101
|
Harmansa S, Alborelli I, Bieli D, Caussinus E, Affolter M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife 2017; 6. [PMID: 28395731 PMCID: PMC5388529 DOI: 10.7554/elife.22549] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Dimitri Bieli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Emmanuel Caussinus
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
102
|
Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster. Genetics 2017; 206:953-971. [PMID: 28396508 DOI: 10.1534/genetics.117.201921] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 12/29/2022] Open
Abstract
Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems.
Collapse
|
103
|
El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, Russell S, White R. Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLoS One 2017; 12:e0172725. [PMID: 28282436 PMCID: PMC5345799 DOI: 10.1371/journal.pone.0172725] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome.
Collapse
Affiliation(s)
- Sherif El-Sharnouby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Benjamin Umans
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Rosalyn Flower
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Siew Woh Choo
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
- * E-mail:
| |
Collapse
|
104
|
Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster. PLoS Genet 2017; 13:e1006548. [PMID: 28076349 PMCID: PMC5226733 DOI: 10.1371/journal.pgen.1006548] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton. Shapes of objects, living or not, should depend on their material properties and forces acting on them. Mechanical processes that create whole body shapes of multicellular organisms, or genes that regulate such processes, are largely unknown. Insect bodies are coated by cuticle, a matrix composed of proteins and the polysaccharide chitin. We show that, during metamorphosis of the fruit fly Drosophila melanogaster, the cuticle covering the long and thin larva (maggot) undergoes longitudinal contraction and lateral expansion to become the short and stout puparium covering the pupa. Furthermore, we identify a single protein component of the larval cuticle that confers the oriented contractility/expandability, thereby determining the pupal body shape in a mechanical manner.
Collapse
|
105
|
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 2016; 18:24-40. [PMID: 27795562 DOI: 10.1038/nrg.2016.118] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Matthew Gemberling
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 43 Ludwigstrasse, Bad Nauheim 61231, Germany
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21218, USA.,Howard Hughes Medical Institute, 725 North Wolfe Street, Baltimore, Maryland 21218, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
106
|
Trovisco V, Belaya K, Nashchekin D, Irion U, Sirinakis G, Butler R, Lee JJ, Gavis ER, St Johnston D. bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. eLife 2016; 5. [PMID: 27791980 PMCID: PMC5125753 DOI: 10.7554/elife.17537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion experiments demonstrate that the RNA is stably anchored at the anterior, independently of microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring. Super-resolution imaging reveals that bicoid mRNA forms 110-120 nm particles with variable RNA content, but constant size. These particles appear to be well-defined structures that package the RNA for transport and anchoring.
Collapse
Affiliation(s)
- Vítor Trovisco
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Katsiaryna Belaya
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dmitry Nashchekin
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Uwe Irion
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - George Sirinakis
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard Butler
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jack J Lee
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Daniel St Johnston
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
107
|
Redhai S, Hellberg JEEU, Wainwright M, Perera SW, Castellanos F, Kroeger B, Gandy C, Leiblich A, Corrigan L, Hilton T, Patel B, Fan SJ, Hamdy F, Goberdhan DCI, Wilson C. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells. PLoS Genet 2016; 12:e1006366. [PMID: 27727275 PMCID: PMC5065122 DOI: 10.1371/journal.pgen.1006366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022] Open
Abstract
Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.
Collapse
Affiliation(s)
- Siamak Redhai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sumeth W. Perera
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Felix Castellanos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Laura Corrigan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas Hilton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Patel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
108
|
Wissel S, Kieser A, Yasugi T, Duchek P, Roitinger E, Gokcezade J, Steinmann V, Gaul U, Mechtler K, Förstemann K, Knoblich JA, Neumüller RA. A Combination of CRISPR/Cas9 and Standardized RNAi as a Versatile Platform for the Characterization of Gene Function. G3 (BETHESDA, MD.) 2016; 6:2467-78. [PMID: 27280787 PMCID: PMC4978900 DOI: 10.1534/g3.116.028571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022]
Abstract
Traditional loss-of-function studies in Drosophila suffer from a number of shortcomings, including off-target effects in the case of RNA interference (RNAi) or the stochastic nature of mosaic clonal analysis. Here, we describe minimal in vivo GFP interference (miGFPi) as a versatile strategy to characterize gene function and to conduct highly stringent, cell type-specific loss-of-function experiments in Drosophila miGFPi combines CRISPR/Cas9-mediated tagging of genes at their endogenous locus with an immunotag and an exogenous 21 nucleotide RNAi effector sequence with the use of a single reagent, highly validated RNAi line targeting this sequence. We demonstrate the utility and time effectiveness of this method by characterizing the function of the Polymerase I (Pol I)-associated transcription factor Tif-1a, and the previously uncharacterized gene MESR4, in the Drosophila female germline stem cell lineage. In addition, we show that miGFPi serves as a powerful technique to functionally characterize individual isoforms of a gene. We exemplify this aspect of miGFPi by studying isoform-specific loss-of-function phenotypes of the longitudinals lacking (lola) gene in neural stem cells. Altogether, the miGFPi strategy constitutes a generalized loss-of-function approach that is amenable to the study of the function of all genes in the genome in a stringent and highly time effective manner.
Collapse
Affiliation(s)
- Sebastian Wissel
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria
| | - Anja Kieser
- Gene Center, Ludwig-Maximilians-University Munich, 81377, Germany
| | - Tetsuo Yasugi
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria
| | - Elisabeth Roitinger
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Joseph Gokcezade
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria
| | | | - Ulrike Gaul
- Gene Center, Ludwig-Maximilians-University Munich, 81377, Germany
| | - Karl Mechtler
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Klaus Förstemann
- Gene Center, Ludwig-Maximilians-University Munich, 81377, Germany
| | | | - Ralph A Neumüller
- Institute of Molecular Biotechnology Austria, 1030 Vienna, Austria Gene Center, Ludwig-Maximilians-University Munich, 81377, Germany
| |
Collapse
|
109
|
Norman M, Vuilleumier R, Springhorn A, Gawlik J, Pyrowolakis G. Pentagone internalises glypicans to fine-tune multiple signalling pathways. eLife 2016; 5. [PMID: 27269283 PMCID: PMC4924993 DOI: 10.7554/elife.13301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.
Collapse
Affiliation(s)
- Mark Norman
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Robin Vuilleumier
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Alexander Springhorn
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Jennifer Gawlik
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - George Pyrowolakis
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| |
Collapse
|
110
|
Chen JX, Cipriani PG, Mecenas D, Polanowska J, Piano F, Gunsalus KC, Selbach M. In Vivo Interaction Proteomics in Caenorhabditis elegans Embryos Provides New Insights into P Granule Dynamics. Mol Cell Proteomics 2016; 15:1642-57. [PMID: 26912668 PMCID: PMC4858945 DOI: 10.1074/mcp.m115.053975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/24/2016] [Indexed: 01/20/2023] Open
Abstract
Studying protein interactions in whole organisms is fundamental to understanding development. Here, we combine in vivo expressed GFP-tagged proteins with quantitative proteomics to identify protein-protein interactions of selected key proteins involved in early C. elegans embryogenesis. Co-affinity purification of interaction partners for eight bait proteins resulted in a pilot in vivo interaction map of proteins with a focus on early development. Our network reflects known biology and is highly enriched in functionally relevant interactions. To demonstrate the utility of the map, we looked for new regulators of P granule dynamics and found that GEI-12, a novel binding partner of the DYRK family kinase MBK-2, is a key regulator of P granule formation and germline maintenance. Our data corroborate a recently proposed model in which the phosphorylation state of GEI-12 controls P granule dynamics. In addition, we find that GEI-12 also induces granule formation in mammalian cells, suggesting a common regulatory mechanism in worms and humans. Our results show that in vivo interaction proteomics provides unique insights into animal development.
Collapse
Affiliation(s)
- Jia-Xuan Chen
- From the ‡Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany; §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Patricia G Cipriani
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ¶New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Desirea Mecenas
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Jolanta Polanowska
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ‖INSERM, U1104, 13288 Marseille, France
| | - Fabio Piano
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ¶New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- §Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003; ¶New York University Abu Dhabi, Abu Dhabi, United Arab Emirates;
| | - Matthias Selbach
- From the ‡Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany; **Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
111
|
Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, K J VV, Krishnan RT, Krishnamoorthy A, Ferreira IRS, Ejsmont RK, Finkl K, Hasse S, Kämpfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F. A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 2016; 5:e12068. [PMID: 26896675 PMCID: PMC4805545 DOI: 10.7554/elife.12068] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI:http://dx.doi.org/10.7554/eLife.12068.001 The fruit fly Drosophila melanogaster is a popular model organism in biological research. Studies using Drosophila have led to important insights into human biology, because related proteins often fulfil similar roles in flies and humans. Thus, studying the role of a protein in Drosophila can teach us about what it might do in a human. To fulfil their biological roles, proteins often occupy particular locations inside cells, such as the cell’s nucleus or surface membrane. Many proteins are also only found in specific types of cell, such as neurons or muscle cells. A protein’s location thus provides clues about what it does, however cells contain many thousands of proteins and identifying the location of each one is a herculean task. Sarov et al. took on this challenge and developed a new resource to study the localisation of all Drosophila proteins during this animal’s development. First, genetic engineering was used to tag thousands of Drosophila proteins with a green fluorescent protein, so that they could be tracked under a microscope. Sarov et al. tagged about 10000 Drosophila proteins in bacteria, and then introduced almost 900 of them into flies to create genetically modified flies. Each fly line contains an extra copy of the tagged gene that codes for one tagged protein. About two-thirds of these tagged proteins appeared to work normally after they were introduced into flies. Sarov et al. then looked at over 200 of these fly lines in more detail and observed that many of the proteins were found in particular cell types and localized to specific parts of the cells. Video imaging of the tagged proteins in living fruit fly embryos and pupae revealed the proteins’ movements, while other techniques showed which proteins bind to the tagged proteins, and may therefore work together in protein complexes. This resource is openly available to the community, and so researchers can use it to study their favourite protein and gain new insights into how proteins work and are regulated during Drosophila development. Following on from this work, the next challenge will be to create more flies carrying tagged proteins, and to swap the green fluorescent tag with other experimentally useful tags. DOI:http://dx.doi.org/10.7554/eLife.12068.002
Collapse
Affiliation(s)
- Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Helena Jambor
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Dana Suchold
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Bettina Stender
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Janosch
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Vinay Vikas K J
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - R T Krishnan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Aishwarya Krishnamoorthy
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Irene R S Ferreira
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Katja Finkl
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne Hasse
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Philipp Kämpfer
- Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
| | - Nicole Plewka
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elisabeth Vinis
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mani Ramaswami
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - K VijayRaghavan
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
112
|
Abstract
The field of "Developmental Biology" has dramatically changed over the past three decades. While genetic analysis had been center stage in the 1980s and continues to be a corner stone for investigations, the introduction of green fluorescent protein (GFP) in the 1990s has allowed us to look into living, developing embryos, and see how cells form tissues and how organ morphogenesis proceeds in real time. The introduction of protein binders into developmental studies some years ago has raised the precision yet another step, since it will allow the manipulation and study of how proteins function in real time. This chapter is a personal account on how GFP has, and how protein binders may, change the design of studies in the field of developmental biology.
Collapse
|
113
|
Abstract
Protein depletion by genetic means, in a very general sense including the use of RNA interference [1, 2] or CRISPR/Cas9-based methods, represents a central paradigm of modern biology to study protein functions in vivo. However, acting upstream the proteic level is a limiting factor if the turnover of the target protein is slow or the existing pool of the target protein is important (for instance, in insect embryos, as a consequence of a strong maternal contribution). In order to circumvent these problems, we developed deGradFP [3, 4]. deGradFP harnesses the ubiquitin-proteasome pathway to achieve direct depletion of GFP-tagged proteins. deGradFP is in essence a universal method because it relies on an evolutionarily conserved machinery for protein catabolism in eukaryotic cells; see refs. 5, 6 for review. deGradFP is particularly convenient in Drosophila melanogaster where it is implemented by a genetically encoded effector expressed under the control of the Gal4 system. deGradFP is a ready-to-use solution to perform knockdowns at the protein level if a fly line carrying a functional GFP-tagged version of the gene of interest is available. Many such lines have already been generated by the Drosophila community through different technologies allowing to make genomic rescue constructs or direct GFP knockins: protein-trap stock collections [7, 8] ( http://cooley.medicine.yale.edu/flytrap/ , http://www.flyprot.org/ ), P[acman] system [9], MiMIC lines [10, 11], and CRISPR/Cas9-driven homologous recombination.Two essential controls of a protein knockdown experiment are easily achieved using deGradFP. First, the removal of the target protein can be assessed by monitoring the disappearance of the GFP tag by fluorescence microscopy in parallel to the documentation of the phenotype of the protein knockdown (see Note 1 ). Second, the potential nonspecific effects of deGradFP can be assessed in control fly lacking a GFP-tagged target protein. So far, no nonspecific effects of the deGradFP effector have been reported [3].
Collapse
Affiliation(s)
- Emmanuel Caussinus
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Room 200B, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.
| |
Collapse
|
114
|
Bieli D, Alborelli I, Harmansa S, Matsuda S, Caussinus E, Affolter M. Development and Application of Functionalized Protein Binders in Multicellular Organisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:181-213. [DOI: 10.1016/bs.ircmb.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
115
|
Abstract
RNAi technologies enable the testing of gene function in a cell-type- and stage-specific manner in Drosophila. The development of genome-wide RNAi libraries has allowed expansion of this approach to the genome scale and supports identification of most genes required for a given process in a cell type of choice. However, a large-scale RNAi approach also harbors many potential pitfalls that can complicate interpretation of the results. Here, we summarize published screens and provide a guide on how to optimally plan and perform a large-scale, in vivo RNAi screen. We highlight the importance of assay design and give suggestions on how to optimize the assay conditions by testing positive and negative control genes. These genes are used to estimate false-negative and false-positive rates of the screen data. We discuss the planning and logistics of a large-scale screen in detail and suggest bioinformatics platforms to identify and select gene groups of interest for secondary assays. Finally, we review various options to confirm RNAi knock-down specificity and thus identify high confidence genes for more detailed case-by-case studies in the future.
Collapse
|
116
|
Lyne R, Sullivan J, Butano D, Contrino S, Heimbach J, Hu F, Kalderimis A, Lyne M, Smith RN, Štěpán R, Balakrishnan R, Binkley G, Harris T, Karra K, Moxon SAT, Motenko H, Neuhauser S, Ruzicka L, Cherry M, Richardson J, Stein L, Westerfield M, Worthey E, Micklem G. Cross-organism analysis using InterMine. Genesis 2015; 53:547-60. [PMID: 26097192 PMCID: PMC4545681 DOI: 10.1002/dvg.22869] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023]
Abstract
InterMine is a data integration warehouse and analysis software system developed for large and complex biological data sets. Designed for integrative analysis, it can be accessed through a user-friendly web interface. For bioinformaticians, extensive web services as well as programming interfaces for most common scripting languages support access to all features. The web interface includes a useful identifier look-up system, and both simple and sophisticated search options. Interactive results tables enable exploration, and data can be filtered, summarized, and browsed. A set of graphical analysis tools provide a rich environment for data exploration including statistical enrichment of sets of genes or other entities. InterMine databases have been developed for the major model organisms, budding yeast, nematode worm, fruit fly, zebrafish, mouse, and rat together with a newly developed human database. Here, we describe how this has facilitated interoperation and development of cross-organism analysis tools and reports. InterMine as a data exploration and analysis tool is also described. All the InterMine-based systems described in this article are resources freely available to the scientific community.
Collapse
Affiliation(s)
- Rachel Lyne
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Julie Sullivan
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Daniela Butano
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sergio Contrino
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Josh Heimbach
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Fengyuan Hu
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Alex Kalderimis
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Mike Lyne
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Richard N. Smith
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Radek Štěpán
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Rama Balakrishnan
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Gail Binkley
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Todd Harris
- Ontario Institute for Cancer Research, Toronto, ON, M5G0A3, Canada
| | - Kalpana Karra
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | - Howie Motenko
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
| | | | | | - Mike Cherry
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | - Lincoln Stein
- Ontario Institute for Cancer Research, Toronto, ON, M5G0A3, Canada
| | - Monte Westerfield
- ZFIN, University of Oregon, Eugene, OR, 97403, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Elizabeth Worthey
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gos Micklem
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
117
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
118
|
Nagarkar-Jaiswal S, DeLuca SZ, Lee PT, Lin WW, Pan H, Zuo Z, Lv J, Spradling AC, Bellen HJ. A genetic toolkit for tagging intronic MiMIC containing genes. eLife 2015; 4. [PMID: 26102525 PMCID: PMC4499919 DOI: 10.7554/elife.08469] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Previously, we described a large collection of Minos-Mediated Integration Cassettes (MiMICs) that contain two phiC31 recombinase target sites and allow the generation of a new exon that encodes a protein tag when the MiMIC is inserted in a codon intron (Nagarkar-Jaiswal et al., 2015). These modified genes permit numerous applications including assessment of protein expression pattern, identification of protein interaction partners by immunoprecipitation followed by mass spec, and reversible removal of the tagged protein in any tissue. At present, these conversions remain time and labor-intensive as they require embryos to be injected with plasmid DNA containing the exon tag. In this study, we describe a simple and reliable genetic strategy to tag genes/proteins that contain MiMIC insertions using an integrated exon encoding GFP flanked by FRT sequences. We document the efficiency and tag 60 mostly uncharacterized genes.
Collapse
Affiliation(s)
| | - Steven Z DeLuca
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hongling Pan
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Jiangxing Lv
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| |
Collapse
|
119
|
Byri S, Misra T, Syed ZA, Bätz T, Shah J, Boril L, Glashauser J, Aegerter-Wilmsen T, Matzat T, Moussian B, Uv A, Luschnig S. The Triple-Repeat Protein Anakonda Controls Epithelial Tricellular Junction Formation in Drosophila. Dev Cell 2015; 33:535-48. [PMID: 25982676 DOI: 10.1016/j.devcel.2015.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/09/2015] [Accepted: 03/26/2015] [Indexed: 11/24/2022]
Abstract
In epithelia, specialized tricellular junctions (TCJs) mediate cell contacts at three-cell vertices. TCJs are fundamental to epithelial biology and disease, but only a few TCJ components are known, and how they assemble at tricellular vertices is not understood. Here we describe a transmembrane protein, Anakonda (Aka), which localizes to TCJs and is essential for the formation of tricellular, but not bicellular, junctions in Drosophila. Loss of Aka causes epithelial barrier defects associated with irregular TCJ structure and geometry, suggesting that Aka organizes cell corners. Aka is necessary and sufficient for accumulation of Gliotactin at TCJs, suggesting that Aka initiates TCJ assembly by recruiting other proteins to tricellular vertices. Aka's extracellular domain has an unusual tripartite repeat structure that may mediate self-assembly, directed by the geometry of tricellular vertices. Conversely, Aka's cytoplasmic tail is dispensable for TCJ localization. Thus, extracellular interactions, rather than TCJ-directed intracellular transport, appear to mediate TCJ assembly.
Collapse
Affiliation(s)
- Sunitha Byri
- Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 40530 Gothenburg, Sweden
| | - Tvisha Misra
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Zulfeqhar A Syed
- Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 40530 Gothenburg, Sweden
| | - Tilmann Bätz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jimit Shah
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Boril
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jade Glashauser
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tinri Aegerter-Wilmsen
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, CiM, 48149 Münster, Germany
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Anne Uv
- Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 40530 Gothenburg, Sweden.
| | - Stefan Luschnig
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, CiM, 48149 Münster, Germany; Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
120
|
Tanaka K, Diekmann Y, Hazbun A, Hijazi A, Vreede B, Roch F, Sucena É. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family. Mol Biol Evol 2015; 32:1730-47. [PMID: 25743545 PMCID: PMC4476152 DOI: 10.1093/molbev/msv052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families.
Collapse
Affiliation(s)
| | | | | | - Assia Hijazi
- Centre de Biologie du Développement, CNRS UMR 5547, Université de Toulouse UPS, Toulouse, France
| | | | - Fernando Roch
- Centre de Biologie du Développement, CNRS UMR 5547, Université de Toulouse UPS, Toulouse, France
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal Departamento de Biologia Animal, Faculdade de Ciências, Edifício C2, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
121
|
Tastan ÖY, Liu JL. Visualizing Cytoophidia Expression in Drosophila Follicle Cells via Immunohistochemistry. Methods Mol Biol 2015; 1328:179-189. [PMID: 26324438 DOI: 10.1007/978-1-4939-2851-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a user-friendly immunohistochemical approach for the detection of protein localization in Drosophila ovaries, here focusing on CTP synthase. This approach mainly uses fluorescently labeled antibodies to detect single, double, or multiple antigens. We provide a step-by-step protocol with detailed notes and tips, a simplified method that can also be adapted to detect protein localization beyond Drosophila ovaries.
Collapse
Affiliation(s)
- Ömür Y Tastan
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | | |
Collapse
|
122
|
Rees JS, Lilley KS, Jackson AP. SILAC-iPAC: a quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture. J Proteomics 2014; 115:143-56. [PMID: 25534881 PMCID: PMC4329988 DOI: 10.1016/j.jprot.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/11/2014] [Indexed: 01/17/2023]
Abstract
Pull-down assays can identify members of protein complexes but suffer from co-isolation of contaminants. The problem is particularly acute when the specifically interacting partners are of low-abundance and/or bind transiently with low affinity. To differentiate true interacting partners from contaminants, we have combined SILAC labelling with a proteomic method called “Interactomes by Parallel Affinity Capture” (iPAC). In our method, a cell-line stably expressing a doubly tagged target endogenous protein and its tag-less control cell-line are differentially SILAC labelled. Lysates from the two cell-lines are mixed and the tagged protein is independently purified for MS analysis using multiple affinity resins in parallel. This allows the quantitative identification of tagged proteins and their binding partners. SILAC–iPAC provides a rigorous and sensitive approach that can discriminate between genuine binding partners and contaminants, even when the contaminants in the pull-down are in large excess. We employed our method to examine the interacting partners of phosphatidyl inositol 5-phosphate 4-kinase 2β subunit (PI5P4K2β) and the Fanconi anaemia core complex in the chicken pre-B cell-line DT40. We confirmed known components of these two complexes, and we have identified new potential binding partners. Combining the iPAC approach with SILAC labelling provides a sensitive and fully quantitative method for the discrimination of specific interactions under conditions where low signal to noise ratios are unavoidable. In addition, our work provides the first characterisation of the most abundant proteins within the DT40 proteome and the non-specific DT40 ‘beadomes’ (non-specific proteins binding to beads) for common epitope tags. Given the importance and widespread use of the DT40 cell-line, these will be important resources for the cell biology and immunology communities. Biological significance SILAC–iPAC provides an improved method for the analysis of low-affinity and/or low abundance protein-protein interactions. We use it to clarify two examples where the nature of the protein complexes are known, or are currently unclear. The method is simple and quantitative and will be applicable to many problems in cell and molecular biology. We also report the first chicken beadomes. SILAC–iPAC; an improved AP-MS method to quantitatively detect low abundance proteins RUVBL1 and its partner RUVBL2 are novel interactors of the Fanconi anaemia complex. First characterisation of chicken DT40 beadomes using four common epitope tags
Collapse
Affiliation(s)
- Johanna S Rees
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
123
|
Lye CM, Naylor HW, Sanson B. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos. Development 2014; 141:4006-17. [PMID: 25294944 PMCID: PMC4197698 DOI: 10.1242/dev.111310] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022]
Abstract
A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis.
Collapse
Affiliation(s)
- Claire M Lye
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Huw W Naylor
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|