101
|
Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R of Secale vavilovii Grossh. J Appl Genet 2010; 51:1-8. [PMID: 20145294 DOI: 10.1007/bf03195704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Employing FISH analysis as well as BLAST and CUSTAL W (1.82) programs, we investigated types of DNA nucleotide sequences building an additional heterochromatic band in 2R chromosomes of 3 lines of Secale vavilovii Grossh. The probes used in FISH analysis were designed based on the reverse transcriptase sequence of Ty1-copia and Ty3-gypsy retrotransposons and the 5S rRNA gene sequence. No hybridization signals from the reverse transcriptase probes were observed in the chromosome region where the additional band occurs. On the other hand, signals were observed after hybridization with the 5S rDNA probe, clearly suggesting the presence of that type of sequences in the analyzed heterochromatin band. Using BLAST and CUSTAL W programs, we revealed high similarity of the JNK1 sequence to the 5S rRNA gene from Hordeum chilense (HCH1016, HCH1018, 88%) and to a fragment of the 5S rRNA sequence of H. marinum (HMAR003, 97%). In addition, the same fragment of JNK1 was shown to be very similar to the part of the Angela retrotransposon (92%) as well as to the SNAC 426K20-1 transposon (89%) belonging to CACTA family, both from Triticum monococcum, and to Zingeria biebersteiniana pericentromeric sequences (78%). The similarity of JNK1 to those sequences may be accidental or the JNK1 may represent an ancient mobile genetic element that caught the 5S rRNA sequence. During the evolution those sequences might have been accumulated in the particular region on the 2R chromosome. Our results suggest that the additional heterochromatin band in chromosomes 2R of S. vavilovii is a collection of defective genes and/or mobile genetic elements.
Collapse
|
102
|
Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1. Mol Cell Biochem 2010; 339:271-84. [PMID: 20148353 DOI: 10.1007/s11010-010-0390-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/25/2010] [Indexed: 12/16/2022]
Abstract
Hat1 was the first histone acetyltransferase identified; however, its biological function is still unclear. In this report, it is shown for the first time that human Hat1 has two isoforms. Isoform a has 418 amino acids (aa) and is localized exclusively in the nuclear matrix of normal human keratinocytes (NHKs). Isoform b has 334 aa and is located in the cytoplasm, the nucleoplasm, attached to the chromatin and to the nuclear matrix. Immunohistochemical analyses revealed that the bulk of Hat1 is confined to the nucleus, with much lesser amounts in the cytoplasm. Cells undergoing mitotic division have an elevated amount of Hat1 compared to those that are non-mitotic. Senescent cells, however, exhibit a higher concentration of Hat1 in the cytoplasm compare to proliferating cells and the amount of Hat1 in the nucleus decreases with the progression of senescence. NHKs exposed to hydrogen peroxide (H(2)O(2)) or to a beam of high mass and energy ion particles displayed bright nuclear staining for Hat1, a phenotype that was not observed in NHKs exposed to gamma-rays. We established that the enhanced nuclear staining for Hat1 in response to these treatments is regulated by the PI3K and the mitogen-activated protein kinase signaling pathways. Our observations clearly implicate Hat1 in the cellular response assuring the survival of the treated cells.
Collapse
|
103
|
Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G. Senescing Cells Share Common Features with Dedifferentiating Cells. Rejuvenation Res 2009; 12:435-43. [DOI: 10.1089/rej.2009.0887] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Meytal Damri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Gila Granot
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Hagit Ben-Meir
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Yigal Avivi
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Plaschkes
- The National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Vadim Fraifeld
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| |
Collapse
|
104
|
Gaudin V, Andrey P, Devinoy E, Kress C, Kieu K, Beaujean N, Maurin Y, Debey P. Modeling the 3D functional architecture of the nucleus in animal and plant kingdoms. C R Biol 2009; 332:937-46. [PMID: 19909917 DOI: 10.1016/j.crvi.2009.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Compartmentalization is one of the fundamental principles which underly nuclear function. Numerous studies describe complex and sometimes conflicting relationships between nuclear gene positioning and transcription regulation. Therefore the question is whether topological landmarks and/or organization principles exist to describe the nuclear architecture and, if existing, whether these principles are identical in the animal and plant kingdoms. In the frame of an agroBI-INRA program on nuclear architecture, we set up a multidisciplinary approach combining biological studies, spatial statistics and 3D modeling to investigate spatial organization of a nuclear compartment in both plant and animal cells in their physiological contexts. In this article, we review the questions addressed in this program and the methodology of our work.
Collapse
Affiliation(s)
- Valérie Gaudin
- Laboratoire de biologie cellulaire, UR501, IJPB, route de Saint-Cyr, INRA, 78026 Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LACJ, Spillane C, Pikaard CS, Fransz P, Peeters AJM. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000638. [PMID: 19730687 PMCID: PMC2728481 DOI: 10.1371/journal.pgen.1000638] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 08/08/2009] [Indexed: 11/18/2022] Open
Abstract
Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process. The habitat of the plant model species Arabidopsis thaliana can be found throughout the Northern hemisphere. As a consequence, individual populations have acclimated to a great diversity of environmental conditions. This is reflected by a wealth of natural genetic variation in many phenotypic traits. We utilized this natural variation via a novel approach, combining microscopic examination, quantitative genetics, and analysis of environmental parameters, to understand the regulation of nuclear chromatin compaction in leaf mesophyll cells. We show that the level of chromatin compaction among natural Arabidopsis thaliana accessions correlates with latitude of origin and depends on local light intensity. Our study provides evidence that the photoreceptor PHYTOCHROME-B (PHYB) and the histone modifier HISTONE DEACETYLASE 6 (HDA6) are positive regulators of global chromatin organization in a light-dependent manner. In addition, HDA6 specifically controls light-mediated chromatin compaction of the Nucleolar Organizing Regions (NORs). We propose that the observed light-controlled plasticity of chromatin plays a role in acclimation and survival of plants in their natural environment.
Collapse
Affiliation(s)
- Federico Tessadori
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Penka Pavlova
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Genetics, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Rachel Clifton
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Frédéric Pontvianne
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - L. Basten Snoek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Frank F. Millenaar
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Roeland Kees Schulkes
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel van Driel
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Charles Spillane
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Craig S. Pikaard
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PF); (AJMP)
| | - Anton J. M. Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail: (PF); (AJMP)
| |
Collapse
|
106
|
Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep 2009; 10:1015-21. [PMID: 19680290 DOI: 10.1038/embor.2009.152] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 06/03/2009] [Accepted: 06/08/2009] [Indexed: 11/08/2022] Open
Abstract
Centromeric constitutive heterochromatin is marked by DNA methylation and dimethylated histone H3 Lys 9 (H3K9me2) in Arabidopsis. RNA-directed DNA methylation (RdDM) is a process that uses 24-nucleotide (nt) small interfering RNAs (siRNAs) to induce de novo methylation to its homologous DNA sequences. Despite the presence of centromeric 24-nt siRNAs, mutations in genes required for RdDM do not appreciably influence the methylation of centromeric repeats. The mechanism by which constitutive heterochromatin is protected from RdDM remains puzzling. Here, we report that the vegetative cell nuclei (VN) of the male gametophyte (pollen) invariably undergo extensive decondensation of centromeric heterochromatin and lose centromere identity. VN show greatly reduced H3K9me2, phenocopying nuclei carrying a mutation in the chromatin remodeller DECREASE IN DNA METHYLATION 1 (DDM1). However, unlike the situation in ddm1 nuclei, the decondensed heterochromatin retains dense CG methylation and transcriptional silencing, and, unexpectedly, is subjected to RdDM-dependent hypermethylation in non-CG contexts. These findings reveal two assembly orders of silent heterochromatin and implicate the condensed form in blocking the RdDM machinery.
Collapse
|
107
|
Tirichine L, Andrey P, Biot E, Maurin Y, Gaudin V. 3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei. PLANT METHODS 2009; 5:11. [PMID: 19650905 PMCID: PMC2731090 DOI: 10.1186/1746-4811-5-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/03/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fluorescent hybridization techniques are widely used to study the functional organization of different compartments within the mammalian nucleus. However, few examples of such studies are known in the plant kingdom. Indeed, preservation of nuclei 3D structure, which is required for nuclear organization studies, is difficult to fulfill. RESULTS We report a rapid protocol for fluorescent in situ hybridization (FISH) performed on 3D isolated nuclei and thin cryosectioned leaves of Arabidopsis thaliana. The use of direct labeling minimized treatment steps, shortening the overall procedure. Using image analysis, we measured different parameters related to nucleus morphology and overall 3D structure. CONCLUSION Our work describes a 3D-FISH protocol that preserves the 3D structure of Arabidopsis interphase nuclei. Moreover, we report for the first time FISH using cryosections of Arabidopsis leaves. This protocol is a valuable tool to investigate nuclear architecture and chromatin organization.
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
- Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Philippe Andrey
- Neurobiologie de l'Olfaction et de la Prise Alimentaire, INRA UMR 1197, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France
- IFR 144 Neuro-Sud, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Eric Biot
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
| | - Yves Maurin
- Neurobiologie de l'Olfaction et de la Prise Alimentaire, INRA UMR 1197, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France
- IFR 144 Neuro-Sud, Paris, France
| | - Valérie Gaudin
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
| |
Collapse
|
108
|
Grafi G. The complexity of cellular dedifferentiation: implications for regenerative medicine. Trends Biotechnol 2009; 27:329-32. [DOI: 10.1016/j.tibtech.2009.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 12/15/2022]
|
109
|
Ondrej V, Kitner M, Dolezalová I, Nádvorník P, Navrátilová B, Lebeda A. Chromatin structural rearrangement during dedifferentiation of protoplasts of Cucumis sativus L. Mol Cells 2009; 27:443-7. [PMID: 19390825 DOI: 10.1007/s10059-009-0057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/31/2022] Open
Abstract
This paper reports on the structural rearrangement of satellite DNA type I repeats and heterochromatin during the dedifferentiation and cell cycling of mesophyll protoplasts of cucumber (Cucumis sativus). These repeats were localized in the telomeric heterochromatin of cucumber chromosomes and in the chromocenters of interphase nuclei. The dramatic reduction of heterochromatin involves decondensation of subtelomeric repeats in freshly isolated protoplasts; however, there are not a great many remarkable changes in the expression profile. In spite of that, reformation of the chromocenters, occurring 48 h after protoplast isolation, is accompanied by recondensation of satellite DNA type I; however, only partial reassembly of these repeats was revealed. In this study, FISH and a flow cytometry assay show a correlation between the partial chromocenter and the repeats reassembly, and with the reentry of cultivated protoplasts into the cell cycle and first cell division. After that, divided cells displayed a higher variability in the expression profile than did leaves' mesophyll cells and protoplasts.
Collapse
Affiliation(s)
- Vladan Ondrej
- Department of Botany, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
110
|
de Nooijer S, Wellink J, Mulder B, Bisseling T. Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 2009; 37:3558-68. [PMID: 19359359 PMCID: PMC2699506 DOI: 10.1093/nar/gkp219] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The organization of the eukaryote nucleus into functional compartments arises by self-organization both through specific protein-protein and protein-DNA interactions and non-specific interactions that lead to entropic effects, such as e.g. depletion attraction. While many specific interactions have so far been demonstrated, the contributions of non-specific interactions are still unclear. We used coarse-grained molecular dynamics simulations of previously published models for Arabidopsis thaliana chromatin organization to show that non-specific interactions can explain the in vivo localization of nucleoli and chromocenters. Also, we quantitatively demonstrate that chromatin looping contributes to the formation of chromosome territories. Our results are consistent with the previously published Rosette model for Arabidopsis chromatin organization and suggest that chromocenter-associated loops play a role in suppressing chromocenter clustering.
Collapse
Affiliation(s)
- S de Nooijer
- Laboratory for Molecular Biology, Wageningen University, Drovendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | | | | | | |
Collapse
|
111
|
Chitteti BR, Tan F, Mujahid H, Magee BG, Bridges SM, Peng Z. Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis. Proteomics 2009; 8:4303-16. [PMID: 18814325 DOI: 10.1002/pmic.200701149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell dedifferentiation is a cell fate switching process in which differentiated cells undergo genome reprogramming to regain the competency of cell division and organ regeneration. The molecular mechanism underlying the cell dedifferentiation process remains obscure. In this report, we investigate the cell dedifferentiation process in Arabidopsis using a shotgun proteomics approach. A total of 758 proteins are identified by two or more matched peptides. Comparative analyses at four time points using two label-free methods reveal that 193 proteins display up-regulation and 183 proteins display down-regulation within 48 h. While the results of the two label-free quantification methods match well with each other, comparison with previously published 2-DE gel results reveal that label-free quantification results differ substantially from those of the 2-DE method for proteins with peptides common to multiple proteins, suggesting a limitation of the label-free methods in quantifying proteins with closely related family members in complex samples. Our results show that the shotgun approach and the traditional 2-DE gel approach complement each other in both protein identification and quantification. An interesting observation is that core histones and histone variants are subjected to extensive down-regulation, indicating that there is a dramatic change in the chromatin during cell differentiation.
Collapse
Affiliation(s)
- Brahmananda Reddy Chitteti
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
112
|
|
113
|
Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, Moreau H, Kreis M, Lecharny A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol Biol 2008; 8:291. [PMID: 18950478 PMCID: PMC2584047 DOI: 10.1186/1471-2148-8-291] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/24/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. RESULTS The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. CONCLUSION Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature differentiation. The future use of Ostreococcus tauri and Physcomitrella patens as biological models should allow us to obtain a better insight into the functional importance of WOX13 OG genes.
Collapse
Affiliation(s)
- Yves Deveaux
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Claire Toffano-Nioche
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Gaelle Claisse
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Vincent Thareau
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Halima Morin
- Laboratoire de Biologie Cellulaire, Institut J. P. Bourgin, INRA, 78026 Versailles Cedex, France
| | - Patrick Laufs
- Laboratoire de Biologie Cellulaire, Institut J. P. Bourgin, INRA, 78026 Versailles Cedex, France
| | - Hervé Moreau
- Observatoire Océanologique, Laboratoire Arago, Unité Mixte de Recherche 7628, CNRS-Université Pierre et Marie Curie, BP44, 66651 Banyuls sur Mer Cedex, France
| | - Martin Kreis
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Alain Lecharny
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| |
Collapse
|
114
|
Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:169-79. [PMID: 18643979 DOI: 10.1111/j.1365-313x.2008.03596.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.
Collapse
Affiliation(s)
- Jessica Marion
- Laboratoire Biologie Cellulaire, Institute Jean-Pierre Bourgin, INRA, 78000 Versailles, France
| | | | | | | | | | | |
Collapse
|
115
|
Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 2008; 3:e3306. [PMID: 18827894 PMCID: PMC2556100 DOI: 10.1371/journal.pone.0003306] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/01/2008] [Indexed: 11/19/2022] Open
Abstract
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.
Collapse
|
116
|
Papait R, Pistore C, Grazini U, Babbio F, Cogliati S, Pecoraro D, Brino L, Morand AL, Dechampesme AM, Spada F, Leonhardt H, McBlane F, Oudet P, Bonapace IM. The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol Biol Cell 2008; 19:3554-63. [PMID: 18508923 DOI: 10.1091/mbc.e07-10-1059] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterochromatic chromosomal regions undergo large-scale reorganization and progressively aggregate, forming chromocenters. These are dynamic structures that rapidly adapt to various stimuli that influence gene expression patterns, cell cycle progression, and differentiation. Np95-ICBP90 (m- and h-UHRF1) is a histone-binding protein expressed only in proliferating cells. During pericentromeric heterochromatin (PH) replication, Np95 specifically relocalizes to chromocenters where it highly concentrates in the replication factories that correspond to less compacted DNA. Np95 recruits HDAC and DNMT1 to PH and depletion of Np95 impairs PH replication. Here we show that Np95 causes large-scale modifications of chromocenters independently from the H3:K9 and H4:K20 trimethylation pathways, from the expression levels of HP1, from DNA methylation and from the cell cycle. The PHD domain is essential to induce this effect. The PHD domain is also required in vitro to increase access of a restriction enzyme to DNA packaged into nucleosomal arrays. We propose that the PHD domain of Np95-ICBP90 contributes to the opening and/or stabilization of dense chromocenter structures to support the recruitment of modifying enzymes, like HDAC and DNMT1, required for the replication and formation of PH.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Structural and Functional Biology, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Exner V, Hennig L. Chromatin rearrangements in development. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:64-9. [PMID: 18024147 DOI: 10.1016/j.pbi.2007.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 05/22/2023]
Abstract
Chromatin states change dramatically during plant development. Globally, cytologically defined heterochromatin increases during cell differentiation and organ maturation, while it decreases during callus formation and protoplastization. Interestingly, around the time of bolting, heterochromatin content of leaf nuclei decreases transiently. Locally, chromatin compactness of the regulatory gene GLABRA2 is controlled by positional cues and correlates with transcriptional activity. In the case of the flowering time regulator FLC, chromatin compactness and histone modifications are controlled by environmental cues and ensure faithful maintenance of gene repression after vernalization. The combination of cytological studies, locus-specific analyses, and novel genome-wide profiling techniques should soon lead to a more detailed understanding of the mechanisms coupling intranuclear architecture and development.
Collapse
Affiliation(s)
- Vivien Exner
- Institute of Plant Sciences & Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | |
Collapse
|
118
|
Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. THE PLANT CELL 2007; 19:2793-803. [PMID: 17873096 PMCID: PMC2048703 DOI: 10.1105/tpc.107.053231] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Efforts to understand nuclear organization in plant cells have received little assistance from the better-studied animal nuclei, because plant proteomes do not contain recognizable counterparts to the key animal proteins involved in nuclear organization, such as lamin nuclear intermediate filament proteins. Previous studies identified a plant-specific insoluble nuclear protein in carrot (Daucus carota), called Nuclear Matrix Constituent Protein1 (NMCP1), which contains extensive coiled-coil domains and localizes to the nuclear periphery. Here, we describe a genetic characterization of two NMCP1-related nuclear proteins in Arabidopsis thaliana, LITTLE NUCLEI1 (LINC1) and LINC2. Disruption of either gene caused a reduction in nuclear size and altered nuclear morphology. Moreover, combining linc1 and linc2 mutations had an additive effect on nuclear size and morphology but a synergistic effect on chromocenter number (reduction) and whole-plant morphology (dwarfing). The reduction in nuclear size in the linc1 linc2 double mutant was not accompanied by a corresponding change in endopolyploidy. Rather, the density of DNA packaging at all endopolyploid levels in the linc1 linc2 mutants was increased significantly. Our results indicate that the LINC coiled-coil proteins are important determinants of plant nuclear structure.
Collapse
Affiliation(s)
- Travis A Dittmer
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | |
Collapse
|
119
|
Tessadori F, Schulkes RK, van Driel R, Fransz P. Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:848-57. [PMID: 17470059 DOI: 10.1111/j.1365-313x.2007.03093.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The floral transition marks the switch from vegetative to reproductive growth, and is controlled by different pathways responsive to endogenous and exogenous cues. The developmental switch is accompanied by local changes in chromatin such as histone modifications. In this study we demonstrate large-scale reorganization of chromatin in rosette leaves during the floral transition. An extensive reduction in chromocenters prior to bolting is followed by a recovery of the heterochromatin domains after elongation of the floral stem. The transient reduction in chromocenters is a result of relocation away from chromocenters of methylated DNA sequences, 5S rDNA and interspersed pericentromeric repeats, but not of 45S rDNA or the 180-bp centromere tandem repeats. Moreover, fluorescence in situ hybridization analysis revealed decondensation of chromatin in gene-rich regions. A mutant analysis indicated that the blue-light photoreceptor CRYPTOCHROME 2 is involved in triggering chromatin decondensation, suggesting a light-signaling pathway towards large-scale chromatin modulation.
Collapse
Affiliation(s)
- Federico Tessadori
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|