101
|
Abstract
As obligatory intracellular parasites, viruses rely on host-cell functions for most aspects of their replication cycle. This is born out during entry, when most viruses that infect vertebrate and insect cells exploit the endocytic activities of the host cell to move into the cytoplasm. Viruses belonging to vaccinia, adeno, picorna and other virus families have been reported to take advantage of macropinocytosis, an endocytic mechanism normally involved in fluid uptake. The virus particles first activate signalling pathways that trigger actin-mediated membrane ruffling and blebbing. Usually, this is followed by the formation of large vacuoles (macropinosomes) at the plasma membrane, internalization of virus particles and penetration by the viruses or their capsids into the cytosol through the limiting membrane of the macropinosomes. We review the molecular machinery involved in macropinocytosis and describe what is known about its role in virus entry.
Collapse
|
102
|
Liu J, Kopecková P, Bühler P, Wolf P, Pan H, Bauer H, Elsässer-Beile U, Kopecek J. Biorecognition and subcellular trafficking of HPMA copolymer-anti-PSMA antibody conjugates by prostate cancer cells. Mol Pharm 2009; 6:959-70. [PMID: 19344119 PMCID: PMC2692824 DOI: 10.1021/mp8002682] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new generation of antibodies against the prostate specific membrane antigen (PSMA) has been proven to bind specifically to PSMA molecules on the surface of living prostate cancer cells. To explore the potential of anti-PSMA antibodies as targeting moieties for macromolecular therapeutics for prostate cancer, fluorescently labeled HPMA (N-(2-hydroxypropyl)methacrylamide) copolymer-anti-PSMA antibody conjugates (P-anti-PSMA) were synthesized and the mechanisms of their endocytosis and subcellular trafficking in C4-2 prostate cancer cells were studied. Radioimmunoassays showed the dissociation constants of P-anti-PSMA for C4-2 prostate cancer cells in the low nanomolar range, close to values for free anti-PSMA. It indicated that conjugation of anti-PSMA to HPMA copolymers did not compromise their binding affinity. The rate of endocytosis of P-anti-PSMA was much faster than that of control HPMA copolymer conjugates containing nonspecific IgG. Selective pathway inhibitors of clathrin-mediated endocytosis and of macropinocytosis inhibited the internalization of P-anti-PSMA. Inhibition of clathrin-mediated endocytosis was further evidenced by down-regulation of clathrin heavy chain expression by siRNA. Using a dominant-negative mutant of dynamin (Dyn K44A) to abolish the clathrin-, caveolae-independent endocytic pathway, we found that some of P-anti-PSMA adopted this pathway to be endocytosed into C4-2 cells. Thus multiple receptor-mediated endocytic pathways, including clathrin-mediated endocytosis, macropinocytosis, and clathrin-, caveolae-independent endocytosis, were involved in the internalization of P-anti-PSMA. The extent of the participation of each pathway in P-anti-PSMA endocytosis was estimated. Membrane vesicles containing P-anti-PSMA rapidly colocalized with membrane vesicles overexpressing Rab7, a late endosome localized protein, demonstrating that a part of P-anti-PSMA was transported to late endosomes.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Macropinocytosis represents a distinct pathway of endocytosis in mammalian cells. This actin-driven endocytic process is not directly co-ordinated by the presence of cargo but can be induced upon activation of growth factor signalling pathways. The capacity to dissect the contribution of macropinocytosis to cellular processes has been hampered by a lack of unique molecular markers and defining features. While aspects of macropinosome formation and maturation are common to those shared by the other endocytic pathways, a number of key differences have recently begun to emerge and will be discussed in this study. It is now well established that macropinocytosis significantly contributes to antigen presentation by the immune system and is exploited by a range of pathogens for cellular invasion and avoidance of immune surveillance.
Collapse
Affiliation(s)
- Markus C Kerr
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
104
|
Affiliation(s)
- Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
105
|
Lim JP, Wang JTH, Kerr MC, Teasdale RD, Gleeson PA. A role for SNX5 in the regulation of macropinocytosis. BMC Cell Biol 2008; 9:58. [PMID: 18854019 PMCID: PMC2576169 DOI: 10.1186/1471-2121-9-58] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms and components that regulate macropinocytosis are poorly understood. Here we have investigated the role of sorting nexin 5 (SNX5) in the regulation of macropinocytic activity. Results SNX5 is abundantly expressed in macrophages, cells very active in macropinocytosis, and is recruited onto newly-formed macropinosomes. LPS treatment of bone marrow-derived macrophages resulted in a 2.5 fold decrease in macropinosome formation that correlates with a reduction in the levels of SNX5. To investigate the relationship between SNX5 levels and macropinocytic activity we examined the formation of macropinosomes in HEK-FlpIn cells stably expressing GFP-SNX5. Constitutive macropinocytosis was increased ~2 fold in HEK-GFP-SNX5 cells compared with parental HEK-FlpIn cells. Furthermore, EGF stimulation resulted in a significant increase in macropinocytosis and there was also a 2.0 fold increase in the generation of macropinosomes in HEK-GFP-SNX5 cells compared with parental HEK-FlpIn cells. SNX5, which interacts specifically with PtdIns(3)P and PtdIns(3,4)P2 through its PX domain, was recruited to regions on the plasma membrane containing EGF receptor or positive for PtdIns(3,4)P2 as detected with the PH domain of TAPP1. Treatment with AG1478, an EGF receptor specific tyrosine kinase inhibitor, prevented the recruitment of SNX5 to the cytosolic face of the plasma membrane and inhibited the formation of macropinosomes in response to EGF treatment. Conclusion Based on these data, we propose that SNX5 requires the generation of phosphoinositides for recruitment to the plasma membrane and, moreover, influences the level of macropinocytic activity.
Collapse
Affiliation(s)
- Jet Phey Lim
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
106
|
Hara S, Kiyokawa E, Iemura SI, Natsume T, Wassmer T, Cullen PJ, Hiai H, Matsuda M. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport. Mol Biol Cell 2008; 19:3823-35. [PMID: 18596235 DOI: 10.1091/mbc.e08-03-0314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Bujny MV, Ewels PA, Humphrey S, Attar N, Jepson MA, Cullen PJ. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci 2008; 121:2027-36. [PMID: 18505799 DOI: 10.1242/jcs.018432] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium replicate within host cells in a specialized membrane-bound compartment, the Salmonella-containing vacuole (SCV). Interaction of SCVs with the host endocytic network is modulated by bacterial effectors, some of which, such as SigD/SopB, manipulate the level of endosomal phosphoinositides. Here, we establish that at early stages of Salmonella infection, sorting nexin-1 (SNX1) - a host phosphoinositide-binding protein that normally associates with early endosomes and regulates transport to the trans-Golgi network (TGN) - undergoes a rapid and transient translocation to bacterial entry sites, an event promoted by SigD/SopB. Recruitment of SNX1 to SCVs results in the formation of extensive, long-range tubules that we have termed ;spacious vacuole-associated tubules'. Formation of these tubules is coupled with size reduction of vacuoles and the removal of TGN-resident cargo. SNX1 suppression perturbs intracellular progress of bacteria, resulting in a delayed replication. We propose that SNX1 is important in tubular-based re-modeling of nascent SCVs and, in doing so, regulates intracellular bacterial progression and replication.
Collapse
Affiliation(s)
- Miriam V Bujny
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
108
|
Grandal MV, Madshus IH. Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. J Cell Mol Med 2008; 12:1527-34. [PMID: 18318691 PMCID: PMC3918068 DOI: 10.1111/j.1582-4934.2008.00298.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and other members of the EGFR/ErbB receptor family of receptor tyrosine kinases (RTKs) are important regulators of proliferation, angiogenesis, migration, tumorigenesis and metastasis. Overexpression, mutations, deletions and production of autocrine ligands contribute to aberrant activation of the ErbB proteins. The signalling output from EGFR is complicated given that other ErbB proteins are often additionally expressed and activated in the same cell, resulting in formation of homo-and/or heterodimers. In particular, association of EGFR with ErbB2 prevents its down-regulation, underscoring the importance of the cellular background for EGFR effects. Signalling from ErbB proteins can either be terminated by dissociation of ligand resulting in dephosphorylation, or blunted by degradation of the receptors. Although proteasomal targeting of ErbB proteins has been described, lysosomal degradation upon ligand-induced endocytosis seems to play the major role in EGFR down-regulation. Preclinical and clinical data have demonstrated that EGFR is a central player in cancer, especially in carcinomas, some brain tumours and in non-small cell lung cancer. Such studies have further validated EGFR as an important molecular target in cancer treatment. This review focuses on mechanisms involved in ligand-induced EGFR activation and endocytic down-regulation. A better understanding of EGFR biology should allow development of more tumour-selective therapeutic approaches targeting EGFR-induced signalling.
Collapse
|
109
|
Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MNJ, Teasdale RD, Owen DJ. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 2008; 9:366-79. [PMID: 18088321 DOI: 10.1111/j.1600-0854.2007.00688.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retromer is a heteromeric protein complex with important roles in endosomal membrane trafficking, most notably in the retrograde transport of lysosomal hydrolase receptors from endosomes to the Golgi. The core of retromer is composed of three subunits vacuolar protein sorting (Vps)35, Vps26 and Vps29, and in mammals, there are two paralogues of the medium subunit Vps26A and Vps26B. We find that both Vps26A and Vps26B bind to Vps35/Vps29 with nanomolar affinity and compete for a single-binding site to define distinct retromer complexes in vitro and in vivo. We have determined the crystal structure of mouse Vps26B and compare this structure with that of Vps26A. Vps26 proteins have a striking similarity to the arrestin family of proteins that regulate the signalling and endocytosis of G-protein-coupled receptors, although we observe that surface residues involved in arrestin function are not conserved in Vps26. Using structure-based mutagenesis, we show that both Vps26A and Vps26B are incorporated into retromer complexes through binding of Vps35 to a highly conserved surface patch within the C-terminal subdomain and that this interaction is required for endosomal recruitment of the proteins.
Collapse
Affiliation(s)
- Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
110
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
111
|
Jones AT. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med 2007; 11:670-84. [PMID: 17760832 PMCID: PMC3823249 DOI: 10.1111/j.1582-4934.2007.00062.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macropinocytosis defines a series of events initiated by extensive plasma membrane reorganization or ruffling to form an external macropinocytic structure that is then enclosed and internalized. The process is constitutive in some organisms and cell types but in others it is only pronounced after growth factor stimulation. Internalized macropinosomes share many features with phagosomes and both are distinguished from other forms of pinocytic vesicles by their large size, morphological heterogeneity and lack of coat structures. A paucity of information is available on other distinguishing features for macropinocytosis such as specific marker proteins and drugs that interfere with its mechanism over other endocytic processes. This has hampered efforts to characterize the dynamics of this pathway and to identify regulatory proteins that are expressed in order to allow it to proceed. Upon internalization, macropinosomes acquire regulatory proteins common to other endocytic pathways, suggesting that their identities as unique structures are short-lived. There is however less consensus regarding the overall fate of the macropinosome cargo or its limiting membrane and processes such as fusion, tubulation, recycling and regulated exocytosis have all been implicated in shaping the macropinosome and directing cargo traffic. Macropinocytosis has also been implicated in the internalization of cell penetrating peptides that are of significant interest to researchers aiming to utilize their translocation abilities to deliver therapeutic entities such as genes and proteins into cells. This review focuses on recent findings on the regulation of macropinocytosis, the intracellular fate of the macropinosome and discusses evidence for the role of this pathway as a mechanism of entry for cell penetrating peptides.
Collapse
Affiliation(s)
- Arwyn Tomos Jones
- Welsh School of Pharmacy, Redwood Building, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
112
|
Bujny MV, Popoff V, Johannes L, Cullen PJ. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 2007; 120:2010-21. [PMID: 17550970 DOI: 10.1242/jcs.003111] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian retromer complex is a multi-protein complex that regulates retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR) from early endosomes to the trans Golgi network (TGN). It consists of two subcomplexes: a membrane-bound coat comprising sorting nexin-1 (SNX1) and possibly sorting nexin-2 (SNX2), and a cargo-selective subcomplex, composed of VPS26, VPS29 and VPS35. In addition to the retromer, a variety of other protein complexes has been suggested to regulate endosome-to-TGN transport of not only the CI-MPR but a wide range of other cargo proteins. Here, we have examined the role of SNX1 and SNX2 in endosomal sorting of Shiga and cholera toxins, two toxins that undergo endosome-to-TGN transport en route to their cellular targets located within the cytosol. By using small interfering RNA (siRNA)-mediated silencing combined with single-cell fluorescent-toxin-uptake assays and well-established biochemical assays to analyze toxin delivery to the TGN, we have established that suppression of SNX1 leads to a significant reduction in the efficiency of endosome-to-TGN transport of the Shiga toxin B-subunit. Furthermore, we show that for the B subunit of cholera toxin, retrograde endosome-to-TGN transport is less reliant upon SNX1. Overall, our data establish a role for SNX1 in the endosome-to-TGN transport of Shiga toxin and are indicative for a fundamental difference between endosomal sorting of Shiga and cholera toxins into endosome-to-TGN retrograde transport pathways.
Collapse
Affiliation(s)
- Miriam V Bujny
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
113
|
Bryant DM, Kerr MC, Hammond LA, Joseph SR, Mostov KE, Teasdale RD, Stow JL. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J Cell Sci 2007; 120:1818-28. [PMID: 17502486 DOI: 10.1242/jcs.000653] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In epithelia, junction proteins are endocytosed for modulation of cell-cell adhesion and cell polarity. In response to growth factors, the cell-cell adhesion protein E-cadherin is internalized from the cell surface with degradation or recycling as potential fates. However, the cellular machinery involved in cadherin internalization and recycling remains controversial. Here we investigated EGF-induced E-cadherin internalization. EGF stimulation of MCF-7 cells resulted in Rac1-modulated macropinocytosis of the E-cadherin-catenin complex into endosomal compartments that colocalized with EEA1 and the sorting nexin, SNX1. Depletion of cellular SNX1 levels by siRNA resulted in increased intracellular accumulation and turnover of E-cadherin internalized from the cell surface in response to EGF. Moreover, SNX1 was also required for efficient recycling of internalized E-cadherin and re-establishment of epithelial adhesion. Together, these findings demonstrate a role for SNX1 in retrieval of E-cadherin from a degradative endosomal pathway and in membrane trafficking pathways that regulate E-cadherin recycling.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
114
|
Hamilton N, Kerr MC, Burrage K, Teasdale RD. Analyzing Real‐Time Video Microscopy: The Dynamics and Geometry of Vesicles and Tubules in Endocytosis. ACTA ACUST UNITED AC 2007; Chapter 14:Unit 4.16. [DOI: 10.1002/0471143030.cb0416s35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nicholas Hamilton
- ARC Centre in Bioinformatics Institute for Molecular Bioscience The University of Queensland St. Lucia Australia
| | - Markus C. Kerr
- ARC Centre in Bioinformatics Institute for Molecular Bioscience The University of Queensland St. Lucia Australia
| | - Kevin Burrage
- ARC Centre in Bioinformatics Institute for Molecular Bioscience The University of Queensland St. Lucia Australia
| | - Rohan D. Teasdale
- ARC Centre in Bioinformatics Institute for Molecular Bioscience The University of Queensland St. Lucia Australia
| |
Collapse
|
115
|
Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 2006; 120:45-54. [PMID: 17148574 DOI: 10.1242/jcs.03302] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mammalian retromer is a multimeric protein complex involved in mediating endosome-to-trans-Golgi-network retrograde transport of the cation-independent mannose-6-phosphate receptor. The retromer is composed of two subcomplexes, one containing SNX1 and forming a membrane-bound coat, the other comprising VPS26, VPS29 and VPS35 and being cargo-selective. In yeast, an additional sorting nexin--Vps17p--is a component of the membrane bound coat. It remains unclear whether the mammalian retromer requires a functional equivalent of Vps17p. Here, we have used an RNAi loss-of-function screen to examine whether any of the other 30 mammalian sorting nexins are required for retromer-mediated endosome-to-trans-Golgi-network retrieval of the cation-independent mannose-6-phosphate receptor. Using this screen, we identified two proteins, SNX5 and SNX6, that, when suppressed, induced a phenotype similar to that observed upon suppression of known retromer components. Whereas SNX5 and SNX6 colocalised with SNX1 on early endosomes, in immunoprecipitation experiments only SNX6 appeared to exist in a complex with SNX1. Interestingly, suppression of SNX5 and/or SNX6 resulted in a significant loss of SNX1, an effect that seemed to result from post-translational regulation of the SNX1 level. Such data suggest that SNX1 and SNX6 exist in a stable, endosomally associated complex that is required for retromer-mediated retrieval of the cation-independent mannose-6-phosphate receptor. SNX5 and SNX6 may therefore constitute functional equivalents of Vps17p in mammals.
Collapse
Affiliation(s)
- Thomas Wassmer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|