101
|
Different patterns of Robertsonian fusion pairing in Bovidae and the house mouse: the relationship between chromosome size and nuclear territories. Genet Res (Camb) 2012; 94:97-111. [DOI: 10.1017/s0016672312000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SummaryUsing a dataset of karyotypic changes reported for bovids and the house mouse (Mus musculus domesticus) together with information from the cattle (Bos taurus) and mouse genomes, we examined two principal variables that have been proposed to predict chromosomal positioning in the nucleus, chromosome size and GC content. These were expected to influence the distribution of Robertsonian (Rb) fusions, the predominant mode of chromosomal change in both taxa. We found the largest chromosomes to be most frequently involved in fusions in bovids, and confirm earlier reports that chromosomes of intermediate size were the most frequent fusers in mice. We then tested whether chromosomal positioning can explain Rb fusion frequencies. We classified chromosomes into groups by size and considered the frequency of interactions between specific groups. Among the interactions, mouse chromosomes showed a slight tendency to fuse with neighbouring chromosomes, in line with expectations of chromosomal positioning, but also resembling predictions from meiotic spindle-induced bias. Bovids, on the other hand, showed no trend in interactions, with small chromosomes being the least frequent partner for all size classes. We discuss the results in terms of nuclear organization at various cell cycle stages and the proposed mechanisms of Rb fusion formation, and note that the difference can be explained by (i) considering bovid species generally to be characterized by a greater intermingling of chromosomal size classes than the house mouse, or (ii) by the vastly different timescales underpinning their evolutionary histories.
Collapse
|
102
|
Penfold CA, Brown PE, Lawrence ND, Goldman ASH. Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition. PLoS Comput Biol 2012; 8:e1002496. [PMID: 22570605 PMCID: PMC3342934 DOI: 10.1371/journal.pcbi.1002496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/12/2012] [Indexed: 01/17/2023] Open
Abstract
Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult. Organisms store their genetic material in the form of chromosomes that must be replicated and shared out during cell division. In sexual reproduction the cell division, called meiosis, halves the number of chromosomes to form gametes. This halving requires a complex reorganisation of chromosomes. Each gamete receives one maternal or one paternal copy of every chromosome. This requires a pairing process between the maternal and paternal chromosomes of each type. Once paired the two chromosomes are organised in space to bias subsequent movement in opposite directions when the nucleus divides. How chromosomes pair is of great importance to understanding fertility, and manipulating chromosomes in crops species, for which it is desirable to breed in new genes to improve hardiness or yield. We have modelled chromosomes in 3-dimensions based on the experimental organism Saccharomyces cerevisiae. We used our model to ask if various physical features of chromosomes might influence their ability to pair. We found that binding chromosome ends to the nuclear wall and pushing those ends together helps to encourage pairing along the length of chromosomes. It has long been known this special chromosome organisation occurs in live cells, but the significance of it has been difficult to determine.
Collapse
Affiliation(s)
- Christopher A. Penfold
- Department of Molecular Biology and Biotechnology, Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Paul E. Brown
- Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Neil D. Lawrence
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair S. H. Goldman
- Department of Molecular Biology and Biotechnology, Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
103
|
Murphy SP, Bass HW. The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. J Cell Sci 2012; 125:3681-90. [PMID: 22553213 DOI: 10.1242/jcs.108290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Meiosis involves a dramatic reorganization of the genetic material, along with changes in the architecture of the nucleoplasm and cytoplasm. In the opisthokonts, nuclear envelope and meiotic chromosome behavior are coordinated by forces generated in the cytoplasm and transferred to the nucleus by the nuclear-envelope protein linkers SUN and KASH. During meiotic prophase I, the telomere bouquet arrangement has roles in interhomolog recognition, pairing, synapsis, interlock resolution and homologous chromosome recombination. The maize desynaptic (dy) mutant is defective in homologous chromosome synapsis, recombination, telomere-nuclear envelope interactions and chromosome segregation. A detailed three-dimensional cytological analysis of dy revealed telomere misplacement during the bouquet stage, synaptic irregularities, nuclear envelope distortion and chromosome bridges at anaphase I. Using linkage and B-A translocation mapping, we placed dy on the long arm of chromosome 3, genetic bin 3.06. SSR marker analysis narrowed the mapping interval to 9 cM. Candidate genes in this region include a PM3-type SUN domain protein, ZmSUN3. No obvious genetic lesions were found in the ZmSUN3 allele of dy, but a conspicuous splice variant, ZmSUN3-sv1, was observed in mRNA from dy. The variant message is predicted to result in the synthesis of a truncated ZmSUN3 protein lacking two C-terminal transmembrane domains. Other potential candidate genes relevant to the documented phenotypes were also considered. In summary, this study reveals that dy causes disruption of a central meiotic pathway connecting nuclear envelope integrity to telomere localization and synapsis during meiotic prophase.
Collapse
Affiliation(s)
- Shaun P Murphy
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL 32306-4370, USA
| | | |
Collapse
|
104
|
Valenzuela NT, Perera E, Naranjo T. Dynamics of rye chromosome 1R regions with high or low crossover frequency in homology search and synapsis development. PLoS One 2012; 7:e36385. [PMID: 22558456 PMCID: PMC3340359 DOI: 10.1371/journal.pone.0036385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/01/2012] [Indexed: 02/02/2023] Open
Abstract
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.
Collapse
Affiliation(s)
- Nohelia T. Valenzuela
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Esther Perera
- Departamento de Biología Vegetal, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
105
|
Abstract
Maize, with its excellent forward genetics and male sterility screens, was used to identify >50 meiotic mutants representing at least 35 genes that affect key prophase processes such as pairing, synapsis, and homologous recombination. Most of these mutants were found by Inna Golubovskaya during the course of her remarkable career as a cytogeneticist. In addition to undertaking general cytological surveys to classify mutant phenotypes, Golubovskaya focused her efforts on characterizing several key regulatory mutants: ameiotic1 (am1), required to establish the meiotic cell cycle in maize; absence of first division (afd1), required for proper prophase chromosome morphology and for meiotic sister-chromatid cohesion leading to a reductive chromosome segregation at the first meiotic division; and plural abnormalities of meiosis (pam1), required for the clustering of telomeres on the nuclear envelope needed for pairing and synapsis. Her dramatic childhood in Leningrad during its siege in World War II, her fortuitous education in genetics at Leningrad State University, her continued research at the forward-looking Institute of Cytology and Genetics of the USSR Academy of Science Siberian branch, her plight at the fall of the Soviet Union, and her work in America helped engender a unique and valuable plant geneticist. Inna Golubovskaya related this personal history to the authors in conversation.
Collapse
|
106
|
Abstract
G-quartets are square planar arrangements of four guanine bases, which can form extraordinarily stable stacks when present in nucleic acid sequences. Such G-quadruplex structures were long regarded as an in vitro phenomenon, but the widespread presence of suitable sequences in genomes and the identification of proteins that stabilize, modify or resolve these nucleic acid structures have provided circumstantial evidence for their physiological relevance. The therapeutic potential of small molecules that can stabilize or disrupt G-quadruplex structures has invigorated the field in recent years. Here we review some of the key observations that support biological functions for G-quadruplex DNA as well as the techniques and tools that have enabled researchers to probe these structures and their interactions with proteins and small molecules.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia.
| | | |
Collapse
|
107
|
Tiang CL, He Y, Pawlowski WP. Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. PLANT PHYSIOLOGY 2012; 158:26-34. [PMID: 22095045 PMCID: PMC3252114 DOI: 10.1104/pp.111.187161] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
108
|
|
109
|
Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution. Chromosoma 2011; 121:201-8. [PMID: 22134684 DOI: 10.1007/s00412-011-0354-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 01/27/2023]
Abstract
In many species, including wheat, crossing over is distal, and the proximal regions of chromosome arms contribute little to genetic maps. This was thought to be a consequence of terminal initiation of synapsis favoring distal crossing over. However, in an inverted rye chromosome arm, the pattern of metaphase I chiasmata was also inverted, suggesting that crossover frequencies were specific to chromosome segments. Here, wheat chromosome arms 2BS and 4AL, with essentially entire arms inverted in reverse tandem duplications (rtd), were studied in the MI of meiosis. Inversion-duplication placed the recombining segments in the middle of the arms. While the overall pairing frequencies of the inverted-duplicated arms were considerably reduced relative to normal arms, chiasmata, if present, were always located in the same regions as in structurally normal arms, and relative chiasma frequencies remained the same. The frequencies of fragment or fragment + bridge configurations in AI and AII indicated that of the two tandemly arranged copies of segments in rtds, the more distal inverted segments were more likely to cross over than the segments in their original orientations. These observations show that also in wheat, relative crossover frequencies along chromosome arms are predetermined and independent of the segment location. The segments normally not licensed to cross over do not do so even when placed in seemingly most favorable positions for it.
Collapse
|
110
|
Tsai JH, McKee BD. Homologous pairing and the role of pairing centers in meiosis. J Cell Sci 2011; 124:1955-63. [PMID: 21625006 DOI: 10.1242/jcs.006387] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.
Collapse
Affiliation(s)
- Jui-He Tsai
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
111
|
Sustained and rapid chromosome movements are critical for chromosome pairing and meiotic progression in budding yeast. Genetics 2011; 188:21-32. [PMID: 21339478 DOI: 10.1534/genetics.110.125575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere-led chromosome movements are a conserved feature of meiosis I (MI) prophase. Several roles have been proposed for such chromosome motion, including promoting homolog pairing and removing inappropriate chromosomal interactions. Here, we provide evidence in budding yeast that rapid chromosome movements affect homolog pairing and recombination. We found that csm4Δ strains, which are defective for telomere-led chromosome movements, show defects in homolog pairing as measured in a "one-dot/two-dot tetR-GFP" assay; however, pairing in csm4Δ eventually reaches near wild-type (WT) levels. Charged-to-alanine scanning mutagenesis of CSM4 yielded one allele, csm4-3, that confers a csm4Δ-like delay in meiotic prophase but promotes high spore viability. The meiotic delay in csm4-3 strains is essential for spore viability because a null mutation (rad17Δ) in the Rad17 checkpoint protein suppresses the delay but confers a severe spore viability defect. csm4-3 mutants show a general defect in chromosome motion but an intermediate defect in chromosome pairing. Chromosome velocity analysis in live cells showed that while average chromosome velocity was strongly reduced in csm4-3, chromosomes in this mutant displayed occasional rapid movements. Lastly, we observed that spo11 mutants displaying lower levels of meiosis-induced double-strand breaks showed higher spore viability in the presence of the csm4-3 mutation compared to csm4Δ. On the basis of these observations, we propose that during meiotic prophase the presence of occasional fast moving chromosomes over an extended period of time is sufficient to promote WT levels of recombination and high spore viability; however, sustained and rapid chromosome movements are required to prevent a checkpoint response and promote efficient meiotic progression.
Collapse
|
112
|
Abstract
The events occurring at the onset of meiosis have not been fully elucidated. In the present study, OsAM1 was identified in rice (Oryza sativa L.) by map-based cloning. OsAM1, a homolog of Arabidopsis SWI1 and maize AM1, encodes a protein with a coiled-coil domain in its central region. In the Osam1 mutant, pollen mother cells are arrested at leptotene, showing that OsAM1 is required for the leptotene-zygotene transition. Immunocytological analysis revealed that OsAM1 exists as foci in early prophase I meiocytes. Very faint OsREC8 foci persisted in the Osam1 mutant, indicating that OsAM1 is not required for the initial meiotic recruitment of OsREC8. In the absence of OsAM1, many other critical meiotic components, including PAIR2, ZEP1 and OsMER3, could not be correctly installed onto chromosomes. In contrast, in pair2, Osmer3 and zep1 mutants, OsAM1 could be loaded normally, suggesting that OsAM1 plays a fundamental role in building the proper chromosome structure at the beginning of meiosis.
Collapse
|
113
|
Murphy SP, Simmons CR, Bass HW. Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC PLANT BIOLOGY 2010; 10:269. [PMID: 21143845 PMCID: PMC3017857 DOI: 10.1186/1471-2229-10-269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 12/08/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84) domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. RESULTS We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5), which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses). The first (ZmSUN1, 2), here designated canonical C-terminal SUN-domain (CCSD), includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5), here designated plant-prevalent mid-SUN 3 transmembrane (PM3), includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million) in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. CONCLUSIONS The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3 subfamily may represent a novel class of proteins with possible new and intriguing roles within the plant nuclear envelope. Expression levels for ZmSUN1-4 are consistent with basic cellular functions, whereas ZmSUN5 expression levels indicate a role in pollen. Models for possible topological arrangements of the CCSD-type and PM3-type SUN-domain proteins are presented.
Collapse
Affiliation(s)
- Shaun P Murphy
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA 32306-4370
| | | | - Hank W Bass
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA 32306-4370
- Department of Biological Science, The Florida State University, Tallahassee, FL, USA 32306-4370
| |
Collapse
|
114
|
Pawlowski WP. Chromosome organization and dynamics in plants. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:640-645. [PMID: 20970369 DOI: 10.1016/j.pbi.2010.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/02/2010] [Accepted: 09/23/2010] [Indexed: 05/28/2023]
Abstract
The past few years have brought renewed interest in understanding the dynamics of chromosomes in interphase cells as well as during cell division, particularly meiosis. This research has been fueled by new imaging methods, particularly three-dimensional, high-resolution, and live microscopy. Major contributors are also new genetic tools that allow elucidation of mechanisms controlling chromosome behavior. Recent studies in plants have explored chromatin arrangement in interphase nuclei, chromosome interactions and movement during meiotic prophase I, and mechanisms that ensure correct segregation of chromosomes during anaphase. These studies shed light on chromosome dynamics in a small-genome plant Arabidopsis thaliana, as well as in plants with large and complex genomes of polyploid origin, such as wheat and maize.
Collapse
Affiliation(s)
- Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
115
|
Wang K, Wang M, Tang D, Shen Y, Qin B, Li M, Cheng Z. PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 2010; 22:12-9. [PMID: 21119003 PMCID: PMC3016970 DOI: 10.1091/mbc.e10-08-0667] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PAIR3, an axis-associated protein, is essential for bouquet formation, initial homologous pairing and normal recombination, and SC assembly in rice. During meiosis, the paired homologous chromosomes are tightly held together by the synaptonemal complex (SC). This complex consists of two parallel axial/lateral elements (AEs/LEs) and one central element. Here, we observed that PAIR3 localized to the chromosome core during prophase I and associated with both unsynapsed AEs and synapsed LEs. Analyses of the severe pair3 mutant demonstrated that PAIR3 was essential for bouquet formation, homologous pairing and normal recombination, and SC assembly. In addition, we showed that although PAIR3 was not required for the initial recruitment of PAIR2, it was required for the proper association of PAIR2 with chromosomes. Dual immunostaining revealed that PAIR3 highly colocalized with REC8. Moreover, studies using a rec8 mutant indicated that PAIR3 localized to chromosomes in a REC8-dependent manner.
Collapse
Affiliation(s)
- Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
116
|
Starr DA, Fridolfsson HN. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 2010; 26:421-44. [PMID: 20507227 DOI: 10.1146/annurev-cellbio-100109-104037] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nuclear envelope links the cytoskeleton to structural components of the nucleus. It functions to coordinate nuclear migration and anchorage, organize chromatin, and aid meiotic chromosome pairing. Forces generated by the cytoskeleton are transferred across the nuclear envelope to the nuclear lamina through a nuclear-envelope bridge consisting of SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1 and Syne/Nesprin homology) proteins. Some KASH-SUN combinations connect microtubules, centrosomes, actin filaments, or intermediate filaments to the surface of the nucleus. Other combinations are used in cell cycle control, nuclear import, or apoptosis. Interactions between the cytoskeleton and the nucleus also affect global cytoskeleton organization. SUN and KASH proteins were identified through genetic screens for mispositioned nuclei in model organisms. Knockouts of SUN or KASH proteins disrupt neurological and muscular development in mice. Defects in SUN and KASH proteins have been linked to human diseases including muscular dystrophy, ataxia, progeria, lissencephaly, and cancer.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
117
|
Non-homologous chromosome pairing and crossover formation in haploid rice meiosis. Chromosoma 2010; 120:47-60. [DOI: 10.1007/s00412-010-0288-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 12/17/2022]
|
118
|
Chikashige Y, Haraguchi T, Hiraoka Y. Nuclear envelope attachment is not necessary for telomere function in fission yeast. Nucleus 2010; 1:481-6. [PMID: 21327090 DOI: 10.4161/nucl.1.6.13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 11/19/2022] Open
Abstract
Inner nuclear membrane (INM) proteins can be important for positioning chromosomes within the nucleus. Little is known about INM proteins in the fission yeast Schizossacharomayces pombe. Telomeres are the most obvious chromosomal sites that are anchored to the nuclear envelope in this organism. A group of proteins that tether telomeres to the spindle-pole body (SPB) during meiotic prophase, such as Bqt1, Bqt2 and Sad1, has been identified previously, but proteins for anchoring telomeres to the nuclear envelope in vegetative cells have not been identified until recently. A recent report demonstrates that Bqt3 and Bqt4 are INM proteins that affect nuclear positioning of telomeres in vegetative cells, and consequently affect the telomere clustering in meiotic prophase. Interestingly, in the absence of Bqt4, telomeres are separated from the nuclear envelope but telomere silencing and telomere length are properly regulated. An important implication of these results is that the functional integrity of telomeres is maintained independently of their connection to the nuclear envelope.
Collapse
Affiliation(s)
- Yuji Chikashige
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Nishi-ku, Kobe Japan
| | | | | |
Collapse
|
119
|
Daish T, Casey A, Grützner F. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus. Reprod Fertil Dev 2010; 21:976-84. [PMID: 19874721 DOI: 10.1071/rd09085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/25/2009] [Indexed: 12/28/2022] Open
Abstract
Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ...) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation.
Collapse
Affiliation(s)
- Tasman Daish
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
120
|
Chikashige Y, Yamane M, Okamasa K, Tsutsumi C, Kojidani T, Sato M, Haraguchi T, Hiraoka Y. Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. ACTA ACUST UNITED AC 2010; 187:413-27. [PMID: 19948484 PMCID: PMC2779253 DOI: 10.1083/jcb.200902122] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A screen identifies two more bouquet proteins required for meiotic telomere clustering: Bqt4 anchors the telomeres, whereas Bqt3 protects Bqt4 from degradation. In many organisms, telomeres cluster to form a bouquet arrangement of chromosomes during meiotic prophase. Previously, we reported that two meiotic proteins, Bqt1 and -2, are required for tethering telomeres to the spindle pole body (SPB) during meiotic prophase in fission yeast. This study has further identified two novel, ubiquitously expressed inner nuclear membrane (INM) proteins, Bqt3 and -4, which are required for bouquet formation. We found that in the absence of Bqt4, telomeres failed to associate with the nuclear membranes in vegetative cells and consequently failed to cluster to the SPB in meiotic prophase. In the absence of Bqt3, Bqt4 protein was degraded during meiosis, leading to a phenotype similar to that of the bqt4-null mutant. Collectively, these results show that Bqt4 anchors telomeres to the INM and that Bqt3 protects Bqt4 from protein degradation. Interestingly, the functional integrity of telomeres is maintained even when they are separated from the nuclear envelope in vegetative cells.
Collapse
Affiliation(s)
- Yuji Chikashige
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Nishi-ku, Kobe 651-2492, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
122
|
Abstract
G-quartets are square planar arrangements of four guanine bases, which can form extraordinarily stable stacks when present in nucleic acid sequences. Such G-quadruplex structures were long regarded as an in vitro phenomenon, but the widespread presence of suitable sequences in genomes and the identification of proteins that stabilize, modify, or resolve these nucleic acid structures have provided circumstantial evidence for their physiological relevance. The therapeutic potential of small molecules that can stabilize or disrupt G-quadruplex structures has invigorated the field in recent years. Here we review some of the key observations that support biological functions for G-quadruplex DNA as well as the techniques and tools that have enabled researchers to probe these structures and their interactions with proteins and small molecules.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute and the University of Sydney, Sydney, Australia
| | | |
Collapse
|
123
|
Ding DQ, Haraguchi T, Hiraoka Y. From meiosis to postmeiotic events: alignment and recognition of homologous chromosomes in meiosis. FEBS J 2009; 277:565-70. [PMID: 20015081 DOI: 10.1111/j.1742-4658.2009.07501.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombination of homologous chromosomes is essential for correct reductional segregation of homologous chromosomes, which characterizes meiosis. To accomplish homologous recombination, chromosomes must find their homologous partners and pair with them within the spatial constraints of the nucleus. Although various mechanisms have developed in different organisms, two major steps are involved in the process of pairing: first, alignment of homologous chromosomes to bring them close to each other for recognition; and second, recognition of the homologous partner of each chromosome so that they can form an intimate pair. Here, we discuss the various mechanisms used for alignment and recognition of homologous chromosomes in meiosis.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, Japan
| | | | | |
Collapse
|
124
|
Verstrepen KJ, Fink GR. Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet 2009; 43:1-24. [PMID: 19640229 DOI: 10.1146/annurev-genet-102108-134156] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic microorganisms have evolved ingenious mechanisms to generate variability at their cell surface, permitting differential adherence, rapid adaptation to changing environments, and evasion of immune surveillance. Fungi such as Saccharomyces cerevisiae and the pathogen Candida albicans carry a family of mucin and adhesin genes that allow adhesion to various surfaces and tissues. Trypanosoma cruzi, T. brucei, and Plasmodium falciparum likewise contain large arsenals of different cell surface adhesion genes. In both yeasts and protozoa, silencing and differential expression of the gene family results in surface variability. Here, we discuss unexpected similarities in the structure and genomic location of the cell surface genes, the role of repeated DNA sequences, and the genetic and epigenetic mechanisms-all of which contribute to the remarkable cell surface variability in these highly divergent microbes.
Collapse
|
125
|
Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci U S A 2009; 106:20989-94. [PMID: 19926853 DOI: 10.1073/pnas.0906498106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of chromosomes to move across the nuclear space is essential for the reorganization of the nucleus that takes place in early meiotic prophase. Chromosome dynamics of prophase I have been studied in budding and fission yeasts, but little is known about this process in higher eukaryotes, where genomes and chromosomes are much larger and meiosis takes a longer time to complete. This knowledge gap has been mainly caused by difficulties in culturing isolated live meiocytes of multicellular eukaryotes. To study the nuclear dynamics during meiotic prophase in maize, we established a system to observe live meiocytes inside intact anthers. We found that maize chromosomes exhibited extremely dynamic and complex motility in zygonema and pachynema. The movement patterns differed dramatically between the two stages. Chromosome movements included rotations of the entire chromatin and movements of individual chromosome segments, which were mostly telomere-led. Chromosome motility was coincident with dynamic deformations of the nuclear envelope. Both, chromosome and nuclear envelope motility depended on actin microfilaments as well as tubulin. The complexity of the nuclear movements implies that several different mechanisms affect chromosome motility in early meiotic prophase in maize. We propose that the vigorous nuclear motility provides a mechanism for homologous loci to find each other during zygonema.
Collapse
|
126
|
Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM, Wynne DJ, Kasad RA, Dernburg AF. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 2009; 139:907-19. [PMID: 19913287 DOI: 10.1016/j.cell.2009.10.039] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/04/2009] [Accepted: 10/28/2009] [Indexed: 11/17/2022]
Abstract
During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Collapse
Affiliation(s)
- Aya Sato
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell 2009; 139:920-33. [PMID: 19913286 DOI: 10.1016/j.cell.2009.10.045] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/16/2009] [Accepted: 10/30/2009] [Indexed: 11/21/2022]
Abstract
Genome haploidization during meiosis depends on recognition and association of parental homologous chromosomes. The C. elegans SUN/KASH domain proteins Matefin/SUN-1 and ZYG-12 have a conserved role in this process. They bridge the nuclear envelope, connecting the cytoplasm and the nucleoplasm to transmit forces that allow chromosome movement and homolog pairing and prevent nonhomologous synapsis. Here, we show that Matefin/SUN-1 forms rapidly moving aggregates at putative chromosomal attachment sites in the meiotic transition zone (TZ). We analyzed requirements for aggregate formation and identified multiple phosphotarget residues in the nucleoplasmic domain of Matefin/SUN-1. These CHK-2 dependent phosphorylations occur in leptotene/zygotene, diminish during pachytene and are involved in pairing. Mimicking phosphorylation causes an extended TZ and univalents at diakinesis. Our data suggest that the properties of the nuclear envelope are altered during the time window when homologs are sorted and Matefin/SUN-1 aggregates form, thereby controling the movement, homologous pairing and interhomolog recombination of chromosomes.
Collapse
|
128
|
Meiotic chromosome pairing and bouquet formation during Eimeria tenella sporulation. Int J Parasitol 2009; 40:453-62. [PMID: 19837073 DOI: 10.1016/j.ijpara.2009.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/01/2009] [Accepted: 09/29/2009] [Indexed: 01/12/2023]
Abstract
In Eimeria tenella, meiotic division occurs exclusively in oocysts within the first 8h of sporulation. Difficulties with the wall-oocyst breakage in gaining access to chromosomes during meiosis have resulted in a scarcity of morphological data on Eimeria chromosomes. This study tracks the general behaviour of telomeres, attachment plaques and synaptonemal complexes in the nucleus of the meiotic oocyst of E. tenella. Fluorescence microscopy methods, in combination with immunoelectron microscopy techniques, were applied to obtain a series of time-lapse images during oocyst sporulation. Antibodies to Structural Maintenance of Chromosome proteins SMC1 and SMC3, and lamin were labelled with either fluorescence or colloidal gold to visualise the telomeres, central elements of the synaptonemal complex (SC) and nuclear periphery, respectively, at both the structural and ultrastructural levels. Using oocyst spreads and ultrathin sections of fixed oocysts it was possible to study telomere dynamics at stages during meiosis. The stages of the meiotic prophase I are delineated on the basis of the telomere position and the SC synapsis and desynapsis. During the leptotene stage, at 4h following the start of sporulation, meiotic chromosomes attached to the nuclear envelope. At that stage, chromosome synapsis was initiated in the telomeric regions but no interstitial synapsis pairing was observed. In the zygotene stage, telomere signals were clustered in a limited area of the nuclear envelope. Bouquet formation occurred at 5h after the start of sporulation, whereas chromosomes did not appear completely synapsed until the pachytene stage at 6h of sporulation. Desynapsis was observed at 8h of sporulation during the diplotene stage. This study provides the first morphological description of both the behaviour of the chromosomes and the timing of the prophase I stages in the meiotic nucleus of E. tenella.
Collapse
|
129
|
Koszul R, Kleckner N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol 2009; 19:716-24. [PMID: 19854056 DOI: 10.1016/j.tcb.2009.09.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/15/2009] [Accepted: 09/22/2009] [Indexed: 01/14/2023]
Abstract
Dramatic chromosome motion is a characteristic of mid-prophase of meiosis that is observed across broadly divergent eukaryotic phyla. Although the specific mechanisms underlying chromosome motions vary among organisms studied to date, the outcome is similar in all cases: vigorous back-and-forth movement (as fast as approximately 1mum/sec for budding yeast), led by chromosome ends (or near-end regions), and directed by cytoskeletal components via direct association through the nuclear envelope. The exact role(s) of these movements remains unknown, although an idea gaining currency is that movement serves as a stringency factor, eliminating unwanted inter-chromosomal associations or entanglements that have arisen as part of the homolog pairing process and, potentially, unwanted associations of chromatin with the nuclear envelope. Turbulent chromosome movements observed during bipolar orientation of chromosomes for segregation could also serve similar roles during mitosis. Recent advances shed light on the contribution of protein complexes involved in the meiotic movements in chromosome dynamics during the mitotic program.
Collapse
Affiliation(s)
- Romain Koszul
- CNRS URA2171, Institut Pasteur, Unité de Génétique Moléculaire des Levures, 25 rue du Dr. Roux, 75015 Paris, France
| | | |
Collapse
|
130
|
Abstract
The meiotic prophase chromosome has a unique architecture. At the onset of leptotene, the replicated sister chromatids are organized along an axial element. During zygotene, as homologous chromosomes pair and synapse, a synaptonemal complex forms via the assembly of a transverse element between the two axial elements. However, due to the limitations of light and electron microscopy, little is known about chromatin organization with respect to the chromosome axes and about the spatial progression of synapsis in three dimensions. Three-dimensional structured illumination microscopy (3D-SIM) is a new method of superresolution optical microscopy that overcomes the 200-nm diffraction limit of conventional light microscopy and reaches a lateral resolution of at least 100 nm. Using 3D-SIM and antibodies against a cohesin protein (AFD1/REC8), we resolved clearly the two axes that form the lateral elements of the synaptonemal complex. The axes are coiled around each other as a left-handed helix, and AFD1 showed a bilaterally symmetrical pattern on the paired axes. Using the immunostaining of the axial element component (ASY1/HOP1) to find unsynapsed regions, entangled chromosomes can be easily detected. At the late zygotene/early pachytene transition, about one-third of the nuclei retained unsynapsed regions and 78% of these unsynapsed axes were associated with interlocks. By late pachytene, no interlocks remain, suggesting that interlock resolution may be an important and rate-limiting step to complete synapsis. Since interlocks are potentially deleterious if left unresolved, possible mechanisms for their resolution are discussed in this article.
Collapse
|
131
|
Able JA, Crismani W, Boden SA. Understanding meiosis and the implications for crop improvement. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:575-588. [PMID: 32688671 DOI: 10.1071/fp09068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/01/2009] [Indexed: 06/11/2023]
Abstract
Over the past 50 years, the understanding of meiosis has aged like a fine bottle of wine: the complexity is developing but the wine itself is still young. While emphasis in the plant kingdom has been placed on the model diploids Arabidopsis (Arabidopsis thaliana L.) and rice (Orzya sativa L.), our research has mainly focussed on the polyploid, bread wheat (Triticum aestivum L.). Bread wheat is an important food source for nearly two-thirds of the world's population. While creating new varieties can be achieved using existing or advanced breeding lines, we would also like to introduce beneficial traits from wild related species. However, expanding the use of non-adapted and wild germplasm in cereal breeding programs will depend on the ability to manipulate the cellular process of meiosis. Three important and tightly-regulated events that occur during early meiosis are chromosome pairing, synapsis and recombination. Which key genes control these events in meiosis (and how they do so) remains to be completely answered, particularly in crops such as wheat. Although the majority of published findings are from model organisms including yeast (Saccharomyces cerevisiae) and the nematode Caenorhabditis elegans, information from the plant kingdom has continued to grow in the past decade at a steady rate. It is with this new knowledge that we ask how meiosis will contribute to the future of cereal breeding. Indeed, how has it already shaped cereal breeding as we know it today?
Collapse
Affiliation(s)
- Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Wayne Crismani
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
132
|
|
133
|
Fridkin A, Penkner A, Jantsch V, Gruenbaum Y. SUN-domain and KASH-domain proteins during development, meiosis and disease. Cell Mol Life Sci 2009; 66:1518-33. [PMID: 19125221 PMCID: PMC6485414 DOI: 10.1007/s00018-008-8713-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUN-domain proteins interact directly with KASH-domain proteins to form protein complexes that connect the nucleus to every major cytoskeleton network. SUN-KASH protein complexes are also required for attaching centrosomes to the nuclear periphery and for alignment of homologous chromosomes, their pairing and recombination in meiosis. Other functions that require SUN-domain proteins include the regulation of apoptosis and maturation and survival of the germline. Laminopathic diseases affect the distribution of the SUN-KASH complexes, and mutations in KASH-domain proteins can cause Emery Dreifuss muscular dystrophy and recessive cerebellar ataxia. This review describes our current knowledge of the role of SUN-KASH domain protein complexes during development, meiosis and disease.
Collapse
Affiliation(s)
- A. Fridkin
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - A. Penkner
- Department of Chromosome Biology, Max F. Perutz Laboratories University of Vienna, A-1030 Vienna, Austria
| | - V. Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories University of Vienna, A-1030 Vienna, Austria
| | - Y. Gruenbaum
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| |
Collapse
|
134
|
Loidl J, Mochizuki K. Tetrahymena meiotic nuclear reorganization is induced by a checkpoint kinase-dependent response to DNA damage. Mol Biol Cell 2009; 20:2428-37. [PMID: 19297526 PMCID: PMC2675622 DOI: 10.1091/mbc.e08-10-1058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/27/2009] [Accepted: 03/05/2009] [Indexed: 11/11/2022] Open
Abstract
In the ciliate Tetrahymena, meiotic micronuclei (MICs) undergo extreme elongation, and meiotic pairing and recombination take place within these elongated nuclei (the "crescents"). We have previously shown that elongation does not occur in the absence of Spo11p-induced DNA double-strand breaks (DSBs). Here we show that elongation is restored in spo11Delta mutants by various DNA-damaging agents including ones that may not cause DSBs to a notable extent. MIC elongation following Spo11p-induced DSBs or artificially induced DNA lesions is probably a DNA-damage response mediated by a phosphokinase signal transduction pathway, since it is suppressed by the ATM/ATR kinase inhibitors caffeine and wortmannin and by knocking out Tetrahymena's ATR orthologue. MIC elongation occurs concomitantly with the movement of centromeres away from the telomeric pole of the MIC. This DNA damage-dependent reorganization of the MIC helps to arrange homologous chromosomes alongside each other but is not sufficient for exact pairing. Thus, Spo11p contributes to bivalent formation in two ways: by creating a favorable spatial disposition of homologues and by stabilizing pairing by crossovers. The polarized chromosome orientation inside the crescent resembles the conserved meiotic bouquet, and crescent and bouquet also share the putative function of aiding meiotic pairing. However, they are regulated differently because in Tetrahymena, DSBs are required for entering rather than exiting this stage.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria.
| | | |
Collapse
|
135
|
Abstract
Positioning the nucleus is essential for the formation of polarized cells, pronuclear migration, cell division, cell migration and the organization of specialized syncytia such as mammalian skeletal muscles. Proteins that are required for nuclear positioning also function during chromosome movement and pairing in meiosis. Defects in these processes lead to human diseases including laminopathies. To properly position the nucleus or move chromosomes within the nucleus, the cell must specify the outer surface of the nucleus and transfer forces across both membranes of the nuclear envelope. KASH proteins are specifically recruited to the outer nuclear membrane by SUN proteins, which reside in the inner nuclear membrane. KASH and SUN proteins physically interact in the perinuclear space, forming a bridge across the two membranes of the nuclear envelope. The divergent N-terminal domains of KASH proteins extend from the surface of the nucleus into the cytoplasm and interact with the cytoskeleton, whereas the N-termini of SUN proteins extend into the nucleoplasm to interact with the lamina or chromatin. The bridge of SUN and KASH across the nuclear envelope functions to transfer forces that are generated in the cytoplasm into the nucleoplasm during nuclear migration, nuclear anchorage, centrosome attachment, intermediate-filament association and telomere clustering.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
136
|
Abstract
A complex meiotic differentiation program generates genetically diverse haploid cells (gametes or spores) to compensate for the genome doubling that occurs at fertilization. To this end, homologous chromosomes must undergo pairing and recombination before they become partitioned in haploid sets by two consecutive meiotic divisions. Chromosome ends (telomeres) contain a protective complex that is crucial for genomic stability. In meiosis, telomeres become key players in the chromosome pairing process during prophase to the first meiotic division. At the onset of prophase I, telomeres attach to the nuclear envelope, about which they move and transiently cluster in a limited sector of the nuclear periphery. The dynamic clustering of telomeres (bouquet formation) occurs at the onset of the zygotene substage and supports homologue recognition, pairing and telomere DNA metabolism. The following chapter outlines the protocols that have been useful in studies on telomere dynamics and the frequency of earliest prophase I stages in testis suspensions of the mouse, and may be useful to address similar questions in particular mouse mutants that become increasingly available.
Collapse
Affiliation(s)
- Harry Scherthan
- Institute für Radiobiologie der Bundeswehr, München, Germany
| |
Collapse
|
137
|
Mark M, Jacobs H, Oulad-Abdelghani M, Dennefeld C, Féret B, Vernet N, Codreanu CA, Chambon P, Ghyselinck NB. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J Cell Sci 2008; 121:3233-42. [PMID: 18799790 DOI: 10.1242/jcs.035071] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We analysed the phenotypic outcome of a Stra8-null mutation on male meiosis. Because the mutant spermatocytes (1) underwent premeiotic DNA replication, (2) displayed cytological features attesting initiation of recombination and of axial-element assembly, and (3) expressed Spo11 and numerous other meiotic genes, it was concluded that STRA8 is dispensable for meiotic initiation. The few mutant spermatocytes that progressed beyond leptonema showed a prolonged bouquet-stage configuration, asynapsis and heterosynapsis, suggesting function(s) of STRA8 in chromosome pairing. Most importantly, a large number of mutant leptotene spermatocytes underwent premature chromosome condensation, within 24 hours following the meiotic S phase. This phenomenon yielded aberrant metaphase-like cells with 40 univalent chromosomes, similar to normal mitotic metaphases. From these latter observations and from the wild-type pattern of Stra8 expression, we propose that, in preleptotene spermatocytes, STRA8 is involved in the process that leads to stable commitment to the meiotic cell cycle.
Collapse
Affiliation(s)
- Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR7104, Illkirch, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Lim JGY, Stine RRW, Yanowitz JL. Domain-specific regulation of recombination in Caenorhabditis elegans in response to temperature, age and sex. Genetics 2008; 180:715-26. [PMID: 18780748 PMCID: PMC2567375 DOI: 10.1534/genetics.108.090142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/03/2008] [Indexed: 11/18/2022] Open
Abstract
It is generally considered that meiotic recombination rates increase with temperature, decrease with age, and differ between the sexes. We have reexamined the effects of these factors on meiotic recombination in the nematode Caenorhabditis elegans using physical markers that encompass >96% of chromosome III. The only difference in overall crossover frequency between oocytes and male sperm was observed at 16 degrees . In addition, crossover interference (CI) differs between the germ lines, with oocytes displaying higher CI than male sperm. Unexpectedly, our analyses reveal significant changes in crossover distribution in the hermaphrodite oocyte in response to temperature. This feature appears to be a general feature of C. elegans chromosomes as similar changes in response to temperature are seen for the X chromosome. We also find that the distribution of crossovers changes with age in both hermaphrodites and females. Our observations indicate that it is the oocytes from the youngest mothers-and not the oldest-that showed a different pattern of crossovers. Our data enhance the emerging hypothesis that recombination in C. elegans, as in humans, is regulated in large chromosomal domains.
Collapse
Affiliation(s)
- Jaclyn G Y Lim
- Department of Biology, Goucher College, Baltimore, Maryland 21204, USA
| | | | | |
Collapse
|
139
|
Wanat JJ, Kim KP, Koszul R, Zanders S, Weiner B, Kleckner N, Alani E. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet 2008; 4:e1000188. [PMID: 18818741 PMCID: PMC2533701 DOI: 10.1371/journal.pgen.1000188] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022] Open
Abstract
Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE)-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a "bouquet." In this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following closely related phenotypes: (i) elevated crossover (CO) frequencies and decreased CO interference without abrogation of normal pathways; (ii) delayed progression of recombination, and recombination-coupled chromosome morphogenesis, with resulting delays in the MI division; and (iii) nondisjunction of homologs at the MI division for some reason other than absence of (the obligatory) CO(s). The recombination effects are discussed in the context of a model where the underlying defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships that, in turn, results in the observed mutant phenotypes.
Collapse
Affiliation(s)
- Jennifer J. Wanat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Keun P. Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Romain Koszul
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sarah Zanders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
140
|
Lukaszewski AJ. Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma 2008; 117:569-78. [PMID: 18679702 DOI: 10.1007/s00412-008-0174-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/14/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Distal location of chiasmata in chromosome arms is thought to be a consequence of the distal initiation of synapsis. Observations of meiotic behavior of a rye chromosome with an inverted arm show that patterns of chiasma distribution and frequency are also inverted; therefore, the patterns of synapsis and chiasma distribution are independent, and recombination frequency along a chromosome is position-independent and segment-specific. Since cases of random distribution of chiasmata and recombination are known in rye, a genetic mechanism must be present that licenses specific chromosome regions for recombination. Large differences in the metaphase I pairing of the inversion in various combinations of two armed and telocentric chromosomes confirm the major role of the telomere bouquet in early homologue recognition. However, occasional synapsis and chiasmate pairing of the distal regions of normal arms with the proximal regions of the inversion suggest that an alternative mechanism for juxtaposing of homologues must also be present. Synapsis in inversion heterozygotes was mostly complete but in the antiparallel orientation, hence defying homology, but non-homologues never synapsed. Instances of synapsis strictly limited to the chiasma-capable segments of the arm suggest that, in rye, both recombination-dependent and recombination-independent mechanisms for homologue recognition must be present.
Collapse
Affiliation(s)
- Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
141
|
Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 2008; 133:1188-201. [PMID: 18585353 PMCID: PMC2601696 DOI: 10.1016/j.cell.2008.04.050] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/08/2008] [Accepted: 04/22/2008] [Indexed: 02/08/2023]
Abstract
Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase telomere-led chromosome motion in budding yeast. Diverse findings reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed.
Collapse
Affiliation(s)
- R. Koszul
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
| | - K. P. Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
| | - M. Prentiss
- Department of Physics, Harvard University, Cambridge, MA, 02138
| | - N. Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
| | - S. Kameoka
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
142
|
Naranjo T, Corredor E. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants. Cytogenet Genome Res 2008; 120:320-30. [PMID: 18504361 DOI: 10.1159/000121081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2007] [Indexed: 10/22/2022] Open
Abstract
The formation of haploid gametes in organisms with sexual reproduction requires regular bivalent chromosome pairing in meiosis. In many species, homologous chromosomes occupy separate territories at the onset of meiosis. To be paired at metaphase I, they need to be brought into a close proximity for interactions that include homology recognition and the establishment of some form of bonds. How homologues find each other is one of the least understood meiotic events. Plant species with large or medium sized genomes, such as wheat or maize, are excellent materials for the cytological analysis of chromosome dynamics at early meiosis, but genes that control meiosis have been identified mainly in small genome species such as Arabidopsis thaliana. This review is focused on the contribution studies on plants are providing to the knowledge of the initial steps of the meiotic process.
Collapse
Affiliation(s)
- T Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| | | |
Collapse
|
143
|
Bozza C, Pawlowski W. The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res 2008; 120:313-9. [DOI: 10.1159/000121080] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2007] [Indexed: 11/19/2022] Open
|
144
|
Tomita K, Cooper JP. The telomere bouquet controls the meiotic spindle. Cell 2007; 130:113-26. [PMID: 17632059 DOI: 10.1016/j.cell.2007.05.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 03/07/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Bouquet formation, in which telomeres gather to a small region of the nuclear membrane in early meiosis, has been observed in diverse eukaryotes, but the function of the bouquet has remained a mystery. Here, we demonstrate that the telomere bouquet plays a crucial role in controlling the behavior of the fission yeast microtubule-organizing center (known as the spindle pole body or SPB) and the meiotic spindle. Using mutations that specifically disrupt the bouquet, we analyze chromosome, SPB, and spindle dynamics throughout meiosis. If the bouquet fails to form, the SPB becomes fragmented at meiosis I, leading to monopolar, multiple, and mislocalized spindles. Correct SPB and spindle behavior require not only the SPB recruitment of telomere proteins but also that the proteins are properly bound to telomeric DNA. This discovery illuminates an unanticipated level of communication between chromosomes and the spindle apparatus that may be widely conserved among eukaryotes.
Collapse
Affiliation(s)
- Kazunori Tomita
- Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, UK
| | | |
Collapse
|
145
|
Rossignol P, Collier S, Bush M, Shaw P, Doonan JH. Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J Cell Sci 2007; 120:3678-87. [PMID: 17911168 DOI: 10.1242/jcs.004119] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome integrity is maintained via the actions of ribonucleoprotein complexes that can add telomeric repeats or can protect the chromosome end from being degraded. POT1 (protection of telomeres 1), a class of single-stranded-DNA-binding proteins, is a regulator of telomeric length. The Arabidopsis genome contains three POT1 homologues: POT1A, POT1B and POT1C. Using yeast two-hybrid assays to identify components of a potential POT1A complex, we retrieved three interactors: the N-terminus of the telomerase, a protein kinase and a plant-specific protein. Further analysis of the interaction of POT1 proteins with telomerase showed that this interaction is specific to POT1A, suggesting a specific role for this paralogue. The interaction is specific to the N-terminal region of the telomerase, which can be encoded by splicing variants. This interaction indicates possible mechanisms for telomerase regulation by alternative splicing and by POT1 proteins.
Collapse
Affiliation(s)
- Pascale Rossignol
- Department of Cellular and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
146
|
Thomas SE, McKee BD. Meiotic pairing and disjunction of mini-X chromosomes in drosophila is mediated by 240-bp rDNA repeats and the homolog conjunction proteins SNM and MNM. Genetics 2007; 177:785-99. [PMID: 17660566 PMCID: PMC2034643 DOI: 10.1534/genetics.107.073866] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 07/20/2007] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotes, segregation of homologous chromosomes during meiosis is dependent on crossovers that occur while the homologs are intimately paired during early prophase. Crossovers generate homolog connectors known as chiasmata that are stabilized by cohesion between sister-chromatid arms. In Drosophila males, homologs pair and segregate without recombining or forming chiasmata. Stable pairing of homologs is dependent on two proteins, SNM and MNM, that associate with chromosomes throughout meiosis I until their removal at anaphase I. SNM and MNM localize to the rDNA region of the X-Y pair, which contains 240-bp repeats that have previously been shown to function as cis-acting chromosome pairing/segregation sites. Here we show that heterochromatic mini-X chromosomes lacking native rDNA but carrying transgenic 240-bp repeat arrays segregate preferentially from full-length sex chromosomes and from each other. Mini-X pairs do not form autonomous bivalents but do associate at high frequency with the X-Y bivalent to form trivalents and quadrivalents. Both disjunction of mini-X pairs and multivalent formation are dependent on the presence of SNM and MNM. These results imply that 240-bp repeats function to mediate association of sex chromosomes with SNM and MNM.
Collapse
Affiliation(s)
- Sharon E Thomas
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | | |
Collapse
|
147
|
Zhdanova NS, Minina JM, Karamisheva TV, Draskovic I, Rubtsov NB, Londoño-Vallejo JA. The very long telomeres in Sorex granarius (Soricidae, Eulipothyphla) contain ribosomal DNA. Chromosome Res 2007; 15:881-90. [PMID: 17899406 DOI: 10.1007/s10577-007-1170-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 01/13/2023]
Abstract
Two closely related shrew species, Sorex granarius and Sorex araneus, in which Robertsonian rearrangements have played a primary role in karyotype evolution, present very distinct telomere length patterns. S. granarius displays hyperlong telomeres specifically associated with the short arms of acrocentrics, whereas telomere lengths in S. araneus are rather short and homogenous. Using a combined approach of chromosome and fibre FISH, modified Q-FISH, 3D-FISH, Ag-NOR staining and TRF analysis, we carried out a comparative analysis of telomeric repeats and rDNA distribution on chromosome ends of Sorex granarius. Our results show that rDNA sequences forming active nuclear organizing regions are interspersed with the long telomere tracts of all short arms of acrocentrics. These observations suggest that the major rearrangements that gave rise to today's karyotype in S. granarius were accompanied by a profound reorganization of chromosome ends, which comprised extensive amplification of telomeric and rDNA repeats on the short arms of acrocentrics and finally contributed to the stabilization of telomeres. This is the first time that such telomeric structures have been observed in any mammalian species.
Collapse
Affiliation(s)
- Natalia S Zhdanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
148
|
Corredor E, Lukaszewski AJ, Pachón P, Allen DC, Naranjo T. Terminal regions of wheat chromosomes select their pairing partners in meiosis. Genetics 2007; 177:699-706. [PMID: 17720899 PMCID: PMC2034636 DOI: 10.1534/genetics.107.078121] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many plant species, including important crops like wheat, are polyploids that carry more than two sets of genetically related chromosomes capable of meiotic pairing. To safeguard a diploid-like behavior at meiosis, many polyploids evolved genetic loci that suppress incorrect pairing and recombination of homeologues. The Ph1 locus in wheat was proposed to ensure homologous pairing by controlling the specificity of centromere associations that precede chromosome pairing. Using wheat chromosomes that carry rye centromeres, we show that the centromere associations in early meiosis are not based on homology and that the Ph1 locus has no effect on such associations. Although centromeres indeed undergo a switch from nonhomologous to homologous associations in meiosis, this process is driven by the terminally initiated synapsis. The centromere has no effect on metaphase I chiasmate chromosome associations: homologs with identical or different centromeres, in the presence and absence of Ph1, pair the same. A FISH analysis of the behavior of centromeres and distal chromomeres in telocentric and bi-armed chromosomes demonstrates that it is not the centromeric, but rather the subtelomeric, regions that are involved in the correct partner recognition and selection.
Collapse
Affiliation(s)
- Eduardo Corredor
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
149
|
Penkner A, Tang L, Novatchkova M, Ladurner M, Fridkin A, Gruenbaum Y, Schweizer D, Loidl J, Jantsch V. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev Cell 2007; 12:873-85. [PMID: 17543861 DOI: 10.1016/j.devcel.2007.05.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/26/2007] [Accepted: 05/09/2007] [Indexed: 11/22/2022]
Abstract
We identify a highly specific mutation (jf18) in the Caenorhabditis elegans nuclear envelope protein matefin MTF-1/SUN-1 that provides direct evidence for active involvement of the nuclear envelope in homologous chromosome pairing in C. elegans meiosis. The reorganization of chromatin in early meiosis is disrupted in mtf-1/sun-1(jf18) gonads, concomitant with the absence of presynaptic homolog alignment. Synapsis is established precociously and nonhomologously. Wild-type leptotene/zygotene nuclei show patch-like aggregations of the ZYG-12 protein, which fail to develop in mtf-1/sun-1(jf18) mutants. These patches remarkably colocalize with a component of the cis-acting chromosomal pairing center (HIM-8) rather than the centrosome. Our data on this mtf-1/sun-1 allele challenge the previously postulated role of the centrosome/spindle organizing center in chromosome pairing, and clearly support a role for MTF-1/SUN-1 in meiotic chromosome reorganization and in homolog recognition, possibly by mediating local aggregation of the ZYG-12 protein in meiotic nuclei.
Collapse
Affiliation(s)
- Alexandra Penkner
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 2007; 12:863-72. [PMID: 17543860 DOI: 10.1016/j.devcel.2007.03.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/22/2007] [Accepted: 03/23/2007] [Indexed: 11/17/2022]
Abstract
Prior to the pairing and recombination between homologous chromosomes during meiosis, telomeres attach to the nuclear envelope and form a transient cluster. However, the protein factors mediating meiotic telomere attachment to the nuclear envelope and the requirement of this attachment for homolog pairing and synapsis have not been determined in animals. Here we show that the inner nuclear membrane protein SUN1 specifically associates with telomeres between the leptotene and diplotene stages during meiotic prophase I. Disruption of Sun1 in mice prevents telomere attachment to the nuclear envelope, efficient homolog pairing, and synapsis formation in meiosis. Massive apoptotic events are induced in the mutant gonads, leading to the abolishment of both spermatogenesis and oogenesis. This study provides genetic evidence that SUN1-telomere interaction is essential for telomere dynamic movement and is required for efficient homologous chromosome pairing/synapsis during mammalian gametogenesis.
Collapse
Affiliation(s)
- Xu Ding
- Institute of Developmental Biology and Molecular Medicine and School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|