101
|
Schaaf GJ, Ruijter JM, van Ruissen F, Zwijnenburg DA, Waaijer R, Valentijn LJ, Benit-Deekman J, van Kampen AHC, Baas F, Kool M. Full transcriptome analysis of rhabdomyosarcoma, normal, and fetal skeletal muscle: statistical comparison of multiple SAGE libraries. FASEB J 2005; 19:404-6. [PMID: 15629888 DOI: 10.1096/fj.04-2104fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Improved treatment strategies have increased overall survival, but the response of approximately one-third of the patients is still poor. To increase the knowledge of RMS pathogenesis, we performed the first full transcriptome analysis of RMS using serial analysis of gene expression (SAGE). With a G-test for the simultaneous comparison of subsets of SAGE libraries of normal skeletal muscle, embryonal (ERMS) and alveolar (ARMS) RMS, we identified 251 differentially expressed genes. A literature-mining procedure demonstrated that 158 of these genes have not previously been associated with RMS or normal muscle. Gene Ontology (GO) analysis assigned 198 of the 251 genes to muscle-specific classes, including those involved in normal myogenic development, as well as tumor-related classes. Prominent GO classes were those associated with proliferation and actin reorganization, which are processes that play roles during early muscle development, muscle function, and tumor progression. Using custom microarrays, we confirmed the (up- or down-) regulation of 80% of 98 differentially expressed genes. Another SAGE library of 19- to 22-week-old fetal skeletal muscle was compared with the RMS and normal muscle transcriptomes. Cluster analysis showed that the RMS and fetal muscle SAGE libraries formed one cluster distinct from normal muscle samples. Moreover, the expression profile of 86% of the differentially expressed genes between normal muscle and RMS was highly similar in fetal muscle and RMS. In conclusion, the G-test is a robust tool for analyzing groups of SAGE libraries and correctly identifies genes marking the difference between fully differentiated skeletal muscle and RMS. This study not only substantiates the close association between embryonic myogenesis and RMS development but also provides a rich source of candidate genes to further elucidate the etiology of RMS or to identify diagnostic and/or prognostic markers.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Neurogenetics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Wadhwa R, Yaguchi T, Kaur K, Suyama E, Kawasaki H, Taira K, Kaul SC. Use of a Randomized Hybrid Ribozyme Library for Identification of Genes Involved in Muscle Differentiation. J Biol Chem 2004; 279:51622-9. [PMID: 15448151 DOI: 10.1074/jbc.m407428200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have employed the hybrid hammerhead ribozyme-based gene discovery system for identification of genes functionally involved in muscle differentiation using in vitro myoblast differentiation assay. The major muscle regulatory genes (MyoD1, Mylk, myosin, myogenin, and Myf5) were identified endorsing the validity of this method. Other gene targets included tumor suppressors and cell cycle regulators (p19ARF and p21WAF1), FGFR-4, fibronectin, Prkg2, Pdk4, fem, and six novel proteins. Functional involvement of three of the identified targets in myoblast differentiation was confirmed by their specific knockdown using ribozymes and siRNA. Besides demonstrating a simple and an effective method of isolation of gene functions involved in muscle differentiation, we report for the first time that overexpression of Fem, a member of the sex-determining family of proteins, caused accelerated myotube formation, and its targeting deferred myoblast differentiation. This functional gene screening is not only helpful in understanding the molecular pathways of muscle differentiation but also to design molecular strategies for myopathologic therapies.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science & Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
103
|
Yu S, Zheng L, Trinh DK, Asa SL, Ezzat S. Distinct transcriptional control and action of fibroblast growth factor receptor 4 in differentiating skeletal muscle cells. J Transl Med 2004; 84:1571-80. [PMID: 15467729 DOI: 10.1038/labinvest.3700187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although FGF signaling promotes myoblast proliferation and represses myogenic differentiation, one of the FGF receptors (FGFR), FGFR4, is expressed mainly in mature skeletal muscle. Disruption of FGFR4 signaling interrupts chick limb muscle formation. To determine the developmental regulation of FGFR4 expression, we compared the transcriptional control and action of FGFR4 in myoblasts and myotubes. We identified higher FGFR4 expression in differentiated myotubes than precursor myoblasts. FGFR4 promoter activity was localized within a region 115 bp upstream of the transcription start site. Overlapping fragments of this promoter displayed a distinct difference when compared by electromobility shift assay (EMSA) using nuclear extracts from myoblasts and myotubes. While fragments B (-95/-56) and C (-65/-26) formed specific complexes in both cell types, these complexes were consistently more intense in myotubes than myoblasts. These complexes were efficiently competed by an Sp-type oligonucleotide and were supershifted by Sp1 and by Sp3 antibodies. Deletions of the Sp-binding sites in fragment B (-95/-56) confirmed their critical contribution to promoter activity. Moreover, Sp1 expression correlated with FGFR4-expression in myotubes. To determine whether FGFR4 expression regulates myoblast differentiation, we infected a soluble dominant-negative FGFR4-containing adenovirus into these cells. This significantly impeded Erk1/2 phosphorylation and differentiation of myoblasts into MHC-expressing myotubes. Our findings point to distinct transcriptional regulation and action for FGFR4 in differentiating skeletal muscle cells.
Collapse
Affiliation(s)
- Shunjiang Yu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, The Freeman Centre for Endocrine Oncology and The Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
104
|
Tannu NS, Rao VK, Chaudhary RM, Giorgianni F, Saeed AE, Gao Y, Raghow R. Comparative Proteomes of the Proliferating C2C12 Myoblasts and Fully Differentiated Myotubes Reveal the Complexity of the Skeletal Muscle Differentiation Program. Mol Cell Proteomics 2004; 3:1065-82. [PMID: 15286212 DOI: 10.1074/mcp.m400020-mcp200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cultured in low serum-containing growth medium, the mouse C(2)C(12) cells exit cell cycle and undergo a well-defined program of differentiation that culminates in the formation of myosin heavy chain-positive bona fide multinucleated muscle cells. To gain an understanding into this process, we compared total, membrane- and nuclear-enriched proteins, and phospho-proteins from the proliferating C(2)C(12) cells and the fully differentiated myotubes by the combined methods of two-dimensional PAGE, quantitative PDQuest image analysis, and MS. Quantification of more than 2,000 proteins from C(2)C(12) myoblasts and myotubes revealed that a vast majority of the abundant proteins appear to be relegated to the essential, housekeeping and structural functions, and their steady state levels remain relatively constant. In contrast, 75 proteins were highly regulated during the phenotypic conversion of rapidly dividing C(2)C(12) myoblasts into fully differentiated, multi-nucleated, post-mitotic myotubes. We found that differential accumulation of 26 phospho-proteins also occurred during conversion of C(2)C(12) myoblasts into myotubes. We identified the differentially expressed proteins by MALDI-TOF-MS and LC-ESI-quadrupole ion trap MS/MS. We demonstrate that more than 100 proteins, some shown to be associated with muscle differentiation for the first time, that regulate inter- and intracellular signaling, cell shape, proliferation, apoptosis, and gene expression impinge on the mechanism of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Nilesh S Tannu
- Departments of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
In ovo electroporation is a well-established method of gene transfer into neural and mesenchymal tissue in chick embryos. Electroporation of somites, however, has been hampered by low efficiency due to technical difficulties. Here, we present a powerful technique to electroporate avian somites and subpopulations of somitic cells at high efficiency in ovo. We demonstrate specific targeting of distinct somitic compartments and their derivatives using single or combinations of plasmid expression vectors. This technique opens new perspectives to investigate the morphologic and genetic basis of somite development.
Collapse
Affiliation(s)
- Martin Scaal
- Laboratoire de Génétique et de Physiologie du Développement, Developmental Biology Institute of Marseille (IBDM), CNRS UMR 654, University Aix-Marseille II, Campus de Luminy, Marseille, France
| | | | | | | |
Collapse
|
106
|
Abstract
Embryonic myogenesis involves the staged induction of myogenic regulatory factors and positional cues that dictate cell determination, proliferation, and differentiation into adult muscle. Muscle is able to regenerate after damage, and muscle regeneration is generally thought to recapitulate myogenesis during embryogenesis. There has been considerable progress in the delineation of myogenesis pathways during embryogenesis, but it is not known whether the same signaling pathways are relevant to muscle regeneration in adults. Here, we defined the subset of embryogenesis pathways induced in muscle regeneration using a 27 time-point in vivo muscle regeneration series. The embryonic Wnt (Wnt1, 3a, 7a, 11), Shh pathway, and the BMP (BMP2, 4, 7) pathway were not induced during muscle regeneration. Moreover, antagonists of Wnt signaling, sFRP1, sFRP2, and sFRP4 (secreted frizzled-related proteins) were significantly up-regulated, suggesting active inhibition of the Wnt pathway. The pro-differentiation FGFR4 pathway was transiently expressed at day 3, commensurate with expression of MyoD, Myogenin, Myf5, and Pax7. Protein verification studies showed fibroblast growth factor receptor 4 (FGFR4) protein to be strongly expressed in differentiating myoblasts and newly formed myotubes. We present evidence that FGF6 is likely the key ligand for FGFR4 during muscle regeneration, and further suggest that FGF6 is released from necrotic myofibers where it is then sequestered by basal laminae. We also confirmed activation of Notch1 in the regenerating muscle. Finally, known MyoD coactivators (MEF2A, p/CIP, TCF12) and repressors (Twist, Id2) were strongly induced at appropriate time points. Taken together, our results suggest that embryonic positional signals (Wnt, Shh, and BMP) are not induced in postnatal muscle regeneration, whereas cell-autonomous factors (Pax7, MRFs, FGFR4) involving muscle precursor proliferation and differentiation are recapitulated by muscle regeneration.
Collapse
Affiliation(s)
- Po Zhao
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
107
|
Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F. FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 2004; 267:119-34. [PMID: 14975721 DOI: 10.1016/j.ydbio.2003.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.
Collapse
Affiliation(s)
- Berta Alsina
- Biologia del Desenvolupament, Departament de Ciéncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
108
|
Morimoto Y, Ozaki T, Ouchida M, Umehara N, Ohata N, Yoshida A, Shimizu K, Inoue H. Single nucleotide polymorphism in fibroblast growth factor receptor 4 at codon 388 is associated with prognosis in high-grade soft tissue sarcoma. Cancer 2003; 98:2245-50. [PMID: 14601095 DOI: 10.1002/cncr.11778] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND A recent study revealed that single nucleotide polymorphism (SNP) at codon 388 (Gly or Arg) of fibroblast growth factor receptor 4 (FGFR4) was associated with prognosis in patients with carcinoma of the breast and colorectal carcinoma. The purpose of the current study was to investigate the correlation between codon 388 SNP and clinical prognosis in patients with sarcoma of the bone and soft tissues. METHODS Tumor samples were obtained from 143 patients with high-grade bone and soft tissue sarcomas at Okayama University Hospital between 1986-2002, and from 102 healthy volunteers. SNP of codon 388 was detected by sequencing and fragment length of polymerase chain reaction products digested by restriction enzyme. The chi-square test was used to compare genotype distribution and the Kaplan-Meier method was used for survival analysis. RESULTS With regard to FGFR4 genotypes in the 143 patients studied, 54 (37.8%) were Gly/Gly, 72 (50.3%) were Gly/Arg, and 17 (11.9%) were Arg/Arg, findings that were not significantly different from those of controls (P = 0.97). With regard to cumulative overall and metastasis-free survival, patients with the Gly/Gly genotype were found to have a better prognosis (P = 0.085 and P = 0.27, respectively). FGFR4 SNP was found to be correlated significantly with overall and metastasis-free survival in patients with soft tissue sarcomas (P = 0.029 and P = 0.045, respectively), but not in those patients with bone sarcomas (P = 0.88 and P = 0.75, respectively). CONCLUSIONS In the current study, the authors found a significant correlation between FGFR4 SNP and prognosis in patients with soft tissue sarcoma, although the samples were comprised of various histologic types. This SNP might be used to improve the prediction of clinical prognosis and lead to new treatment strategies in patients with soft tissue sarcomas.
Collapse
Affiliation(s)
- Yuki Morimoto
- Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Linker C, Lesbros C, Stark MR, Marcelle C. Intrinsic signals regulate the initial steps of myogenesis in vertebrates. Development 2003; 130:4797-807. [PMID: 12917295 DOI: 10.1242/dev.00688] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vertebrates, despite the evidence that extrinsic factors induce myogenesis in naive mesoderm, other experiments argue that the initiation of the myogenic program may take place independent of these factors. To resolve this discrepancy, we have re-addressed this issue, using short-term in vivo microsurgery and culture experiments in chick. Our results show that the initial expression of the muscle-specific markers Myf5 and MyoD is regulated in a mesoderm-autonomous fashion. The reception of a Wnt signal is required for MyoD, but not Myf5 expression; however, we show that the source of the Wnt signal is intrinsic to the mesoderm. Gain- and loss-of-function experiments indicate that Wnt5b, which is expressed in the presomitic mesoderm, represents the MyoD-activating cue. Despite Wnt5b expression in the presomitic mesoderm, MyoD is not expressed in this tissue: our experiments demonstrate that this is due to a Bmp inhibitory signal that prevents the premature expression of MyoD before somites form. Our results indicate that myogenesis is a multistep process which is initiated prior to somite formation in a mesoderm-autonomous fashion; as somites form, influences from adjacent tissues are likely to be required for maintenance and patterning of early muscles.
Collapse
Affiliation(s)
- Claudia Linker
- Laboratoire de Génétique et de Physiologie du Développement, Developmental Biology Institute of Marseille, CNRS UMR 6545, University Aix-Marseille II, Campus de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
110
|
Armand AS, Launay T, Pariset C, Della Gaspera B, Charbonnier F, Chanoine C. Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:97-105. [PMID: 12972298 DOI: 10.1016/s0167-4889(03)00103-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FGF6, a member of the fibroblast growth factor (FGF) family, accumulated almost exclusively in the myogenic lineage, supporting the finding that FGF6 could specifically regulate myogenesis. Using FGF6 (-/-) mutant mice, important functions in muscle regeneration have been proposed for FGF6 but remain largely controversial. Here, we examined the effect of a single injection of recombinant FGF6 (rhFGF6) on the regeneration of mouse soleus subjected to cardiotoxin injection, specifically looking for molecular and morphological phenotypes. The injection of rhFGF6 has two effects. First, there is an up-regulation of cyclin D1 mRNA, accounting for the regulating role of a high FGF6 concentration on proliferation, and second, differentiation markers such as CdkIs and MHC I and Tn I increase and cellular differentiation is accelerated. We also show a down-regulation of endogenous FGF6, acceleration of FGFR1 receptor expression and deceleration of the FGFR4 receptor expression, possibly accounting for biphasic effects of exogenous FGF6 on muscle regeneration.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cyclin D1/genetics
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/drug effects
- Cyclins/metabolism
- DNA-Binding Proteins
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Fibroblast Growth Factor 6
- Fibroblast Growth Factors/deficiency
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, MHC Class I/drug effects
- Genes, MHC Class I/genetics
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/drug effects
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- MyoD Protein/drug effects
- MyoD Protein/metabolism
- Myogenic Regulatory Factor 5
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/drug effects
- Receptors, Fibroblast Growth Factor/metabolism
- Regeneration/drug effects
- Regeneration/physiology
- Trans-Activators
- Troponin I/drug effects
- Troponin I/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Anne-Sophie Armand
- Laboratoire de Biologie du Développement et de la Différenciation Neuromusculaire, LNRS UMR 7060, Centre Universitaire des Saints-Pères, Université René Descartes, 45 rue des Saints-Pères, F-75720 Paris Cedex 06, France
| | | | | | | | | | | |
Collapse
|
111
|
Huang R, Stolte D, Kurz H, Ehehalt F, Cann GM, Stockdale FE, Patel K, Christ B. Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Dev Biol 2003; 255:30-47. [PMID: 12618132 DOI: 10.1016/s0012-1606(02)00051-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fgf-8 encodes a secreted signaling molecule mediating key roles in embryonic patterning. This study analyzes the expression pattern, regulation, and function of this growth factor in the paraxial mesoderm of the avian embryo. In the mature somite, expression of Fgf-8 is restricted to a subpopulation of myotome cells, comprising most, but not all, epaxial and hypaxial muscle precursors. Following ablation of the notochord and floor plate, Fgf-8 expression is not activated in the somites, in either the epaxial or the hypaxial domain, while ablation of the dorsal neural tube does not affect Fgf-8 expression in paraxial mesoderm. Contrary to the view that hypaxial muscle precursors are independent of regulatory influences from axial structures, these findings provide the first evidence for a regulatory influence of ventral, but not dorsal axial structures on the hypaxial muscle domain. Sonic hedgehog can substitute for the ventral neural tube and notochord in the initiation of Fgf-8 expression in the myotome. It is also shown that Fgf-8 protein leads to an increase in sclerotomal cell proliferation and enhances rib cartilage development in mature somites, whereas inhibition of Fgf signaling by SU 5402 causes deletions in developing ribs. These observations demonstrate: (1) a regulatory influence of the ventral axial organs on the hypaxial muscle compartment; (2) regulation of epaxial and hypaxial expression of Fgf-8 by Sonic hedgehog; and (3) independent regulation of Fgf-8 and MyoD in the hypaxial myotome by ventral axial organs. It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, Fgf-8 has a functional role in rib formation.
Collapse
Affiliation(s)
- Ruijin Huang
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
The "community effect" is necessary for tissue differentiation. In the Xenopus muscle paradigm, e-FGF has been identified as a candidate community factor. Standley et al.1 now show that the community effect, mediated through FGF signalling, continues to be important at later stages of development in the posterior part of the embryo. In this region, the paraxial mesoderm is still undergoing segmentation into somites, which are the site of early skeletal muscle formation. Indeed, somitogenesis, together with the read-out of the Hox code, which confers anteroposterior positional identity, is regulated by FGF signalling. This raises the question of the co-ordination between these events and the community effect which orchestrates myogenesis.
Collapse
Affiliation(s)
- Margaret Buckingham
- CNRS URA1947, Department of Development Biology, Pasteur Institute, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|