101
|
Kolesnikova TA, Kiragosyan G, Le THN, Springer S, Winterhalter M. Protein A Functionalized Polyelectrolyte Microcapsules as a Universal Platform for Enhanced Targeting of Cell Surface Receptors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11506-11517. [PMID: 28290659 DOI: 10.1021/acsami.7b01313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Targeted delivery systems recognizing specific receptors are a key element in personalized medicine. Such systems allow the delivery of therapeutics to desired sites of the body, increasing their local concentration and thus reducing the side effects. In this study, we fabricate chemically cross-linked (PAH/PAA)2 microcapsules coated with specific cell-targeting antibodies in random (via direct covalent coupling to the surface) or optimized (via supporting layer of protein A) orientation. We use these antibody-functionalized capsules to target major histocompatibility complex (MHC) class I receptors in living cells and quantify the efficiency of targeting by flow cytometry. We show for the first time the selective binding of polyelectrolyte microcapsules to MHC class I receptors, and confirm that targeting is allotype-specific. Remarkably, protein A assisted immobilization of antibodies enhances targeting efficiency by 40-50% over capsules with randomly attached antibodies. Moreover, biofunctionalized capsules reveal low levels of cytotoxicity and nonspecific binding, excluding the need of additional modification with poly(ethylene glycol). Thus, protein A coated (PAH/PAA)2 microcapsules represent a unique example of universal targeting tools providing high potential for selective binding to a broad range of cell surface receptors.
Collapse
Affiliation(s)
| | - Gayane Kiragosyan
- Jacobs University Bremen gGmbH , Campus Ring 1, 28759 Bremen, Germany
| | - Trang H N Le
- Jacobs University Bremen gGmbH , Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
102
|
Kourtzelis I, Mitroulis I, von Renesse J, Hajishengallis G, Chavakis T. From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol 2017; 102:677-683. [PMID: 28292945 DOI: 10.1189/jlb.3mr0117-024r] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022] Open
Abstract
Integrins constitute a large group of adhesion receptors that are formed as heterodimers of α and β subunits. Their presence and activation status on the surface of leukocytes modulate a broad spectrum of processes in inflammation and immunity. This mini review critically outlines research advances with regard to the function of leukocyte integrins in regulating and integrating the onset and resolution of acute inflammation. Specifically, we summarize and discuss relevant, current literature that supports the multifunctional role of integrins and their partners. The latter include molecules that physically associate with integrins or regulate their activity in the context of the following: 1) leukocyte recruitment to an inflamed tissue, 2) recognition and phagocytosis of apoptotic neutrophils (efferocytosis), and 3) egress of efferocytic macrophages from the inflamed site to lymphoid tissues. The understanding of the fine-tuning mechanisms of the aforementioned processes by integrins and their functional partners may enable the design of therapeutic tools to counteract destructive inflammation and promote more efficient resolution of inflammation.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| | - Janusz von Renesse
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| | - George Hajishengallis
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; and
| |
Collapse
|
103
|
Distinct recognition of complement iC3b by integrins α Xβ 2 and α Mβ 2. Proc Natl Acad Sci U S A 2017; 114:3403-3408. [PMID: 28292891 DOI: 10.1073/pnas.1620881114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition by the leukocyte integrins αXβ2 and αMβ2 of complement iC3b-opsonized targets is essential for effector functions including phagocytosis. The integrin-binding sites on iC3b remain incompletely characterized. Here, we describe negative-stain electron microscopy and biochemical studies of αXβ2 and αMβ2 in complex with iC3b. Despite high homology, the two integrins bind iC3b at multiple distinct sites. αXβ2 uses the αX αI domain to bind iC3b on its C3c moiety at one of two sites: a major site at the interface between macroglobulin (MG) 3 and MG4 domains, and a less frequently used site near the C345C domain. In contrast, αMβ2 uses its αI domain to bind iC3b at the thioester domain and simultaneously interacts through a region near the αM β-propeller and β2 βI domain with a region of the C3c moiety near the C345C domain. Remarkably, there is no overlap between the primary binding site of αXβ2 and the binding site of αMβ2 on iC3b. Distinctive binding sites on iC3b by integrins αXβ2 and αMβ2 may be biologically beneficial for leukocytes to more efficiently capture opsonized pathogens and to avoid subversion by pathogen factors.
Collapse
|
104
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
105
|
Fernández-Boo S, Villalba A, Cao A. Protein expression profiling in haemocytes and plasma of the Manila clam Ruditapes philippinarum in response to infection with Perkinsus olseni. JOURNAL OF FISH DISEASES 2016; 39:1369-1385. [PMID: 27233620 DOI: 10.1111/jfd.12470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The protein expression profiling in clam haemocytes and plasma in response to Perkinsus olseni was addressed. Adult Manila clams from a P. olseni-free bed were experimentally challenged with parasite zoospores to analyse immune response. In another experiment, the effects of longer term infection were assessed in adult clams collected from a P. olseni-affected bed, by comparing moderate to very heavily infected clams with non-infected ones. Haemocyte and plasma proteins were separated by two-dimensional electrophoresis; spot patterns were qualitatively compared between treatments within each experiment and the spots indicating differential protein expression associated with P. olseni challenge or with field infection were processed for protein identification. Fifteen clam proteins (four in haemocytes and eleven in plasma) of which expression was markedly affected by P. olseni were identified. Some of the identified proteins have a well-known role in clam immune response against the parasite, such as lysozyme and lectins. Rho GTPase-activating protein 6 could be a marker of resistance against P. olseni, which should be further studied.
Collapse
Affiliation(s)
- S Fernández-Boo
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
| | - A Villalba
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain.
- Department of Life Sciences, University of Alcalá de Henares, Alcalá de Henares, Spain.
| | - A Cao
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
| |
Collapse
|
106
|
Martínez-Banderas AI, Aires A, Teran FJ, Perez JE, Cadenas JF, Alsharif N, Ravasi T, Cortajarena AL, Kosel J. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Sci Rep 2016; 6:35786. [PMID: 27775082 PMCID: PMC5075884 DOI: 10.1038/srep35786] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023] Open
Abstract
Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.
Collapse
Affiliation(s)
- Aldo Isaac Martínez-Banderas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal Jeddah, 23955-6900, Saudi Arabia
| | - Antonio Aires
- IMDEA Nanociencia and Nanobiotechnology Unit associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, Madrid, 28049, Spain
- CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, Donostia-San Sebastián 20009, Spain
| | - Francisco J. Teran
- IMDEA Nanociencia and Nanobiotechnology Unit associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| | - Jose Efrain Perez
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal Jeddah, 23955-6900, Saudi Arabia
| | - Jael F. Cadenas
- IMDEA Nanociencia and Nanobiotechnology Unit associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| | - Nouf Alsharif
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal Jeddah, 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal Jeddah, 23955-6900, Saudi Arabia
| | - Aitziber L. Cortajarena
- IMDEA Nanociencia and Nanobiotechnology Unit associated to Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco, Madrid, 28049, Spain
- CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, Donostia-San Sebastián 20009, Spain
- Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Jürgen Kosel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
107
|
Peotter JL, Phillips J, Tong T, Dimeo K, Gonzalez JM, Peters DM. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells. Exp Cell Res 2016; 347:301-11. [PMID: 27539661 DOI: 10.1016/j.yexcr.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that an αvβ5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells.
Collapse
Affiliation(s)
- Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jenny Phillips
- The Waisman Center, University of Wisconsin, Madison, WI 53706, USA
| | - Tiegang Tong
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Kaylee Dimeo
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
108
|
Stow JL, Condon ND. The cell surface environment for pathogen recognition and entry. Clin Transl Immunology 2016; 5:e71. [PMID: 27195114 PMCID: PMC4855265 DOI: 10.1038/cti.2016.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection.
Collapse
Affiliation(s)
- Jennifer L Stow
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
109
|
Khan TA, Wang X, Maynard JA. Inclusion of an RGD Motif Alters Invasin Integrin-Binding Affinity and Specificity. Biochemistry 2016; 55:2078-90. [DOI: 10.1021/acs.biochem.5b01243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarik A. Khan
- Departments of Chemical Engineering and ‡Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xianzhe Wang
- Departments of Chemical Engineering and ‡Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer A. Maynard
- Departments of Chemical Engineering and ‡Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
110
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
111
|
Niedergang F, Di Bartolo V, Alcover A. Comparative Anatomy of Phagocytic and Immunological Synapses. Front Immunol 2016; 7:18. [PMID: 26858721 PMCID: PMC4729869 DOI: 10.3389/fimmu.2016.00018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated.
Collapse
Affiliation(s)
- Florence Niedergang
- U1016, Institut Cochin, INSERM, Paris, France; UMR 8104, CNRS, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| |
Collapse
|
112
|
Li Q, Chang Z, Oliveira G, Xiong M, Smith LM, Frey BL, Welham NV. Protein turnover during in vitro tissue engineering. Biomaterials 2015; 81:104-113. [PMID: 26724458 DOI: 10.1016/j.biomaterials.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Repopulating acellular biological scaffolds with phenotypically appropriate cells is a promising approach for regenerating functional tissues and organs. Under this tissue engineering paradigm, reseeded cells are expected to remodel the scaffold by active protein synthesis and degradation; however, the rate and extent of this remodeling remain largely unknown. Here, we present a technique to measure dynamic proteome changes during in vitro remodeling of decellularized tissue by reseeded cells, using vocal fold mucosa as the model system. Decellularization and recellularization were optimized, and a stable isotope labeling strategy was developed to differentiate remnant proteins constituting the original scaffold from proteins newly synthesized by reseeded cells. Turnover of matrix and cellular proteins and the effects of cell-scaffold interaction were elucidated. This technique sheds new light on in vitro tissue remodeling and the process of tissue regeneration, and is readily applicable to other tissue and organ systems.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhen Chang
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Gisele Oliveira
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Maiyer Xiong
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
113
|
Moerke C, Mueller P, Nebe B. Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts. Biomaterials 2015; 76:102-14. [PMID: 26519652 DOI: 10.1016/j.biomaterials.2015.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
Cells are sensitive to their underlying micro- and nano-topography, but the complex interplay is not completely understood especially if sharp edges and ridges of stochastically modified surfaces interfere with an attached cell body. Micro-topography offers cues that evoke a large range of cell responses e.g. altered adhesion behavior and integrin expression resulting in disturbed cell functions. In this study, we analyzed why osteoblastic cells mimic the underlying geometrical micro-pillar structure (5 × 5 × 5 μm, spacing of 5 μm) with their actin cytoskeleton. Interestingly, we discovered an attempted caveolae-mediated phagocytosis of each micro-pillar beneath the cells, which was accompanied by increased intracellular reactive oxygen species (ROS) production and reduced intracellular ATP levels. This energy consuming process hampered the cells in their function as osteoblasts at the interface. The raft-dependent/caveolae-mediated phagocytic pathway is regulated by diverse cellular components including caveolin-1 (Cav-1), cholesterol, actin cytoskeleton as well as actin-binding proteins like annexin A2 (AnxA2). Our results show a new aspect of osteoblast-material interaction and give insight into how cells behave on extraordinary micro-structures. We conclude that stochastically structured implants used in orthopedic surgery should avoid any topographical heights which induce phagocytosis to prevent their successful ingrowth.
Collapse
Affiliation(s)
- Caroline Moerke
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany
| | - Petra Mueller
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany
| | - Barbara Nebe
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany.
| |
Collapse
|
114
|
Martín C, Etxaniz A, Uribe KB, Etxebarria A, González-Bullón D, Arlucea J, Goñi FM, Aréchaga J, Ostolaza H. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells. Sci Rep 2015; 5:13774. [PMID: 26346097 PMCID: PMC4642564 DOI: 10.1038/srep13774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.
Collapse
Affiliation(s)
- César Martín
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Asier Etxaniz
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Kepa B. Uribe
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Aitor Etxebarria
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - David González-Bullón
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Jon Arlucea
- Departamento de Biología Celular, Facultad de Medicina, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | - Félix M. Goñi
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| | - Juan Aréchaga
- Departamento de Biología Celular, Facultad de Medicina, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | - Helena Ostolaza
- Departamento de Bioquímica y Biología Molecular and Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
115
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
116
|
Ross E, Ata R, Thavarajah T, Medvedev S, Bowden P, Marshall JG, Antonescu CN. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic. PLoS One 2015; 10:e0128013. [PMID: 26010094 PMCID: PMC4444004 DOI: 10.1371/journal.pone.0128013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute regulation by treatment with A-769662, at least some of which is mediated by the metabolic sensor AMPK.
Collapse
Affiliation(s)
- Eden Ross
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Rehman Ata
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Thanusi Thavarajah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Sergei Medvedev
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Peter Bowden
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - John G Marshall
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|
117
|
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement System Part II: Role in Immunity. Front Immunol 2015; 6:257. [PMID: 26074922 PMCID: PMC4443744 DOI: 10.3389/fimmu.2015.00257] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| | - Remi Noe
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France ; Ecole Pratique des Hautes Études (EPHE) , Paris , France
| | - Lise Halbwachs-Mecarelli
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| |
Collapse
|
118
|
Becker B, Doan JM, Wustman B, Carpenter EJ, Chen L, Zhang Y, Wong GKS, Melkonian M. The Origin and Evolution of the Plant Cell Surface: Algal Integrin-Associated Proteins and a New Family of Integrin-Like Cytoskeleton-ECM Linker Proteins. Genome Biol Evol 2015; 7:1580-9. [PMID: 25977459 PMCID: PMC4494055 DOI: 10.1093/gbe/evv089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The extracellular matrix of scaly green flagellates consists of small organic scales consisting of polysaccharides and scale-associated proteins (SAPs). Molecular phylogenies have shown that these organisms represent the ancestral stock of flagellates from which all green plants (Viridiplantae) evolved. The molecular characterization of four different SAPs is presented. Three SAPs are type-2 membrane proteins with an arginine/alanine-rich short cytoplasmic tail and an extracellular domain that is most likely of bacterial origin. The fourth protein is a filamin-like protein. In addition, we report the presence of proteins similar to the integrin-associated proteins α-actinin (in transcriptomes of glaucophytes and some viridiplants), LIM-domain proteins, and integrin-associated kinase in transcriptomes of viridiplants, glaucophytes, and rhodophytes. We propose that the membrane proteins identified are the predicted linkers between scales and the cytoskeleton. These proteins are present in many green algae but are apparently absent from embryophytes. These proteins represent a new protein family we have termed gralins for green algal integrins. Gralins are absent from embryophytes. A model for the evolution of the cell surface proteins in Plantae is discussed.
Collapse
Affiliation(s)
- Burkhard Becker
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Jean Michel Doan
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Brandon Wustman
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Li Chen
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Yong Zhang
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
119
|
Abstract
Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.
Collapse
Affiliation(s)
- Yingyu Mao
- a Department of Biological Sciences; Center for Cancer, Genetic Diseases, and Gene Regulation; Fordham University ; Bronx , NY , USA
| | | |
Collapse
|
120
|
Licona-Limón I, Garay-Canales CA, Muñoz-Paleta O, Ortega E. CD13 mediates phagocytosis in human monocytic cells. J Leukoc Biol 2015; 98:85-98. [PMID: 25934926 PMCID: PMC7167067 DOI: 10.1189/jlb.2a0914-458r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/06/2015] [Indexed: 11/24/2022] Open
Abstract
The myelomonocytic marker aminopeptidase N/CD13 is a novel phagocytic receptor in monocytes and macrophages. CD13 is a membrane‐bound ectopeptidase, highly expressed on monocytes, macrophages, and dendritic cells. CD13 is involved in diverse functions, including degradation of peptide mediators, cellular adhesion, migration, viral endocytosis, signaling, and positive modulation of phagocytosis mediated by FcγRs and other phagocytic receptors. In this work, we explored whether besides acting as an accessory receptor, CD13 by itself is a primary phagocytic receptor. We found that hCD13 mediates efficient phagocytosis of large particles (erythrocytes) modified so as to interact with the cell only through CD13 in human macrophages and THP‐1 monocytic cells. The extent of this phagocytosis is comparable with the phagocytosis mediated through the canonical phagocytic receptor FcγRI. Furthermore, we demonstrated that hCD13 expression in the nonphagocytic cell line HEK293 is sufficient to enable these cells to internalize particles bound through hCD13. CD13‐mediated phagocytosis is independent of other phagocytic receptors, as it occurs in the absence of FcγRs, CR3, and most phagocytic receptors. Phagocytosis through CD13 is independent of its enzymatic activity but is dependent on actin rearrangement and activation of PI3K and is partially dependent on Syk activation. Moreover, the cross‐linking of CD13 with antibodies rapidly induced pSyk in human macrophages. Finally, we observed that antibody‐mediated cross‐linking of hCD13, expressed in the murine macrophage‐like J774 cell line, induces production of ROS. These results demonstrate that CD13 is a fully competent phagocytic receptor capable of mediating internalization of large particles.
Collapse
Affiliation(s)
- Ileana Licona-Limón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Claudia A Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Ofelia Muñoz-Paleta
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| |
Collapse
|
121
|
Genua M, D'Alessio S, Cibella J, Gandelli A, Sala E, Correale C, Spinelli A, Arena V, Malesci A, Rutella S, Ploplis VA, Vetrano S, Danese S. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut 2015; 64:589-600. [PMID: 24848264 DOI: 10.1136/gutjnl-2013-305933] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Inflammation plays crucial roles in the pathogenesis of several chronic inflammatory disorders, including Crohn's disease (CD) and UC, the two major forms of IBD. The urokinase plasminogen activator receptor (uPAR) exerts pleiotropic functions over the course of both physiological and pathological processes. uPAR not only has a key role in fibrinolysis but also modulates the development of protective immunity. Additionally, uPAR supports extracellular matrix degradation and regulates cell migration, adhesion and proliferation, thus influencing the development of inflammatory and immune responses. This study aimed to evaluate the role of uPAR in the pathogenesis of IBD. DESIGN The functional role of uPAR was assessed in established experimental models of colitis. uPAR deficiency effects on cytokine release, polarisation and bacterial phagocytosis were analysed in colonic macrophages. uPAR expression was analysed in surgical specimens collected from normal subjects and patients with IBD. RESULTS In mice, uPAR expression is positively regulated as colitis progresses. uPAR-KO mice displayed severe inflammation compared with wild-type littermates, as indicated by clinical assessment, endoscopy and colon histology. The absence of uPAR led to an increased production of inflammatory cytokines by macrophages that showed an M1 polarisation and impaired phagocytosis. In human IBD, CD68(+) macrophages derived from the inflamed mucosa expressed low levels of uPAR. CONCLUSIONS These findings point to uPAR as an essential component of intestinal macrophage functions and unravel a new potential target to control mucosal inflammation in IBD.
Collapse
Affiliation(s)
- Marco Genua
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Milan, Italy
| | - Silvia D'Alessio
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Javier Cibella
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Emanuela Sala
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Carmen Correale
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Antonino Spinelli
- Department of Translational Medicine, University of Milan, Milan, Italy Department of Surgery-IBD Surgery Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Vincenzo Arena
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alberto Malesci
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Milan, Italy
| | - Sergio Rutella
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stefania Vetrano
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Silvio Danese
- IBD Center, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
122
|
Luo D, McGettrick HM, Stone PC, Rainger GE, Nash GB. The roles of integrins in function of human neutrophils after their migration through endothelium into interstitial matrix. PLoS One 2015; 10:e0118593. [PMID: 25706870 PMCID: PMC4338182 DOI: 10.1371/journal.pone.0118593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 12/30/2022] Open
Abstract
We investigated the changes in neutrophil phenotype and function after transendothelial migration, and the roles played by integrin receptors in their behaviour. Neutrophils were tracked microscopically as they migrated through endothelial cells into collagen gels, and were retrieved at desired times. When endothelial cells were treated with increasing doses of tumour necrosis factor-α, neutrophils not only migrated in greater number, but also to a greater depth in the gel. Apoptosis was barely detectable in neutrophils retrieved after 24h, and many remained viable and motile at 48h. Neutrophils retrieved after 1h had increased oxidative capacity and at 24h had similar capacity as freshly-isolated neutrophils. However, by then they had impaired ability to phagocytose bacteria. Compared to fresh neutrophils, total mRNA was halved by 24h, but while β2-integrin expression decreased, β1- and β3-integrin increased along with ICAM-1. Studies of integrin blockade indicated that while β2-integrins were needed to cross the endothelial barrier, no integrins were required for migration within the gel. β2-integrins also contributed to phagocytosis, but their binding was not required for prolonged survival. These results demonstrate a model for integrated analysis of neutrophil migration and function, and describe development of effector functions and the roles of integrins in human neutrophils for the first time.
Collapse
Affiliation(s)
- Ding Luo
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phil C. Stone
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George E. Rainger
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerard B. Nash
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
123
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
124
|
Ng TH, Chiang YA, Yeh YC, Wang HC. Reprint of "review of Dscam-mediated immunity in shrimp and other arthropods". DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:306-314. [PMID: 25083806 DOI: 10.1016/j.dci.2014.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Although true adaptive immunity is only found in vertebrates, there is increasing evidence that shrimp and other arthropods exhibit immune specificity and immune memory. The invertebrate immune response is now called "innate immunity with specificity" or "immune priming", and its underlying mechanisms are still unclear. However, while vertebrate antibodies have no invertebrate homolog, the Down syndrome cell adhesion molecule (Dscam), which is a hypervariable protein created by alternative splicing, can function as a pathogen-specific recognizing molecule in arthropods. Here we review our current understanding of the Dscam-mediated immune responses in arthropods, especially in shrimp, and show that Dscam may be involved in both general innate immunity and the pathogen-specific immune response.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yi-An Chiang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chun Yeh
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
125
|
Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 2014; 147:123-135. [PMID: 25448040 DOI: 10.1016/j.pharmthera.2014.11.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Vasileia I Alexaki
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athanassios Ziogas
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
126
|
Ng TH, Chiang YA, Yeh YC, Wang HC. Review of Dscam-mediated immunity in shrimp and other arthropods. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:129-138. [PMID: 24727482 DOI: 10.1016/j.dci.2014.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Although true adaptive immunity is only found in vertebrates, there is increasing evidence that shrimp and other arthropods exhibit immune specificity and immune memory. The invertebrate immune response is now called "innate immunity with specificity" or "immune priming", and its underlying mechanisms are still unclear. However, while vertebrate antibodies have no invertebrate homolog, the Down syndrome cell adhesion molecule (Dscam), which is a hypervariable protein created by alternative splicing, can function as a pathogen-specific recognizing molecule in arthropods. Here we review our current understanding of the Dscam-mediated immune responses in arthropods, especially in shrimp, and show that Dscam may be involved in both general innate immunity and the pathogen-specific immune response.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yi-An Chiang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chun Yeh
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
127
|
Apodaca G, Brown WJ. Membrane traffic research: challenges for the next decade. Front Cell Dev Biol 2014; 2:52. [PMID: 25364759 PMCID: PMC4207031 DOI: 10.3389/fcell.2014.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023] Open
Affiliation(s)
- Gerard Apodaca
- The Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - William J Brown
- Molecular Biology and Genetics, Cornell University Ithaca, NY, USA
| |
Collapse
|
128
|
Schleicher TR, VerBerkmoes NC, Shah M, Nyholm SV. Colonization state influences the hemocyte proteome in a beneficial squid-Vibrio symbiosis. Mol Cell Proteomics 2014; 13:2673-86. [PMID: 25038065 DOI: 10.1074/mcp.m113.037259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri alters the hemocyte proteome and reveals proteins that may be important for maintaining host-symbiont specificity.
Collapse
Affiliation(s)
- Tyler R Schleicher
- From the ‡Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269
| | - Nathan C VerBerkmoes
- §Chemical Biology Division, New England Biolabs Inc., Ipswich, Massachusetts, 01938
| | - Manesh Shah
- ‖Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Spencer V Nyholm
- From the ‡Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269;
| |
Collapse
|
129
|
Crowell EF, Gaffuri AL, Gayraud-Morel B, Tajbakhsh S, Echard A. Engulfment of the midbody remnant after cytokinesis in mammalian cells. J Cell Sci 2014; 127:3840-51. [PMID: 25002399 DOI: 10.1242/jcs.154732] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The midbody remnant (MBR) that is generated after cytokinetic abscission has recently attracted a lot of attention, because it might have crucial consequences for cell differentiation and tumorigenesis in mammalian cells. In these cells, it has been reported that the MBR is either released into the extracellular medium or retracted into one of the two daughter cells where it can be degraded by autophagy. Here, we describe a major alternative pathway in a variety of human and mouse immortalized cells, cancer cells and primary stem cells. Using correlative light and scanning electron microscopy and quantitative assays, we found that sequential abscissions on both sides of the midbody generate free MBRs, which are tightly associated with the cell surface through a Ca(2+)/Mg(2+)-dependent receptor. Surprisingly, MBRs move over the cell surface for several hours, before being eventually engulfed by an actin-dependent phagocytosis-like mechanism. Mathematical modeling combined with experimentation further demonstrates that lysosomal activities fully account for the clearance of MBRs after engulfment. This study changes our understanding of how MBRs are inherited and degraded in mammalian cells and suggests a mechanism by which MBRs might signal over long distances between cells.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Institut Pasteur, Membrane Traffic and Cell Division Lab, Department of Cell Biology and Infection, 25 Rue du Dr Roux, 75015 Paris, France CNRS URA 2582, F-75015 Paris, France
| | - Anne-Lise Gaffuri
- Institut Pasteur, Membrane Traffic and Cell Division Lab, Department of Cell Biology and Infection, 25 Rue du Dr Roux, 75015 Paris, France CNRS URA 2582, F-75015 Paris, France
| | - Barbara Gayraud-Morel
- Institut Pasteur, Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Membrane Traffic and Cell Division Lab, Department of Cell Biology and Infection, 25 Rue du Dr Roux, 75015 Paris, France CNRS URA 2582, F-75015 Paris, France
| |
Collapse
|
130
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
131
|
Nuss JE, Kehn-Hall K, Benedict A, Costantino J, Ward M, Peyser BD, Retterer CJ, Tressler LE, Wanner LM, McGovern HF, Zaidi A, Anthony SM, Kota KP, Bavari S, Hakami RM. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS One 2014; 9:e93483. [PMID: 24809507 PMCID: PMC4014464 DOI: 10.1371/journal.pone.0093483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.
Collapse
Affiliation(s)
- Jonathan E. Nuss
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kylene Kehn-Hall
- School of Systems Biology, and National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Ashwini Benedict
- School of Systems Biology, and National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Julie Costantino
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Michael Ward
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Brian D. Peyser
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Cary J. Retterer
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Lyal E. Tressler
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Laura M. Wanner
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Hugh F. McGovern
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Anum Zaidi
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Scott M. Anthony
- University of Texas Health Sciences Center, Houston, Texas, United States of America
| | - Krishna P. Kota
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (RMH); (SB)
| | - Ramin M. Hakami
- School of Systems Biology, and National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail: (RMH); (SB)
| |
Collapse
|
132
|
Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 2014; 11:777-87. [PMID: 24824789 DOI: 10.4161/rna.28828] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | | | - Peter E Newburger
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA; Department of Cancer Biology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
133
|
Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis. PLoS One 2014; 9:e89121. [PMID: 24586537 PMCID: PMC3930685 DOI: 10.1371/journal.pone.0089121] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/20/2014] [Indexed: 01/15/2023] Open
Abstract
Oral delivery of Gram positive bacteria, often derived from the genera Lactobacillus or Bifidobacterium, can modulate immune function. Although the exact mechanisms remain unclear, immunomodulatory effects may be elicited through the direct interaction of these bacteria with the intestinal epithelium or resident dendritic cell (DC) populations. We analyzed the immune activation properties of Lactobacilli and Bifidobacterium species and made the surprising observation that cellular responses in vitro were differentially influenced by the presence of serum, specifically the extracellular vesicle (EV) fraction. In contrast to the tested Lactobacilli species, tested Bifidobacterium species induce TLR2/6 activity which is inhibited by the presence of EVs. Using specific TLR ligands, EVs were found to enhance cellular TLR2/1 and TLR4 responses while TLR2/6 responses were suppressed. No effect could be observed on cellular TLR5 responses. We determined that EVs play a role in bacterial aggregation, suggesting that EVs interact with bacterial surfaces. EVs were found to slightly enhance DC phagocytosis of Bifidobacterium breve whereas phagocytosis of Lactobacillus rhamnosus was virtually absent upon serum EV depletion. DC uptake of a non-microbial substance (dextran) was not affected by the different serum fractions suggesting that EVs do not interfere with DC phagocytic capacity but rather modify the DC-microbe interaction. Depending on the microbe, combined effects of EVs on TLR activity and phagocytosis result in a differential proinflammatory DC cytokine release. Overall, these data suggest that EVs play a yet unrecognized role in host-microbe responses, not by interfering in recipient cellular responses but via attachment to, or scavenging of, microbe-associated molecular patterns. EVs can be found in any tissue or bodily fluid, therefore insights into EV-microbe interactions are important in understanding the mechanism of action of potential probiotics and gut immune homeostasis.
Collapse
|
134
|
Hagiwara M, Kokubu E, Sugiura S, Komatsu T, Tada H, Isoda R, Tanigawa N, Kato Y, Ishida N, Kobayashi K, Nakashima M, Ishihara K, Matsushita K. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression. PLoS One 2014; 9:e87373. [PMID: 24466349 PMCID: PMC3900708 DOI: 10.1371/journal.pone.0087373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023] Open
Abstract
Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus) uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258) of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK) and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | - Shinsuke Sugiura
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Toshinori Komatsu
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Tada
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryutaro Isoda
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naomi Tanigawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshiko Kato
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naoyuki Ishida
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kaoru Kobayashi
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Misako Nakashima
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
135
|
Lubinsky M. A vascular and thrombotic model of gastroschisis. Am J Med Genet A 2014; 164A:915-7. [PMID: 24458365 DOI: 10.1002/ajmg.a.36370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023]
Abstract
A binary vascular/thrombotic pathogenesis for gastroschisis, a form of congenital bowel herniation, is proposed, where normal right umbilical vein involution creates a possible site for thrombosis adjacent to the umbilical ring. If thrombosis occurs, it weakens the area, explaining overwhelmingly right-sided lesions. The model arises from the existence of two groups of risk factors with different maternal age associations. Older mothers show a greater association with vascular factors (although this may actually represent a lack of any significant maternal age effect), consistent with associations of gastroschisis with congenital heart lesions and with amyoplasia. Alternatively, other predispositions, and especially decreased maternal age, the greatest known risk factor, associate with factors raising maternal estrogen, with evidence that estrogen in turn acts here as a predisposition to thrombosis. Absorption of thrombotic by-products from the amniotic fluid can explain the unusual amniocyte inclusions that are common with gastroschisis, while a role for estrogens suggests a connection between rising gastroschisis prevalence and increasing environmental contamination with estrogen disruptors. This model explains a variety of structural and epidemiological findings, and suggests that stratification of data based on binary effects may clarify associated risks and mechanisms. The model also shows that what is often referred to as vascular disruption may actually reflect alternative or additional factors instead, including thrombosis as a primary mechanism.
Collapse
|
136
|
Gagen D, Faralli JA, Filla MS, Peters DM. The role of integrins in the trabecular meshwork. J Ocul Pharmacol Ther 2013; 30:110-20. [PMID: 24266581 DOI: 10.1089/jop.2013.0176] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). However, integrins are not just adhesion receptors. They can act as "bidirectional signal transducers" that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. Among the activities regulated by integrins are cell adhesion, assembly of the ECM, growth factor signaling, apoptosis, organization of the cytoskeleton, and cytoskeleton-mediated processes such as contraction, endocytosis, and phagocytosis. Integrins regulate these activities through a complex network of intracellular signaling kinases and adaptor proteins that associate with the transmembrane and cytoplasmic domains of the integrin subunits. In this review, we will discuss how some of the known integrin-mediated activities can control the function of the trabecular meshwork. We will also discuss how integrin activity is a tightly regulated process that involves conformation changes within the heterodimer which are mediated by specific integrin-binding proteins.
Collapse
Affiliation(s)
- Debjani Gagen
- 1 Department of Pathology and Laboratory Medicine, Medical Science Center, University of Wisconsin , Madison, Wisconsin
| | | | | | | |
Collapse
|
137
|
Lin HY, Delmas D, Vang O, Hsieh TC, Lin S, Cheng GY, Chiang HL, Chen CE, Tang HY, Crawford DR, Whang-Peng J, Hwang J, Liu LF, Wu JM. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J Cell Biochem 2013; 114:1940-54. [PMID: 23495037 DOI: 10.1002/jcb.24539] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 02/28/2013] [Indexed: 01/15/2023]
Abstract
Ceramide is a member of the sphingolipid family of bioactive molecules demonstrated to have profound, diverse biological activities. Ceramide is a potential chemotherapeutic agent via the induction of apoptosis. Exposure to ceramide activates extracellular-signal-regulated kinases (ERK)1/2- and p38 kinase-dependent apoptosis in human ovarian cancer OVCAR-3 cells, concomitant with an increase in the expression of COX-2 and p53 phosphorylation. Blockade of cyclooxygenase-2 (COX-2) activity by siRNA or NS398 correspondingly inhibited ceramide-induced p53 Ser-15 phosphorylation and apoptosis; thus COX-2 appears at the apex of the p38 kinase-mediated signaling cascade induced by ceramide. Induction of apoptosis by ceramide or resveratrol was inhibited by the endocytosis inhibitor, cytochalasin D (CytD); however, cells exposed to resveratrol showed greater sensitivity than ceramide-treated cells. Ceramide-treated cells underwent a dose-dependent reduction in trans-membrane potential. Although both ceramide and resveratrol induced the expressions of caspase-3 and -7, the effect of inducible COX-2 was different in caspase-7 expression induced by ceramide compared to resveratrol. In summary, resveratrol and ceramide converge on an endocytosis-requiring, ERK1/2-dependent signal transduction pathway and induction of COX-expression as an essential molecular antecedent for subsequent p53-dependent apoptosis. In addition, expressions of caspase-3 and -7 are observed. However, a p38 kinase-dependent signal transduction pathway and change in mitochondrial potential are also involved in ceramide-induced apoptosis.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 2013; 110:16426-31. [PMID: 24065820 DOI: 10.1073/pnas.1311261110] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complement receptors (CRs), expressed notably on myeloid and lymphoid cells, play an essential function in the elimination of complement-opsonized pathogens and apoptotic/necrotic cells. In addition, these receptors are crucial for the cross-talk between the innate and adaptive branches of the immune system. CR3 (also known as Mac-1, integrin αMβ2, or CD11b/CD18) is expressed on all macrophages and recognizes iC3b on complement-opsonized objects, enabling their phagocytosis. We demonstrate that the C3d moiety of iC3b harbors the binding site for the CR3 αI domain, and our structure of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b. Based on extensive structural analysis, we suggest that the choice between a ligand glutamate or aspartate for coordination of a receptor metal ion-dependent adhesion site-bound metal ion is governed by the secondary structure of the ligand. Comparison of our structure to the CR2:C3d complex and the in vitro formation of a stable CR3:C3d:CR2 complex suggests a molecular mechanism for the hand-over of CR3-bound immune complexes from macrophages to CR2-presenting cells in lymph nodes.
Collapse
|
139
|
van Bergenhenegouwen J, Plantinga TS, Joosten LAB, Netea MG, Folkerts G, Kraneveld AD, Garssen J, Vos AP. TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol 2013; 94:885-902. [PMID: 23990624 DOI: 10.1189/jlb.0113003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TLRs play a major role in microbe-host interactions and innate immunity. Of the 10 functional TLRs described in humans, TLR2 is unique in its requirement to form heterodimers with TLR1 or TLR6 for the initiation of signaling and cellular activation. The ligand specificity of TLR2 heterodimers has been studied extensively, using specific bacterial and synthetic lipoproteins to gain insight into the structure-function relationship, the minimal active motifs, and the critical dependence on TLR1 or TLR6 for activation. Different from that for specific well-defined TLR2 agonists, recognition of more complex ligands like intact microbes or molecules from endogenous origin requires TLR2 to interact with additional coreceptors. A breadth of data has been published on ligand-induced interactions of TLR2 with additional pattern recognition receptors such as CD14, scavenger receptors, integrins, and a range of other receptors, all of them important factors in TLR2 function. This review summarizes the roles of TLR2 in vivo and in specific immune cell types and integrates this information with a detailed review of our current understanding of the roles of specific coreceptors and ligands in regulating TLR2 functions. Understanding how these processes affect intracellular signaling and drive functional immune responses will lead to a better understanding of host-microbe interactions and will aid in the design of new agents to target TLR2 function in health and disease.
Collapse
|
140
|
Gagen D, Filla MS, Clark R, Liton P, Peters DM. Activated αvβ3 integrin regulates αvβ5 integrin-mediated phagocytosis in trabecular meshwork cells. Invest Ophthalmol Vis Sci 2013; 54:5000-11. [PMID: 23821196 DOI: 10.1167/iovs.13-12084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the roles of αvβ3 and αvβ5 integrins in phagocytosis in human trabecular meshwork (HTM) cells. METHODS Immunofluorescence microscopy and FACS analysis were used to determine levels of αvβ3 and αvβ5 integrins in TM tissue and cultures of normal and immortalized TM cells. Phagocytosis was measured using pHrodo-labeled S. aureus bioparticles followed by FACS analysis. The role of αvβ5 integrin in phagocytosis was evaluated by knocking down αvβ5 integrin expression with siRNA against the human β5 gene. Signaling from focal adhesion kinase (FAK) was blocked using FAK inhibitor 14. The role of αvβ3 integrins in phagocytosis was determined by treating HTM cells with dexamethasone (DEX) or ethanol (EtOH) and by generating stable cell lines that overexpressed either wild type (WT) or constitutively active (CA) β3 integrin subunit. RESULTS Both TM tissue and cell lines expressed αvβ3 and αvβ5 integrins. Knockdown of αvβ5 integrin reduced phagocytosis by ∼60% and FAK inhibition significantly reduced phagocytosis up to 84%, in a dose-dependent manner. DEX treatment increased αvβ3 integrin expression in HTM cells but reduced phagocytosis by ∼50% compared with untreated and EtOH-treated cells. The CA β3 integrin-expressing cell line showed increased αvβ3 integrin levels and decreased phagocytosis by ∼50% compared with the control. CONCLUSIONS The αvβ5 integrin-FAK-mediated pathway regulates phagocytosis in TM cells and this pathway is inhibited by activation of αvβ3 integrins. This suggests that changes in integrin expression and activity may be responsible for alterations in phagocytosis observed in steroid induced glaucoma.
Collapse
Affiliation(s)
- Debjani Gagen
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
141
|
van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 2013; 11:561-73. [PMID: 23797173 DOI: 10.1038/nrmicro3049] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that causes acute and chronic infections. The study of C. burnetii pathogenesis has benefited from two recent fundamental advances: improved genetic tools and the ability to grow the bacterium in extracellular media. In this Review, we describe how these recent advances have improved our understanding of C. burnetii invasion and host cell modulation, including the formation of replication-permissive Coxiella-containing vacuoles. Furthermore, we describe the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and we discuss the role of these effectors in remodelling the host cell.
Collapse
Affiliation(s)
- Erin J van Schaik
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, Texas 77807-3260, USA
| | | | | | | | | |
Collapse
|
142
|
Lim J, Thompson J, May RC, Hotchin NA, Caron E. Regulator of G-Protein Signalling-14 (RGS14) Regulates the Activation of αMβ2 Integrin during Phagocytosis. PLoS One 2013; 8:e69163. [PMID: 23805333 PMCID: PMC3689692 DOI: 10.1371/journal.pone.0069163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/10/2013] [Indexed: 01/30/2023] Open
Abstract
Integrin-mediated phagocytosis, an important physiological activity undertaken by professional phagocytes, requires bidirectional signalling to/from αMβ2 integrin and involves Rap1 and Rho GTPases. The action of Rap1 and the cytoskeletal protein talin in activating αMβ2 integrins, in a RIAM-independent manner, has been previously shown to be critical during phagocytosis in mammalian phagocytes. However, the events downstream of Rap1 are not clearly understood. Our data demonstrate that one potential Rap1 effector, Regulator of G-Protein Signalling-14 (RGS14), is involved in activating αMβ2. Exogenous expression of RGS14 in COS-7 cells expressing αMβ2 results in increased binding of C3bi-opsonised sheep red blood cells. Consistent with this, knock-down of RGS14 in J774.A1 macrophages results in decreased association with C3bi-opsonised sheep red blood cells. Regulation of αMβ2 function occurs through the R333 residue of the RGS14 Ras/Rap binding domain (RBD) and the F754 residue of β2, residues previously shown to be involved in binding of H-Ras and talin1 head binding prior to αMβ2 activation, respectively. Surprisingly, overexpression of talin2 or RAPL had no effect on αMβ2 regulation. Our results establish for the first time a role for RGS14 in the mechanism of Rap1/talin1 activation of αMβ2 during phagocytosis.
Collapse
Affiliation(s)
- Jenson Lim
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- nanoTherics Ltd., Newcastle under Lyme, Staffordshire, United Kingdom
| | - Jo Thompson
- Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom
| | - Robin C. May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Neil A. Hotchin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Emmanuelle Caron
- Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
143
|
Prosser DC, Wendland B. Conserved roles for yeast Rho1 and mammalian RhoA GTPases in clathrin-independent endocytosis. Small GTPases 2013; 3:229-35. [PMID: 23238351 PMCID: PMC3520887 DOI: 10.4161/sgtp.21631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells use numerous endocytic pathways for nutrient uptake, protein turnover and response to the extracellular environment. While clathrin-mediated endocytosis (CME) has been extensively studied in yeast and mammalian cells, recent studies in higher eukaryotes have described multiple clathrin-independent endocytic pathways that depend upon Rho family GTPases and their effector proteins. In contrast, yeast cells have been thought to rely solely on CME. In a recent study, we used CME-defective yeast cells lacking clathrin-binding endocytic adaptor proteins in a genetic screen to identify novel factors involved in endocytosis. This approach revealed the existence of a clathrin-independent endocytic pathway involving the GTPase Rho1, which is the yeast homolog of RhoA. Further characterization of the yeast Rho1-mediated endocytic pathway suggested that the Rho1 pathway requires additional proteins that appear to play conserved roles in RhoA-dependent, clathrin-independent endocytic pathways in mammalian cells. Here, we discuss the parallels between the yeast Rho1-dependent and mammalian RhoA-dependent endocytic pathways, as well as the applications of yeast as a model for studying clathrin-independent endocytosis in higher eukaryotes.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The John Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
144
|
de Morrée A, Flix B, Bagaric I, Wang J, van den Boogaard M, Grand Moursel L, Frants RR, Illa I, Gallardo E, Toes R, van der Maarel SM. Dysferlin regulates cell adhesion in human monocytes. J Biol Chem 2013; 288:14147-14157. [PMID: 23558685 DOI: 10.1074/jbc.m112.448589] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysferlin is mutated in a group of muscular dystrophies commonly referred to as dysferlinopathies. It is highly expressed in skeletal muscle, where it is important for sarcolemmal maintenance. Recent studies show that dysferlin is also expressed in monocytes. Moreover, muscle of dysferlinopathy patients is characterized by massive immune cell infiltrates, and dysferlin-negative monocytes were shown to be more aggressive and phagocytose more particles. This suggests that dysferlin deregulation in monocytes might contribute to disease progression, but the molecular mechanism is unclear. Here we show that dysferlin expression is increased with differentiation in human monocytes and the THP1 monocyte cell model. Freshly isolated monocytes of dysferlinopathy patients show deregulated expression of fibronectin and fibronectin-binding integrins, which is recapitulated by transient knockdown of dysferlin in THP1 cells. Dysferlin forms a protein complex with these integrins at the cell membrane, and its depletion impairs cell adhesion. Moreover, patient macrophages show altered adhesion and motility. These findings suggest that dysferlin is involved in regulating cellular interactions and provide new insight into dysferlin function in inflammatory cells.
Collapse
Affiliation(s)
- Antoine de Morrée
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Ivana Bagaric
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jun Wang
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Laure Grand Moursel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rune R Frants
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Isabel Illa
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Eduard Gallardo
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Spain
| | - Rene Toes
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
145
|
Abstract
The process of phagocytosis in multicellular organisms is required for homeostasis, clearance of foreign particles, and establishment of long-term immunity, yet the molecular determinants of uptake are not well characterized. Cdc42, a Rho guanosine triphosphatase, is thought to orchestrate critical actin remodeling events needed for internalization. In this paper, we show that Cdc42 controls exocytic events during phagosome formation. Cdc42 inactivation led to a selective defect in large particle phagocytosis as well as a general decrease in the rate of membrane flow to the cell surface. Supporting the connection between Cdc42 and exocytic function, we found that the overproduction of a regulator of exocytosis, Rab11, rescued the large particle uptake defect in the absence of Cdc42. Additionally, we demonstrated a temporal interaction between Cdc42 and the exocyst complex during large particle uptake. Furthermore, disruption of exocyst function through Exo70 depletion led to a defect in large particle internalization, thereby establishing a functional role for the exocyst complex during phagocytosis.
Collapse
Affiliation(s)
- Sina Mohammadi
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
146
|
Nonaka S, Nagaosa K, Mori T, Shiratsuchi A, Nakanishi Y. Integrin αPS3/βν-mediated phagocytosis of apoptotic cells and bacteria in Drosophila. J Biol Chem 2013; 288:10374-80. [PMID: 23426364 DOI: 10.1074/jbc.m113.451427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Integrins exert a variety of cellular functions as heterodimers of two transmembrane subunits named α and β. Integrin βν, a β-subunit of Drosophila integrin, is involved in the phagocytosis of apoptotic cells and bacteria. Here, we searched for an α-subunit that forms a complex and cooperates with βν. Examinations of RNAi-treated animals suggested that αPS3, but not any of four other α-subunits, is required for the effective phagocytosis of apoptotic cells in Drosophila embryos. The mutation of αPS3-encoding scb, deficiency, insertion of P-element, or alteration of nucleotide sequences, brought about a reduction in the level of phagocytosis. The defect in phagocytosis by deficiency was reverted by the forced expression of scb. Furthermore, flies in which the expression of both αPS3 and βν was inhibited by RNAi showed a level of phagocytosis almost equal to that observed in flies with RNAi for either subunit alone. A loss of αPS3 also decreased the activity of larval hemocytes in the phagocytosis of Staphylococcus aureus. Finally, a co-immunoprecipitation analysis using a Drosophila cell line treated with a chemical cross-linker suggested a physical association between αPS3 and βν. These results collectively indicated that integrin αPS3/βν serves as a receptor in the phagocytosis of apoptotic cells and bacteria by Drosophila phagocytes.
Collapse
Affiliation(s)
- Saori Nonaka
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
147
|
Medraño-Fernandez I, Reyes R, Olazabal I, Rodriguez E, Sanchez-Madrid F, Boussiotis VA, Reche PA, Cabañas C, Lafuente EM. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis. Cell Mol Life Sci 2013; 70:2395-410. [PMID: 23420480 DOI: 10.1007/s00018-013-1268-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 12/24/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Phagocytosis mediated by the complement receptor CR3 (also known as integrin αMß2 or Mac-1) is regulated by the recruitment of talin to the cytoplasmic tail of the ß2 integrin subunit. Talin recruitment to this integrin is dependent on Rap1 activation. However, the mechanism by which Rap1 regulates this event and CR3-dependent phagocytosis remains largely unknown. In the present work, we examined the role of the Rap1 effector RIAM, a talin-binding protein, in the regulation of complement-mediated phagocytosis. Using the human myeloid cell lines HL-60 and THP-1, we determined that knockdown of RIAM impaired αMß2 integrin affinity changes induced by stimuli fMLP and LPS. Phagocytosis of complement-opsonized RBC particles, but not of IgG-opsonized RBC particles, was impaired in RIAM knockdown cells. Rap1 activation via EPAC induced by 8-pCPT-2'-O-Me-cAMP resulted in an increase of complement-mediated phagocytosis that was abrogated by knockdown of RIAM in HL-60 and THP-1 cell lines and in macrophages derived from primary monocytes. Furthermore, recruitment of talin to ß2 integrin during complement-mediated phagocytosis was reduced in RIAM knockdown cells. These results indicate that RIAM is a critical component of the phagocytosis machinery downstream of Rap1 and mediates its function by recruiting talin to the phagocytic complement receptors.
Collapse
Affiliation(s)
- Iria Medraño-Fernandez
- Departamento de Microbiología I, Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
149
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
150
|
Integrins and small GTPases as modulators of phagocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:321-54. [PMID: 23351714 DOI: 10.1016/b978-0-12-407699-0.00006-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake.
Collapse
|