is disrupted. Topoisomerase 1 (TOP1) relieves DNA torsional stress during transcription and facilitates the expression of long neuronal genes. Here we show that deletion of Top1 in excitatory neurons leads to early onset neurodegeneration that is partially dependent on p53/PARP1 activation and NAD+ depletion.
Collapse
Affiliation(s)
- Giulia Fragola
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jesse K Niehaus
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hanqian Mao
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
120
|
Popovitchenko T, Park Y, Page NF, Luo X, Krsnik Z, Liu Y, Salamon I, Stephenson JD, Kraushar ML, Volk NL, Patel SM, Wijeratne HRS, Li D, Suthar KS, Wach A, Sun M, Arnold SJ, Akamatsu W, Okano H, Paillard L, Zhang H, Buyske S, Kostovic I, De Rubeis S, Hart RP, Rasin MR. Translational derepression of Elavl4 isoforms at their alternative 5' UTRs determines neuronal development. Nat Commun 2020; 11:1674. [PMID: 32245946 PMCID: PMC7125149 DOI: 10.1038/s41467-020-15412-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopment requires precise regulation of gene expression, including post-transcriptional regulatory events such as alternative splicing and mRNA translation. However, translational regulation of specific isoforms during neurodevelopment and the mechanisms behind it remain unknown. Using RNA-seq analysis of mouse neocortical polysomes, here we report translationally repressed and derepressed mRNA isoforms during neocortical neurogenesis whose orthologs include risk genes for neurodevelopmental disorders. We demonstrate that the translation of distinct mRNA isoforms of the RNA binding protein (RBP), Elavl4, in radial glia progenitors and early neurons depends on its alternative 5' UTRs. Furthermore, 5' UTR-driven Elavl4 isoform-specific translation depends on upstream control by another RBP, Celf1. Celf1 regulation of Elavl4 translation dictates development of glutamatergic neurons. Our findings reveal a dynamic interplay between distinct RBPs and alternative 5' UTRs in neuronal development and underscore the risk of post-transcriptional dysregulation in co-occurring neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiaobing Luo
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Yuan Liu
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Jessica D Stephenson
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Matthew L Kraushar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Graduate Program in Neurosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nicole L Volk
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Sejal M Patel
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - H R Sagara Wijeratne
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Diana Li
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kandarp S Suthar
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Aaron Wach
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, D-79104, Germany
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
121
|
Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, Ben Haim L, Young AMH, Batiuk MY, Prakash K, Brown A, Roberts K, Paredes MF, Kawaguchi R, Stockley JH, Sabeur K, Chang SM, Huang E, Hutchinson P, Ullian EM, Hemberg M, Coppola G, Holt MG, Geschwind DH, Rowitch DH. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 2020; 23:500-509. [PMID: 32203496 PMCID: PMC7116562 DOI: 10.1038/s41593-020-0602-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
Although the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells show distinct layering. In the present study, we developed a high-content pipeline, the large-area spatial transcriptomic (LaST) map, which can quantify single-cell gene expression in situ. Screening 46 candidate genes for astrocyte diversity across the mouse cortex, we identified superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from those of neurons. Astrocyte layer features, established in the early postnatal cortex, mostly persisted in adult mouse and human cortex. Single-cell RNA sequencing and spatial reconstruction analysis further confirmed the presence of astrocyte layers in the adult cortex. Satb2 and Reeler mutations that shifted neuronal post-mitotic development were sufficient to alter glial layering, indicating an instructive role for neuronal cues. Finally, astrocyte layer patterns diverged between mouse cortical regions. These findings indicate that excitatory neurons and astrocytes are organized into distinct lineage-associated laminae.
Collapse
Affiliation(s)
- Omer Ali Bayraktar
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Theresa Bartels
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Staffan Holmqvist
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Araks Martirosyan
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Damon Polioudakis
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lucile Ben Haim
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Adam M H Young
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mykhailo Y Batiuk
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Kirti Prakash
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexander Brown
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Mercedes F Paredes
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - John H Stockley
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Khalida Sabeur
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sandra M Chang
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Eric Huang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Peter Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Giovanni Coppola
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Neuroscience, Leuven, Belgium
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David H Rowitch
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
122
|
Xu R, Li X, Boreland AJ, Posyton A, Kwan K, Hart RP, Jiang P. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun 2020; 11:1577. [PMID: 32221280 PMCID: PMC7101330 DOI: 10.1038/s41467-020-15411-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia, the brain-resident macrophages, exhibit highly dynamic functions in neurodevelopment and neurodegeneration. Human microglia possess unique features as compared to mouse microglia, but our understanding of human microglial functions is largely limited by an inability to obtain human microglia under homeostatic states. Here, we develop a human pluripotent stem cell (hPSC)-based microglial chimeric mouse brain model by transplanting hPSC-derived primitive macrophage progenitors into neonatal mouse brains. Single-cell RNA-sequencing of the microglial chimeric mouse brains reveals that xenografted hPSC-derived microglia largely retain human microglial identity, as they exhibit signature gene expression patterns consistent with physiological human microglia and recapitulate heterogeneity of adult human microglia. Importantly, the engrafted hPSC-derived microglia exhibit dynamic response to cuprizone-induced demyelination and species-specific transcriptomic differences in the expression of neurological disease-risk genes in microglia. This model will serve as a tool to study the role of human microglia in brain development and degeneration.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiaoxi Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Andrew J Boreland
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anthony Posyton
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kelvin Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
123
|
Chao MW, Kuo HC, Tong SY, Yang YS, Chuang YC, Tseng CY. In Vitro and In Vivo Analysis of the Effects of 3,5-DMA and Its Metabolites in Neural Oxidative Stress and Neurodevelopmental Toxicity. Toxicol Sci 2020; 168:405-419. [PMID: 30590852 DOI: 10.1093/toxsci/kfy306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
3,5-Dimethylaniline (3,5-DMA), a monocyclic aromatic amine, is widely present in a spectrum of sources including tobacco, dyes, combustion products, and suspended particulates. 3,5-DMA and its metabolites form superoxides, resulting in apoptosis or oncogenesis. Data of a direct effect of 3,5-DMA on the nervous system, especially the developing brain, are lacking. Therefore, we investigated the effects of 3,5-DMA and its metabolites on fetal neurite growth and brain development using in vitro cell cultures of primary cortical neurons to observe whether these compounds caused neuronal cytotoxicity and affected neurite structural development. With increasing concentrations of 3,5-DMA (10, 50, 100, 500, 1000 μM) and its major metabolite 5-dimethylaminophenol (3,5-DMAP) (10, 50, 100, 500, 1000 μM), reactive oxygen species (ROS), cytotoxicity, and DNA damage increased significantly in the cells and dendritic arborization decreased. The addition of 5 mM N-acetylcysteine, an ROS scavenger, reduced ROS in the cells and alleviated the neuronal damage. In vivo studies in Sprague Dawley pregnant rats suggested that exposure to 3,5-DMA (10, 30, 60, 100 mg/kg/day) subcutaneously from GD15 to GD17 led to fetal cerebral cortex thinning. BrdU labeling showed that 3,5-DMA reduced the number and generation of cortical cells. To detect the laminar position of newly generated neurons, cortex layer markers such as Satb2, Ctip2, and Tbr1 were used. 3,5-DMA perturbed the cortical layer distribution in developing fetal rats. In summary, this is the first study to provide evidence for 3,5-DMA and its metabolites causing anomalies of the fetal central nervous system development through ROS production.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan.,Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Hui-Chuan Kuo
- Department of Pharmacy, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Sih-Yu Tong
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yu-Shiu Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chia-Yi Tseng
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan.,Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
124
|
Chui A, Zhang Q, Dai Q, Shi SH. Oxidative stress regulates progenitor behavior and cortical neurogenesis. Development 2020; 147:dev.184150. [PMID: 32041791 DOI: 10.1242/dev.184150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Orderly division of radial glial progenitors (RGPs) in the developing mammalian cerebral cortex generates deep and superficial layer neurons progressively. However, the mechanisms that control RGP behavior and precise neuronal output remain elusive. Here, we show that the oxidative stress level progressively increases in the developing mouse cortex and regulates RGP behavior and neurogenesis. As development proceeds, numerous gene pathways linked to reactive oxygen species (ROS) and oxidative stress exhibit drastic changes in RGPs. Selective removal of PRDM16, a transcriptional regulator highly expressed in RGPs, elevates ROS level and induces expression of oxidative stress-responsive genes. Coinciding with an enhanced level of oxidative stress, RGP behavior was altered, leading to abnormal deep and superficial layer neuron generation. Simultaneous expression of mitochondrially targeted catalase to reduce cellular ROS levels significantly suppresses cortical defects caused by PRDM16 removal. Together, these findings suggest that oxidative stress actively regulates RGP behavior to ensure proper neurogenesis in the mammalian cortex.
Collapse
Affiliation(s)
- Angela Chui
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Neuroscience Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Qi Dai
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Neuroscience Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Center of Biological Molecules, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
125
|
Pook C, Ahrens JM, Clagett-Dame M. Expression pattern of Nav2 in the murine CNS with development. Gene Expr Patterns 2020; 35:119099. [PMID: 32081718 DOI: 10.1016/j.gep.2020.119099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR). These studies support full-length Nav2 transcript as the predominant form in the wild-type mouse CNS. The developing cortex, hippocampus, thalamus, olfactory bulb, and granule cells (GC) within the cerebellum show the highest expression, with a similar staining pattern using either the 5'Nav2 or 3'Nav2 probe. Nav2 is expressed in GC precursors migrating over the cerebellar primordium as well as in the postmitotic premigratory cells of the external granule cell layer (EGL). It is expressed in the cornu ammonis (CA) and dentate gyrus (DG) throughout hippocampal development. In situ hybridization was combined with immunohistochemistry for Ki67, CTIP2 and Nissl staining to follow Nav2 transcript location during cortical development, where it is observed in neuroepithelial cells exiting the germinal compartments, as well as later in the cortical plate (CP) and developing cortical layers. The highest levels of Nav2 in all brain regions studied are observed in late gestation and early postnatal life which coincides with times when neurons are migrating and differentiating. A hypomorphic mouse that lacks the full-length transcript but expresses shorter transcript shows little staining in the CNS with either probe set except at the base of the cerebellum, where a shorter Nav2 transcript is detected. Using dual fluorescent probe in situ hybridization studies, these cells are identified as oligodendrocytes and are detected using both Olig1 and the 3'Nav2 probe. The identification of full-length Nav2 as the primary transcript in numerous brain regions suggests NAV2 could play a role in CNS development beyond that of its well-established role in the cerebellum.
Collapse
Affiliation(s)
- Caitlin Pook
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA; Medical College of Wisconsin-Milwaukee Campus, Wauwatosa, WI, 53226, USA
| | - Jamie M Ahrens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Margaret Clagett-Dame
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, 53706, USA.
| |
Collapse
|
126
|
Yang H, Kim J, Kim Y, Jang SW, Sestan N, Shim S. Cux2 expression regulated by Lhx2 in the upper layer neurons of the developing cortex. Biochem Biophys Res Commun 2020; 521:874-879. [PMID: 31708105 DOI: 10.1016/j.bbrc.2019.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
The laminar structure, a unique feature of the mammalian cerebrum, is formed by a number of genes in a highly complex process. The pyramidal neurons that make up each layer of the cerebrum are functionally characterized by specific gene expressions. In particular, Cux1 and Cux2, which are specifically expressed in layer II-IV neurons, are known to regulate dendritic branching, spine morphology, and synapse formation. However, it is still unknown how their expression is regulated transcriptionally. Here we constructed Cux2-mCherry transgenic mice that reproduce the cortical layer II-IV-specific expression of Cux2, a member of the Cut/Cux/CDP family, using BAC transgenesis and a variety of coordinated cortical layer markers that are known to date. Our immunohistochemistry analysis shows that mCherry was expressed in cortical layer II-IV and the corpus callosum in the same way as endogenous Cux2 without ectopic expression. We also identified a region of 220 bp that is highly conserved in mammals and controls specific cerebral expression of Cux2, using comparative genome analysis and in vivo reporter assays. Furthermore, we confirm that Lhx2, whose expression in cortical layer II-IV is similar to that of the Cux2 enhancer, can act as a transcriptional activator. These results suggest that cortical layer II-IV expression of Cux2 can be regulated by the interaction of Cux2-E1 and Lhx2, and that their failure to co-regulate is associated with neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiwoo Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yujin Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
127
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
128
|
Terminal neuron localization to the upper cortical plate is controlled by the transcription factor NEUROD2. Sci Rep 2019; 9:19697. [PMID: 31873146 PMCID: PMC6927953 DOI: 10.1038/s41598-019-56171-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Excitatory neurons of the mammalian cerebral cortex are organized into six functional layers characterized by unique patterns of connectivity, as well as distinctive physiological and morphological properties. Cortical layers appear after a highly regulated migration process in which cells move from the deeper, proliferative zone toward the superficial layers. Importantly, defects in this radial migration process have been implicated in neurodevelopmental and psychiatric diseases. Here we report that during the final stages of migration, transcription factor Neurogenic Differentiation 2 (Neurod2) contributes to terminal cellular localization within the cortical plate. In mice, in utero knockdown of Neurod2 resulted in reduced numbers of neurons localized to the uppermost region of the developing cortex, also termed the primitive cortical zone. Our ChIP-Seq and RNA-Seq analyses of genes regulated by NEUROD2 in the developing cortex identified a number of key target genes with known roles in Reelin signaling, a critical regulator of neuronal migration. Our focused analysis of regulation of the Reln gene, encoding the extracellular ligand REELIN, uncovered NEUROD2 binding to conserved E-box elements in multiple introns. Furthermore, we demonstrate that knockdown of NEUROD2 in primary cortical neurons resulted in a strong increase in Reln gene expression at the mRNA level, as well as a slight upregulation at the protein level. These data reveal a new role for NEUROD2 during the late stages of neuronal migration, and our analysis of its genomic targets offers new genes with potential roles in cortical lamination.
Collapse
|
129
|
Graded Coexpression of Ion Channel, Neurofilament, and Synaptic Genes in Fast-Spiking Vestibular Nucleus Neurons. J Neurosci 2019; 40:496-508. [PMID: 31719168 DOI: 10.1523/jneurosci.1500-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022] Open
Abstract
Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.
Collapse
|
130
|
"Females Are Not Just 'Protected' Males": Sex-Specific Vulnerabilities in Placenta and Brain after Prenatal Immune Disruption. eNeuro 2019; 6:ENEURO.0358-19.2019. [PMID: 31611335 PMCID: PMC6838689 DOI: 10.1523/eneuro.0358-19.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Current perceptions of genetic and environmental vulnerabilities in the developing fetus are biased toward male outcomes. An argument is made that males are more vulnerable to gestational complications and neurodevelopmental disorders, the implication being that an understanding of disrupted development in males is sufficient to understand causal mechanisms that are assumed to be similar but attenuated in females. Here we examine this assumption in the context of immune-driven alterations in fetal brain development and related outcomes in female and male mice. Pregnant C57BL/6 mice were treated with low-dose lipopolysaccharide at embryonic day 12.5. Placental pathology, acute fetal brain inflammation and hypoxia, long-term changes in adult cortex cytoarchitecture, altered densities and ratio of excitatory (Satb2+) to inhibitory (parvalbumin+) neuronal subtypes, postnatal growth, and behavior outcomes were compared between male and female offspring. We find that while males experience more pronounced placental pathology, fetal brain hypoxia, depleted PV and Satb2+ densities, and social and learning-related behavioral abnormalities, females exhibit unique acute inflammatory signaling in fetal brain, postnatal growth delay, opposite alterations in cortical PV densities, changes in juvenile behavior, delayed postnatal body growth, and elevated anxiety-related behavior as adults. While males are more severely impacted by prenatal immune disruption by several measures, females exposed to the same insult exhibit a unique set of vulnerabilities and developmental consequences that is not present in males. Our results clearly outline disparate sex-specific features of prenatal vulnerability to inflammatory insults and warn against the casual extrapolation of male disease mechanisms to females.
Collapse
|
131
|
Dawson RE, Nieto Guil AF, Robertson LJ, Piltz SG, Hughes JN, Thomas PQ. Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy. Neurobiol Dis 2019; 134:104640. [PMID: 31639411 DOI: 10.1016/j.nbd.2019.104640] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in the GAP activity toward RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2 and NPRL3) have been associated with focal epilepsy and focal cortical dysplasia (FCD). GATOR1 functions as an inhibitor of the mTORC1 signalling pathway, indicating that the downstream effects of mTORC1 deregulation underpin the disease. However, the vast majority of putative disease-causing variants have not been functionally assessed for mTORC1 repression activity. Here, we develop a novel in vitro functional assay that enables rapid assessment of GATOR1-gene variants. Surprisingly, of the 17 variants tested, we show that only six showed significantly impaired mTORC1 inhibition. To further investigate variant function in vivo, we generated a conditional Depdc5 mouse which modelled a 'second-hit' mechanism of disease. Generation of Depdc5 null 'clones' in the embryonic brain resulted in mTORC1 hyperactivity and modelled epilepsy and FCD symptoms including large dysmorphic neurons, defective migration and lower seizure thresholds. Using this model, we validated DEPDC5 variant F164del to be loss-of-function. We also show that Q542P is not functionally compromised in vivo, consistent with our in vitro findings. Overall, our data show that mTORC1 deregulation is the central pathological mechanism for GATOR1 variants and also indicates that a significant proportion of putative disease variants are pathologically inert, highlighting the importance of GATOR1 variant functional assessment.
Collapse
Affiliation(s)
- Ruby E Dawson
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Alvaro F Nieto Guil
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Louise J Robertson
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Sandra G Piltz
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - James N Hughes
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Paul Q Thomas
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Precision Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
132
|
Alvarez-Saavedra M, Yan K, De Repentigny Y, Hashem LE, Chaudary N, Sarwar S, Yang D, Ioshikhes I, Kothary R, Hirayama T, Yagi T, Picketts DJ. Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Front Mol Neurosci 2019; 12:243. [PMID: 31680852 PMCID: PMC6811508 DOI: 10.3389/fnmol.2019.00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Alterations in the homeostasis of either cortical progenitor pool, namely the apically located radial glial (RG) cells or the basal intermediate progenitors (IPCs) can severely impair cortical neuron production. Such changes are reflected by microcephaly and are often associated with cognitive defects. Genes encoding epigenetic regulators are a frequent cause of intellectual disability and many have been shown to regulate progenitor cell growth, including our inactivation of the Smarca1 gene encoding Snf2l, which is one of two ISWI mammalian orthologs. Loss of the Snf2l protein resulted in dysregulation of Foxg1 and IPC proliferation leading to macrocephaly. Here we show that inactivation of the closely related Smarca5 gene encoding the Snf2h chromatin remodeler is necessary for embryonic IPC expansion and subsequent specification of callosal projection neurons. Telencephalon-specific Smarca5 cKO embryos have impaired cell cycle kinetics and increased cell death, resulting in fewer Tbr2+ and FoxG1+ IPCs by mid-neurogenesis. These deficits give rise to adult mice with a dramatic reduction in Satb2+ upper layer neurons, and partial agenesis of the corpus callosum. Mice survive into adulthood but molecularly display reduced expression of the clustered protocadherin genes that may further contribute to altered dendritic arborization and a hyperactive behavioral phenotype. Our studies provide novel insight into the developmental function of Snf2h-dependent chromatin remodeling processes during brain development.
Collapse
Affiliation(s)
- Matías Alvarez-Saavedra
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lukas E. Hashem
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Nidhi Chaudary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shihab Sarwar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Doo Yang
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ilya Ioshikhes
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
133
|
Picco N, García-Moreno F, Maini PK, Woolley TE, Molnár Z. Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output. Cereb Cortex 2019; 28:2540-2550. [PMID: 29688292 PMCID: PMC5998983 DOI: 10.1093/cercor/bhy068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
The mammalian cerebral neocortex has a unique structure, composed of layers of different neuron types, interconnected in a stereotyped fashion. While the overall developmental program seems to be conserved, there are divergent developmental factors generating cortical diversity amongst species. In terms of cortical neuronal numbers, some of the determining factors are the size of the founder population, the duration of cortical neurogenesis, the proportion of different progenitor types, and the fine-tuned balance between self-renewing and differentiative divisions. We develop a mathematical model of neurogenesis that, accounting for these factors, aims at explaining the high diversity in neuronal numbers found across species. By framing our hypotheses in rigorous mathematical terms, we are able to identify paths of neurogenesis that match experimentally observed patterns in mouse, macaque and human. Additionally, we use our model to identify key parameters that would particularly benefit from accurate experimental investigation. We find that the timing of a switch in favor of symmetric neurogenic divisions produces the highest variation in cortical neuronal numbers. Surprisingly, assuming similar cell cycle lengths in primate progenitors, the increase in cortical neuronal numbers does not reflect a larger size of founder population, a prediction that has identified a specific need for experimental quantifications.
Collapse
Affiliation(s)
- Noemi Picco
- St John's College Research Centre, St John's College, St Giles, Oxford, UK.,Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, Leioa, Spain.,IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, Bilbao, Spain
| | - Philip K Maini
- St John's College Research Centre, St John's College, St Giles, Oxford, UK.,Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK
| | - Thomas E Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, UK
| | - Zoltán Molnár
- St John's College Research Centre, St John's College, St Giles, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
134
|
Wang M, Chen JJ, Huang Q, Su X, Yu YC, Liu LY. Connexin43 in neonatal excitatory neurons is important for short-term motor learning. Brain Res 2019; 1720:146287. [PMID: 31194949 DOI: 10.1016/j.brainres.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
In the neocortex, gap junctions are expressed at very early developmental stages, and they are involved in many processes such as neurogenesis, neuronal migration and synapse formation. Connexin43 (Cx43), a gap junction protein, has been found to be abundantly expressed in radial glial cells, excitatory neurons and astrocytes. Although accumulating evidence suggests that Cx43-mediated gap-junctional coupling between astrocytes plays an important role in the central nervous system, the function of Cx43 in early excitatory neurons remains elusive. To investigate the impact of Cx43 deficiency in excitatory neurons at early postnatal stages, we conditionally knocked out Cx43 in excitatory neurons under the Emx1 promoter by tamoxifen induction. We found that deletion of Cx43 around birth did not impair the laminar distribution of excitatory neurons in the neocortex. Moreover, mice with Cx43 deletion during the early postnatal stages had normal anxiety-like behaviors, depression-related behaviors, learning and memory-associated behaviors at adolescent stages. However, Cx43 conditional knockout mice exhibited impaired motor-learning behavior. These results suggested that Cx43 expression in excitatory neurons at early postnatal stages contributes to short-term motor learning capacity.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing-Jing Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qian Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin Su
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yong-Chun Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin-Yun Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
135
|
Arai Y, Cwetsch AW, Coppola E, Cipriani S, Nishihara H, Kanki H, Saillour Y, Freret-Hodara B, Dutriaux A, Okada N, Okano H, Dehay C, Nardelli J, Gressens P, Shimogori T, D’Onofrio G, Pierani A. Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex. Cell Rep 2019; 29:645-658.e5. [DOI: 10.1016/j.celrep.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 10/25/2022] Open
|
136
|
Han X, Wei Y, Wu X, Gao J, Yang Z, Zhao C. PDK1 Regulates Transition Period of Apical Progenitors to Basal Progenitors by Controlling Asymmetric Cell Division. Cereb Cortex 2019; 30:406-420. [DOI: 10.1093/cercor/bhz146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
The six-layered neocortex consists of diverse neuron subtypes. Deeper-layer neurons originate from apical progenitors (APs), while upper-layer neurons are mainly produced by basal progenitors (BPs), which are derivatives of APs. As development proceeds, an AP generates two daughter cells that comprise an AP and a deeper-layer neuron or a BP. How the transition of APs to BPs is spatiotemporally regulated is a fundamental question. Here, we report that conditional deletion of phoshpoinositide-dependent protein kinase 1 (PDK1) in mouse developing cortex achieved by crossing Emx1Cre line with Pdk1fl/fl leads to a delayed transition of APs to BPs and subsequently causes an increased output of deeper-layer neurons. We demonstrate that PDK1 is involved in the modulation of the aPKC-Par3 complex and further regulates the asymmetric cell division (ACD). We also find Hes1, a downstream effecter of Notch signal pathway is obviously upregulated. Knockdown of Hes1 or treatment with Notch signal inhibitor DAPT recovers the ACD defect in the Pdk1 cKO. Thus, we have identified a novel function of PDK1 in controlling the transition of APs to BPs.
Collapse
Affiliation(s)
- Xiaoning Han
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongjie Wei
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Gao
- Department of Neurobiology
- Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing 211166, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
137
|
Nakagawa N, Plestant C, Yabuno-Nakagawa K, Li J, Lee J, Huang CW, Lee A, Krupa O, Adhikari A, Thompson S, Rhynes T, Arevalo V, Stein JL, Molnár Z, Badache A, Anton ES. Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron 2019; 103:836-852.e5. [PMID: 31277925 PMCID: PMC6728225 DOI: 10.1016/j.neuron.2019.05.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/07/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
Polarized, non-overlapping, regularly spaced, tiled organization of radial glial cells (RGCs) serves as a framework to generate and organize cortical neuronal columns, layers, and circuitry. Here, we show that mediator of cell motility 1 (Memo1) is a critical determinant of radial glial tiling during neocortical development. Memo1 deletion or knockdown leads to hyperbranching of RGC basal processes and disrupted RGC tiling, resulting in aberrant radial unit assembly and neuronal layering. Memo1 regulates microtubule (MT) stability necessary for RGC tiling. Memo1 deficiency leads to disrupted MT minus-end CAMSAP2 distribution, initiation of aberrant MT branching, and altered polarized trafficking of key basal domain proteins such as GPR56, and thus aberrant RGC tiling. These findings identify Memo1 as a mediator of RGC scaffold tiling, necessary to generate and organize neurons into functional ensembles in the developing cerebral cortex.
Collapse
Affiliation(s)
- Naoki Nakagawa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.
| | - Charlotte Plestant
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Keiko Yabuno-Nakagawa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jingjun Li
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janice Lee
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chu-Wei Huang
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Lee
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aditi Adhikari
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Suriya Thompson
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tamille Rhynes
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Victoria Arevalo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, 13009 Marseille, France
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
138
|
Molnár Z, Clowry GJ, Šestan N, Alzu'bi A, Bakken T, Hevner RF, Hüppi PS, Kostović I, Rakic P, Anton ES, Edwards D, Garcez P, Hoerder‐Suabedissen A, Kriegstein A. New insights into the development of the human cerebral cortex. J Anat 2019; 235:432-451. [PMID: 31373394 PMCID: PMC6704245 DOI: 10.1111/joa.13055] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The cerebral cortex constitutes more than half the volume of the human brain and is presumed to be responsible for the neuronal computations underlying complex phenomena, such as perception, thought, language, attention, episodic memory and voluntary movement. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are unique or highly derived in humans. Many human psychiatric and neurological conditions have developmental origins but cannot be studied adequately in animal models. The human cerebral cortex has some unique genetic, molecular, cellular and anatomical features, which need to be further explored. The Anatomical Society devoted its summer meeting to the topic of Human Brain Development in June 2018 to tackle these important issues. The meeting was organized by Gavin Clowry (Newcastle University) and Zoltán Molnár (University of Oxford), and held at St John's College, Oxford. The participants provided a broad overview of the structure of the human brain in the context of scaling relationships across the brains of mammals, conserved principles and recent changes in the human lineage. Speakers considered how neuronal progenitors diversified in human to generate an increasing variety of cortical neurons. The formation of the earliest cortical circuits of the earliest generated neurons in the subplate was discussed together with their involvement in neurodevelopmental pathologies. Gene expression networks and susceptibility genes associated to neurodevelopmental diseases were discussed and compared with the networks that can be identified in organoids developed from induced pluripotent stem cells that recapitulate some aspects of in vivo development. New views were discussed on the specification of glutamatergic pyramidal and γ-aminobutyric acid (GABA)ergic interneurons. With the advancement of various in vivo imaging methods, the histopathological observations can be now linked to in vivo normal conditions and to various diseases. Our review gives a general evaluation of the exciting new developments in these areas. The human cortex has a much enlarged association cortex with greater interconnectivity of cortical areas with each other and with an expanded thalamus. The human cortex has relative enlargement of the upper layers, enhanced diversity and function of inhibitory interneurons and a highly expanded transient subplate layer during development. Here we highlight recent studies that address how these differences emerge during development focusing on diverse facets of our evolution.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Gavin J. Clowry
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Nenad Šestan
- Department of Neuroscience, Yale University School of MedicineNew HavenCTUSA
| | - Ayman Alzu'bi
- Department of Basic Medical SciencesFaculty of MedicineYarmouk UniversityIrbidJordan
| | | | | | - Petra S. Hüppi
- Dept. de l'enfant et de l'adolescentHôpitaux Universitaires de GenèveGenèveSwitzerland
| | - Ivica Kostović
- Croatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of MedicineNew HavenCTUSA
| | - E. S. Anton
- UNC Neuroscience CenterDepartment of Cell and Molecular PhysiologyThe University of North Carolina School of MedicineChapel HillNCUSA
| | - David Edwards
- Centre for the Developing BrainBiomedical Engineering and Imaging Sciences,King's College LondonLondonUK
| | - Patricia Garcez
- Federal University of Rio de Janeiro, UFRJInstitute of Biomedical SciencesRio de JaneiroBrazil
| | | | - Arnold Kriegstein
- Department of NeurologyUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUCSFSan FranciscoCAUSA
| |
Collapse
|
139
|
Chabbert D, Caubit X, Roubertoux PL, Carlier M, Habermann B, Jacq B, Salin P, Metwaly M, Frahm C, Fatmi A, Garratt AN, Severac D, Dubois E, Kerkerian-Le Goff L, Fasano L, Gubellini P. Postnatal Tshz3 Deletion Drives Altered Corticostriatal Function and Autism Spectrum Disorder-like Behavior. Biol Psychiatry 2019; 86:274-285. [PMID: 31060802 DOI: 10.1016/j.biopsych.2019.03.974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, ∼50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic synapse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.
Collapse
Affiliation(s)
| | | | | | | | - Bianca Habermann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | - Bernard Jacq
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascal Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ahmed Fatmi
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Hospital Berlin, Berlin, Germany
| | - Dany Severac
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | - Emeric Dubois
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | | | | | | |
Collapse
|
140
|
Long non-coding RNA LncKdm2b regulates cortical neuronal differentiation by cis-activating Kdm2b. Protein Cell 2019; 11:161-186. [PMID: 31317506 PMCID: PMC7026249 DOI: 10.1007/s13238-019-0650-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying spatial and temporal control of cortical neurogenesis of the brain are largely elusive. Long non-coding RNAs (lncRNAs) have emerged as essential cell fate regulators. Here we found LncKdm2b (also known as Kancr), a lncRNA divergently transcribed from a bidirectional promoter of Kdm2b, is transiently expressed during early differentiation of cortical projection neurons. Interestingly, Kdm2b’s transcription is positively regulated in cis by LncKdm2b, which has intrinsic-activating function and facilitates a permissive chromatin environment at the Kdm2b’s promoter by associating with hnRNPAB. Lineage tracing experiments and phenotypic analyses indicated LncKdm2b and Kdm2b are crucial in proper differentiation and migration of cortical projection neurons. These observations unveiled a lncRNA-dependent machinery in regulating cortical neuronal differentiation.
Collapse
|
141
|
Bai QR, Shen Q. Influence without Presence: PRDM16 Casts Destiny. Neuron 2019; 98:867-869. [PMID: 29879386 DOI: 10.1016/j.neuron.2018.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromatin modifications play an important role in cortical neurogenesis. In this issue, Baizabal et al. (2018) show how PRDM16, a histone methyltransferase, influences upper layer neuron production and migration by pre-setting enhancer activity within the developmental radial glial lineage.
Collapse
Affiliation(s)
- Qing-Ran Bai
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China; PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Shen
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.
| |
Collapse
|
142
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
143
|
Treatment Strategies Based on Histological Targets against Invasive and Resistant Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:2964783. [PMID: 31320900 PMCID: PMC6610731 DOI: 10.1155/2019/2964783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most common and the most malignant primary brain tumor and is characterized by rapid proliferation, invasion into surrounding normal brain tissues, and consequent aberrant vascularization. In these characteristics of GBM, invasive properties are responsible for its recurrence after various therapies. The histomorphological patterns of glioma cell invasion have often been referred to as the “secondary structures of Scherer.” The “secondary structures of Scherer” can be classified mainly into four histological types as (i) perineuronal satellitosis, (ii) perivascular satellitosis, (iii) subpial spread, and (iv) invasion along the white matter tracts. In order to develop therapeutic interventions to mitigate glioma cell migration, it is important to understand the biological mechanism underlying the formation of these secondary structures. The main focus of this review is to examine new molecular pathways based on the histopathological evidence of GBM invasion as major prognostic factors for the high recurrence rate for GBMs. The histopathology-based pharmacological and biological targets for treatment strategies may improve the management of invasive and resistant GBMs.
Collapse
|
144
|
Shi L, Qalieh A, Lam MM, Keil JM, Kwan KY. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat Commun 2019; 10:2588. [PMID: 31197172 PMCID: PMC6565622 DOI: 10.1038/s41467-019-10411-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
The brain is a genomic mosaic shaped by cellular responses to genome damage. Here, we manipulate somatic genome stability by conditional Knl1 deletion from embryonic mouse brain. KNL1 mutations cause microcephaly and KNL1 mediates the spindle assembly checkpoint, a safeguard against chromosome missegregation and aneuploidy. We find that following Knl1 deletion, segregation errors in mitotic neural progenitor cells give rise to DNA damage on the missegregated chromosomes. This triggers rapid p53 activation and robust apoptotic and microglial phagocytic responses that extensively eliminate cells with somatic genome damage, thus causing microcephaly. By leaving only karyotypically normal progenitors to continue dividing, these mechanisms provide a second safeguard against brain somatic aneuploidy. Without Knl1 or p53-dependent safeguards, genome-damaged cells are not cleared, alleviating microcephaly, but paradoxically leading to total pre-weaning lethality. Thus, mitotic genome damage activates robust responses to eliminate somatic mutant cells, which if left unpurged, can impact brain and organismal fitness.
Collapse
Affiliation(s)
- Lei Shi
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adel Qalieh
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mandy M Lam
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason M Keil
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenneth Y Kwan
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
145
|
Miller DJ, Bhaduri A, Sestan N, Kriegstein A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr Opin Neurobiol 2019; 56:117-124. [PMID: 30677551 PMCID: PMC6996583 DOI: 10.1016/j.conb.2018.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
The cerebral cortex is the hallmark of the mammalian nervous system, and its large size and cellular diversity in humans support our most sophisticated cognitive abilities. Although the basic cellular organization of the cortex is conserved across mammals, cells have diversified during evolution. An increasingly integrated taxonomy of cell types, especially with the advent of single-cell transcriptomic data, has revealed an unprecedented variety of human cortical cell subtypes. Here, we broadly review the cellular composition and diversity of the mammalian brain, and how progenitor pools generate cell subtypes during development. We then discuss human cortical cells that are distinct from rodent cells, as well as the challenges and advantages of using model systems to study human cell types in health and disease.
Collapse
Affiliation(s)
- Daniel J Miller
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Aparna Bhaduri
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Departments of Genetics, of Psychiatry, and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| | - Arnold Kriegstein
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
146
|
Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, Pang ZP, Kim WY, Hart RP, Liu Y, Jiang P. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019; 24:908-926.e8. [PMID: 31130512 DOI: 10.1016/j.stem.2019.04.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a common neurodevelopmental disorder, and cognitive defects in DS patients may arise from imbalances in excitatory and inhibitory neurotransmission. Understanding the mechanisms underlying such imbalances may provide opportunities for therapeutic intervention. Here, we show that human induced pluripotent stem cells (hiPSCs) derived from DS patients overproduce OLIG2+ ventral forebrain neural progenitors. As a result, DS hiPSC-derived cerebral organoids excessively produce specific subclasses of GABAergic interneurons and cause impaired recognition memory in neuronal chimeric mice. Increased OLIG2 expression in DS cells directly upregulates interneuron lineage-determining transcription factors. shRNA-mediated knockdown of OLIG2 largely reverses abnormal gene expression in early-stage DS neural progenitors, reduces interneuron production in DS organoids and chimeric mouse brains, and improves behavioral deficits in DS chimeric mice. Thus, altered OLIG2 expression may underlie neurodevelopmental abnormalities and cognitive defects in DS patients.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew T Brawner
- Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shenglan Li
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing-Jing Liu
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hyosung Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Liu
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
147
|
Wu C, Zhang X, Chen P, Ruan X, Liu W, Li Y, Sun C, Hou L, Yin B, Qiang B, Shu P, Peng X. MicroRNA-129 modulates neuronal migration by targeting Fmr1 in the developing mouse cortex. Cell Death Dis 2019; 10:287. [PMID: 30911036 PMCID: PMC6433925 DOI: 10.1038/s41419-019-1517-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
Abstract
During cortical development, neuronal migration is one of the most important steps for normal cortical formation and function, and defects in this process cause many brain diseases. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we found that miR-129-5p and miR-129-3p were expressed in both neural progenitor cells and cortical neurons in the developing murine cortex. Moreover, abnormal miR-129 expression could block radial migration of both the deeper layer and upper layer neurons, and impair the multipolar to bipolar transition. However, antagomir-mediated inhibition resulted in overmigration of neurons. In addition, we showed that Fragile X Mental Retardation gene 1 (Fmr1), which is mutated in the autism spectrum disorder fragile X syndrome, is an important regulatory target for miR-129-5p. Furthermore, Fmr1 loss-of-function and gain-of-function experiments showed opposite effects on miR-129 regulation of neuronal migration, and restoring Fmr1 expression could counteract the deleterious effect of miR-129 on neuronal migration. Taken together, our results suggest that miR-129-5p could modulate the expression of fragile X mental retardation 1 protein (FMRP) to ensure normal neuron positioning in the developing cerebral cortex.
Collapse
Affiliation(s)
- Chao Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Xiaoling Zhang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Pan Chen
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Xiangbin Ruan
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Wei Liu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yanchao Li
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Changjie Sun
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, 650118, Kunming, China.
| |
Collapse
|
148
|
Derepression of sonic hedgehog signaling upon Gpr161 deletion unravels forebrain and ventricular abnormalities. Dev Biol 2019; 450:47-62. [PMID: 30914320 DOI: 10.1016/j.ydbio.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 11/24/2022]
Abstract
Inverse gradients of transcriptional repressors antagonize the transcriptional effector response to morphogens. However, the role of such inverse regulation might not manifest solely from lack of repressors. Sonic hedgehog (Shh) patterns the forebrain by being expressed ventrally; however, absence of antagonizing Gli3 repressor paradoxically cause insufficient pathway activation. Interestingly, lack of the primary cilia-localized G-protein-coupled receptor, Gpr161 increases Shh signaling in the mouse neural tube from coordinated lack of Gli3 repressor and Smoothened-independent activation. Here, by deleting Gpr161 in mouse neuroepithelial cells and radial glia at early mid-gestation we detected derepression of Shh signaling throughout forebrain, allowing determination of the pathophysiological consequences. Accumulation of cerebrospinal fluid (hydrocephalus) was apparent by birth, although usual causative defects in multiciliated ependymal cells or aqueduct were not seen. Rather, the ventricular surface was expanded (ventriculomegaly) during embryogenesis from radial glial overproliferation. Cortical phenotypes included polymicrogyria in the medial cingulate cortex, increased proliferation of intermediate progenitors and basal radial glia, and altered neocortical cytoarchitectonic structure with increased upper layer and decreased deep layer neurons. Finally, periventricular nodular heterotopia resulted from disrupted neuronal migration, while the radial glial scaffold was unaffected. Overall, suppression of Shh pathway during early mid-gestation prevents ventricular overgrowth, and regulates cortical gyration and neocortical/periventricular cytoarchitecture.
Collapse
|
149
|
Ji S, Zhou W, Li X, Liu S, Wang F, Li X, Zhao T, Ji G, Du J, Hao A. Maternal hyperglycemia disturbs neocortical neurogenesis via epigenetic regulation in C57BL/6J mice. Cell Death Dis 2019; 10:211. [PMID: 30824686 PMCID: PMC6397163 DOI: 10.1038/s41419-019-1438-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
Offspring of mothers with hyperglycemia during pregnancy have a higher incidence of long-term neuropsychiatric disorders than offspring from a normal pregnancy, indicating that neocortical neurogenesis might be affected by maternal hyperglycemia. A paucity of study evaluating the effects of hyperglycemia on neocortical neurogenetic differentiation of neural stem cells, and the mechanism remains unclear. We sought to investigate the the roles and possible molecular mechanism of maternal hyperglycemia on neocortical neurogenetic differentiation of neural stem cells. We established a mouse model of a hyperglycemic pregnancy to study effects of intrauterine exposure to maternal hyperglycemia on neocortical neurogenesis. We observed morphological changes in the neocortex and detected the neurogenetic differentiation of neural stem cells in offspring affected by high glucose levels. We investigated the regulatory network between epigenetic modification and transcription factors in differentiated neural stem cells under hyperglycemic conditions. Maternal hyperglycemia disturbs neocortical lamination in some non-malformed offspring. Our results suggested that hyperglycemia altered the early-born neuron fate and the distribution of newborn neurons in deep layers by promoting the earlier differentiation of neural stem cells. Altered histone acetylation and its regulation on the transcription of proneural genes might be correlated to the disrupted differentiation of neural stem cells and altered distribution of newborn projection neurons in the neocortex. Our data raised the possibility that maternal hyperglycemia in pregnancy disturbs the laminar distribution of neocortical projection neurons in some non-malformed offspring via epigenetic regulation on neural stem cell differentiation and the birthdate of neocortical neurons.
Collapse
Affiliation(s)
- Shufang Ji
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xian Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Foot and Ankle Surgery Center of Shandong University and Department of Hand and Foot Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Tiantian Zhao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Guangyu Ji
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Du
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
150
|
Yu IS, Chang HC, Chen KC, Lu YL, Shy HT, Chen CY, Lee KY, Lee LJ. Genetic Elimination of Connective Tissue Growth Factor in the Forebrain Affects Subplate Neurons in the Cortex and Oligodendrocytes in the Underlying White Matter. Front Neuroanat 2019; 13:16. [PMID: 30842729 PMCID: PMC6391576 DOI: 10.3389/fnana.2019.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a secreted extracellular matrix-associated protein, which play a role in regulating various cellular functions. Although the expression of CTGF has been reported in the cortical subplate, its function is still not clear. Thus, to explore the significance of CTGF in the brain, we created a forebrain-specific Ctgf knockout (FbCtgf KO) mouse model. By crossing Ctgffl/fl mice with Emx1-Cre transgenic mice, in which the expression of Cre is prenatally initiated, the full length Ctgf is removed in the forebrain structures. In young adult (2–3 months old) FbCtgf KO mice, subplate markers such as Nurr1 and Cplx3 are still expressed in the cortical layer VIb; however, the density of the subplate neurons is increased. Interestingly, in these mutants, we found a reduced structural complexity in the subplate neurons. The distribution patterns of neurons and glial cells, examined by immunohistochemistry, are comparable between genotypes in the somatosensory cortex. However, increased densities of mature oligodendrocytes, but not immature ones, were noticed in the external capsule underneath the cortical layer VIb in young adult FbCtgf KO mice. The features of myelinated axons in the external capsule were then examined using electron microscopy. Unexpectedly, the thickness of the myelin sheath was reduced in middle-aged (>12 months old), but not young adult FbCtgf KO mice. Our results suggest a secretory function of the subplate neurons, through the release of CTGF, which regulates the density and dendritic branching of subplate neurons as well as the maturation and function of nearby oligodendrocytes in the white matter.
Collapse
Affiliation(s)
- I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Chien Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|