101
|
Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 2010; 11:510. [PMID: 20863387 PMCID: PMC2997006 DOI: 10.1186/1471-2164-11-510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.
Collapse
Affiliation(s)
- Cecelia A Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
102
|
Valbuena N, Moreno S. TOR and PKA pathways synergize at the level of the Ste11 transcription factor to prevent mating and meiosis in fission yeast. PLoS One 2010; 5:e11514. [PMID: 20634885 PMCID: PMC2901329 DOI: 10.1371/journal.pone.0011514] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background In the fission yeast Schizosaccharomyces pombe, the TOR (target of rapamycin) and PKA (protein kinase A) signaling transduction pathways regulate the expression of genes required for cell growth and sexual differentiation in response to the nutritional environment. Inhibition of Tor2 signaling results in the induction of genes involved in sexual differentiation, and the cells undergo mating and meiosis, even under good nutritional conditions. The same phenotype is observed in mutants in which the PKA pathway is inactive. By contrast, Tor2 overexpression or mutations that hyperactivate PKA signaling impair sexual differentiation, even under poor nutritional conditions. Accordingly, a very important question is to understand the molecular mechanism by which these two pathways coordinately regulate gene expression in response to nutrients. Methodology/Principal Findings Here we demonstrate that TOR and PKA pathways operate coordinately to negatively regulate sexual differentiation by inhibiting the nuclear accumulation of the Ste11 transcription factor. However, the Tor2 pathway is unable to block the nuclear localization of Ste11 under good nutritional conditions when the PKA pathway is inactive. Using microarray analyses, we found that both pathways inhibit sexual differentiation by blocking ste11-dependent gene expression. Conclusions/Significance We conclude that both the PKA and the TOR pathways inhibit Ste11 nuclear accumulation to repress Ste11-dependent gene expression. However, the PKA pathway plays a quantitatively more important role than the TOR pathway in this process.
Collapse
Affiliation(s)
- Noelia Valbuena
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Salamanca University, Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Salamanca University, Salamanca, Spain
- * E-mail:
| |
Collapse
|
103
|
Nakashima A, Sato T, Tamanoi F. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci 2010; 123:777-86. [PMID: 20144990 DOI: 10.1242/jcs.060319] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. pombe using the phospho-Akt substrate antibody. Response of p27 phosphorylation to nitrogen availability is mediated by TORC1 and the TSC-Rhb1 signaling, but not by TORC2 or other nutrient stress-related pathways. Database and biochemical analyses indicate that p27 is identical to ribosomal protein S6 (Rps6). Ser235 and Ser236 in Rps6 are necessary for Rps6 phosphorylation by TORC1. These Rps6 phosphorylations are dispensable for cell viability. Rps6 phosphorylation by TORC1 also responds to availability of glucose and is inhibited by osmotic and oxidative stresses. Rapamycin inhibits the ability of TORC1 to phosphorylate Rps6, owing to interaction of the rapamycin-FKBP12 complex with the FRB domain in Tor2. Rapamycin also leads to a decrease in cell size in a TORC1-dependent manner. Our findings demonstrate that the nutrient-responsive and rapamycin-sensitive TORC1-S6 signaling exists in S. pombe, and that this pathway plays a role in cell size control.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
104
|
Yamamoto M. The selective elimination of messenger RNA underlies the mitosis-meiosis switch in fission yeast. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:788-97. [PMID: 20948174 PMCID: PMC3037521 DOI: 10.2183/pjab.86.788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis-meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions including the nutrient status converge on the activity of an RRM-type RNA-binding protein, Mei2. This protein plays pivotal roles in both the induction and progression of meiosis and has now been found to govern the meiotic program in a quite unexpected manner. Fission yeast contains an RNA degradation system that selectively eliminates meiosis-specific mRNAs during the mitotic cell cycle. Mmi1, a novel RNA-binding protein of the YTH-family, is essential for this process. Mei2 tethers Mmi1 and thereby stabilizes the transcripts necessary for the progression of meiosis.
Collapse
Affiliation(s)
- Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
105
|
Abstract
The TSC/Rheb/TORC1/S6K/S6 signaling pathway plays critical roles in regulating protein synthesis and growth in eukaryotes. Our recent work using fission yeast Schizosaccharomyces pombe revealed that this signaling pathway is conserved from humans to fission yeast. In addition to target of rapamycin (TOR) homologsand tuberous sclerosis complex (TSC) homologs, fission yeast but not budding yeast, has a functional homolog of Rheb, a small G-protein acting as an activator of TOR complex 1 (TORC1). Several lines of genetic evidence suggest that the Tsc1-Tsc2 complex and Rheb act as upstream players of TORC1 in fission yeast. We have recently demonstrated that TORC1, but not TORC2, regulates phosphorylation of ribosomal protein S6 in response to nutrient availability. Candidate S6 kinase (S6K) protein has been identified. In addition, we find that rapamycin prevents a subset of TORC1 activity to regulate S6 phosphorylation in fission yeast.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics Molecular Biology Institute, Jonsson Comprehensive Cancer Center University of California, Los Angeles, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics Molecular Biology Institute, Jonsson Comprehensive Cancer Center University of California, Los Angeles, California, USA
| |
Collapse
|
106
|
Mukaiyama H, Nakase M, Nakamura T, Kakinuma Y, Takegawa K. Autophagy in the fission yeast Schizosaccharomyces pombe. FEBS Lett 2009; 584:1327-34. [PMID: 20036658 DOI: 10.1016/j.febslet.2009.12.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 12/18/2009] [Accepted: 12/18/2009] [Indexed: 02/03/2023]
Abstract
Autophagy is a non-selective degradation process in eukaryotic cells. The genome sequence of the fission yeast Schizosaccharomyces pombe has revealed that many of the genes required for autophagy are common between the fission yeast and budding yeast, suggesting that the basic machinery of autophagy is conserved between these species. Autophagy in fission yeast is specifically induced by nitrogen starvation based on monitoring a GFP-Atg8p marker. Upon nitrogen starvation, fission yeast cells exit the vegetative cell cycle and initiate sexual differentiation to produce spores. Most of the nitrogen used for de novo protein synthesis during sporulation derives from the autophagic protein degradation system. This review focuses on the recent advances in the role of autophagy in fission yeast.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
107
|
Abstract
For decades, the fission yeast Schizosaccharomyces pombe has been used as an excellent model with which to explore how cellular growth is coordinated with the division cycle, a yet-unanswered question in biology. New studies in this organism show that TOR (target of rapamycin) kinase and stress-responsive MAPK (mitogen-activated protein kinase) form a signaling pathway that readjusts the timing of mitotic onset in response to poor nutrient conditions. Nutritional environment appears to be translated into graded activity of the protein kinases that influence the activation of Cdc2, a cyclin-dependent kinase driving cell-cycle progression.
Collapse
Affiliation(s)
- Kazuhiro Shiozaki
- Department of Microbiology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
108
|
Distinctive responses to nitrogen starvation in the dominant active mutants of the fission yeast Rheb GTPase. Genetics 2009; 183:517-27. [PMID: 19620394 DOI: 10.1534/genetics.109.105379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rheb, a Ras-like small GTPase conserved from human to yeast, controls Tor kinase and plays a central role in the regulation of cell growth depending on extracellular conditions. Rhb1 (a fission yeast homolog of Rheb) regulates amino acid uptake as well as response to nitrogen starvation. In this study, we generated two mutants, rhb1-DA4 and rhb1-DA8, and characterized them genetically. The V17A mutation within the G1 box defined for the Ras-like GTPases was responsible for rhb1-DA4 and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events--the induction of the meiosis-initiating gene mei2+ and cell division without cell growth--are a typical response to nitrogen starvation. Under nitrogen-rich conditions, Rheb stimulates Tor kinase, which, in turn, suppresses the response to nitrogen starvation. While amino acid uptake was prevented by both rhb1-DA4 and rhb1-DA8 in a dominant fashion, the response to nitrogen starvation was prevented only by rhb1-DA4. rhb1-DA8 thereby allowed genetic dissection of the Rheb-dependent signaling cascade. We postulate that the signaling cascade may branch below Rhb1 or Tor2 and regulate the amino acid uptake and response to nitrogen starvation independently.
Collapse
|
109
|
TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions. Mol Cell Biol 2009; 29:4584-94. [PMID: 19546237 DOI: 10.1128/mcb.01879-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Target Of Rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol-3-kinase-related kinases (PIKKs). TOR proteins are found at the core of two distinct evolutionarily conserved complexes, TORC1 and TORC2. Disruption of TORC1 or TORC2 results in characteristically dissimilar phenotypes. TORC1 is a major cell growth regulator, while the cellular roles of TORC2 are not well understood. In the fission yeast Schizosaccharomyces pombe, Tor1 is a component of the TORC2 complex, which is particularly required during starvation and various stress conditions. Our genome-wide gene expression analysis of Deltator1 mutants indicates an extensive similarity with chromatin structure mutants. Consistently, TORC2 regulates several chromatin-mediated functions, including gene silencing, telomere length maintenance, and tolerance to DNA damage. These novel cellular roles of TORC2 are rapamycin insensitive. Cells lacking Tor1 are highly sensitive to the DNA-damaging drugs hydroxyurea (HU) and methyl methanesulfonate, similar to mutants of the checkpoint kinase Rad3 (ATR). Unlike Rad3, Tor1 is not required for the cell cycle arrest in the presence of damaged DNA. Instead, Tor1 becomes essential for dephosphorylation and reactivation of the cyclin-dependent kinase Cdc2, thus allowing reentry into mitosis following recovery from DNA replication arrest. Taken together, our data highlight critical roles for TORC2 in chromatin metabolism and in promoting mitotic entry, most notably after recovery from DNA-damaging conditions. These data place TOR proteins in line with other PIKK members, such as ATM and ATR, as guardians of genome stability.
Collapse
|
110
|
Hartmuth S, Petersen J. Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J Cell Sci 2009; 122:1737-46. [PMID: 19417002 DOI: 10.1242/jcs.049387] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TOR signalling coordinates growth and division to control cell size. Inhibition of Schizosaccharomyces pombe Tor1, in response to a reduction in the quality of the nitrogen source (nutrient stress), promotes mitotic onset through activation of the mitogen-activated protein kinase (MAPK) Sty1 (also known as Spc1). Here we show that ;nutrient starvation' (complete withdrawal of nitrogen or leucine) blocks mitotic commitment by altering Sty1 signalling and that different degrees of Sty1 activation determine these differences in mitotic commitment decisions. Mammals contain one TOR kinase, whereas yeasts contain two. In each case, they comprise two distinct complexes: TORC1 and TORC2. We find that nutrient-stress-induced control of mitotic onset, through Tor1, is regulated through changes in TORC1 signalling. In minimal medium, Tor1 interacts with the TORC1 component Mip1 (raptor), and overexpression of tor1+ generates growth defects reminiscent of TORC1 mutants. Strains lacking the TORC2-specific components Sin1 and Ste20 (rictor) still advance mitotic onset in response to nutrient stress. By contrast, Mip1 and the downstream effector Gad8 (a S6K kinase homologue), like Tor1, are essential for nutrient stress to advance mitotic onset. We conclude that S. pombe Tor1 and Tor2 can both act in TORC1. However, it is the inhibition of Tor1 as part of TORC1 that promotes mitosis following nutrient stress.
Collapse
Affiliation(s)
- Sonya Hartmuth
- University of Manchester, Faculty of Life Sciences, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
111
|
Helmlinger D, Marguerat S, Villén J, Gygi SP, Bähler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev 2009; 22:3184-95. [PMID: 19056896 DOI: 10.1101/gad.1719908] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SAGA complex is a conserved multifunctional coactivator known to play broad roles in eukaryotic transcription. To gain new insights into its functions, we performed biochemical and genetic analyses of SAGA in the fission yeast, Schizosaccharomyces pombe. Purification of the S. pombe SAGA complex showed that its subunit composition is identical to that of Saccharomyces cerevisiae. Analysis of S. pombe SAGA mutants revealed that SAGA has two opposing roles regulating sexual differentiation. First, in nutrient-rich conditions, the SAGA histone acetyltransferase Gcn5 represses ste11(+), which encodes the master regulator of the mating pathway. In contrast, the SAGA subunit Spt8 is required for the induction of ste11(+) upon nutrient starvation. Chromatin immunoprecipitation experiments suggest that these regulatory effects are direct, as SAGA is physically associated with the ste11(+) promoter independent of nutrient levels. Genetic tests suggest that nutrient levels do cause a switch in SAGA function, as spt8Delta suppresses gcn5Delta with respect to ste11(+) derepression in rich medium, whereas the opposite relationship, gcn5Delta suppression of spt8Delta, occurs during starvation. Thus, SAGA plays distinct roles in the control of the switch from proliferation to differentiation in S. pombe through the dynamic and opposing activities of Gcn5 and Spt8.
Collapse
Affiliation(s)
- Dominique Helmlinger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
112
|
TOR signalling regulates mitotic commitment through stress-activated MAPK and Polo kinase in response to nutrient stress. Biochem Soc Trans 2009; 37:273-7. [PMID: 19143645 DOI: 10.1042/bst0370273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell growth and cell division are coupled to control cell size and this co-ordination is often modulated by the availability of nutrients. In many eukaryotes, TOR (target of rapamycin) signalling is involved in coupling nutrient sensing to cell growth and division controls. Nutrient stress inhibits TOR signalling to advance the timing of cell division and thus leads to continued cell division at reduced cell size. Most changes in the environment stimulate stress-activated MAPK (mitogen-activated protein kinase) signalling pathways. Several MAPKs also have a general role in the control of mitotic onset and cell division. In the present paper, I discuss the interplay between two major signalling pathways, the TOR and the stress MAPK signalling pathways, in controlling mitotic commitment, with the main focus being on fission yeast (Schizosaccharomyces pombe).
Collapse
|
113
|
Abstract
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways.
Collapse
Affiliation(s)
- Yoko Otsubo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|
114
|
Abstract
The target of rapamycin (TOR) is a protein kinase with numerous functions in cell growth control. Some of these functions can be potently inhibited by rapamycin, an immunosuppressive and potential anticancer drug. TOR exists as part of two functionally distinct protein complexes. The functions of TOR complex 1 (TORC1) are effectively inhibited by rapamycin, but the mechanism for this inhibition remains elusive. The identification of TORC2 and recent reports that rapamycin can inhibit TORC2 functions, in some cases, challenge current models of TOR regulation. This review discusses the latest findings in yeast and mammals on the possible mechanisms that control TOR activity leading to its many cellular functions
Collapse
Affiliation(s)
- Estela Jacinto
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
115
|
Abstract
The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.
Collapse
|
116
|
Kanoh J, Yanagida M. Tel2: a common partner of PIK-related kinases and a link between DNA checkpoint and nutritional response? Genes Cells 2008; 12:1301-4. [PMID: 18076567 DOI: 10.1111/j.1365-2443.2007.01142.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A recent paper (Hayashi et al. 2007) in this issue of Genes to Cells shows that the fission yeast Schizosaccharomyces pombe Tel2, a homologue of mammalian/worm CLK2/Clk-2/Rad-5, physically interacts with all the phosphoinositide 3-kinase-related kinases (PIKKs) that include Rad3/Tel1 (ATR/ATM homologues), Tor1/Tor2 (TOR kinases) and Tra1/Tra2 (TRRAP homologues), raising the possibility that Tel2 family proteins link various PIKK-related cellular processes by interacting with PIKK family proteins. In this minireview, implications and impact of the findings, and a possibility that PIKKs are functionally related through Tel2, are discussed.
Collapse
Affiliation(s)
- Junko Kanoh
- Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
117
|
Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, Yanagida M. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 2008; 12:1357-70. [PMID: 18076573 DOI: 10.1111/j.1365-2443.2007.01141.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287. This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin. The L2048S substitution mutation in the catalytic domain in close proximity to the adenine base of ATP is unique as it is the sole known genetic cause of rapamycin hypersensitivity. Localization of Tor2 was speckled in the vegetative cytoplasm, and both speckled and membranous in the arrested cell cytoplasm. Using mass spectroscopic analysis, we identified six subunits (Tco89, Bit61, Toc1, Tel2, Tti1 and Cka1) that, in addition to the six previously identified subunits (Tor1, Tor2, Mip1/Raptor, Ste20/Rictor, Sin1/Avo1 and Wat1/Lst8), comprise the TOR complexes (TORCs). All of the subunits so far examined are multiply phosphorylated. Tel2 bound to Tti1 interacts with various phosphatidyl inositol kinase (PIK)-related kinases including Tra1, Tra2 and Rad3, as well as Tor1 and Tor2. Schizosaccharomyces pombe TORCs should thus be functionally redundant and might be broadly regulated through different subunits that are either common or specific to the two TORCs, or even common to various PIK-related kinases. Functional redundancy of the TORCs may explain the rapamycin hypersensitivity of tor2-287.
Collapse
Affiliation(s)
- Takeshi Hayashi
- The G0 Cell Unit, Okinawa Institute of Science and Technology Promotion Corporation, Suzaki 12-22, Uruma, Okinawa 904-2234, Japan
| | | | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Abstract
Most eukaryotic cells possess genetic potential to perform meiosis, but the vast majority of them never initiate it. The entry to meiosis is strictly regulated by developmental and environmental conditions, which vary significantly from species to species. Molecular mechanisms underlying the mitosis-meiosis decision are unclear in most organisms, except for a few model systems including fission yeast Schizosaccharomyces pombe. Nutrient limitation is a cue to the entry into meiosis in this microbe. Signals from nutrients converge on the activity of Mei2 protein, which plays pivotal roles in both induction and progression of meiosis. Here we outline the current knowledge of how a set of environmental stimuli eventually activates Mei2, and discuss how Mei2 governs the meiotic program molecularly, especially focusing on a recent finding that Mei2 antagonizes selective elimination of meiotic messenger RNAs.
Collapse
Affiliation(s)
- Yuriko Harigaya
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
120
|
TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol 2007; 9:1263-72. [PMID: 17952063 DOI: 10.1038/ncb1646] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 09/10/2007] [Indexed: 12/26/2022]
Abstract
The coupling of growth to cell cycle progression allows eukaryotic cells to divide at particular sizes depending on nutrient availability. In fission yeast, this coupling involves the Spc1/Sty1 mitogen-activated protein kinase (MAPK) pathway working through Polo kinase recruitment to the spindle pole bodies (SPBs). Here we report that changes in nutrients influence TOR signalling, which modulates Spc1/Sty1 activity. Rapamycin-induced inhibition of TOR signalling advanced mitotic onset, mimicking the reduction in cell size at division seen after shifts to poor nitrogen sources. Gcn2, an effector of TOR signalling and modulator of translation, regulates the Pyp2 phosphatase that in turn modulates Spc1/Sty1 activity. Rapamycin- or nutrient-induced stimulation of Spc1/Sty1 activity promotes Polo kinase SPB recruitment and Cdc2 activation to advance mitotic onset. This advanced mitotic onset is abolished in cells depleted of Gcn2, Pyp2, or Spc1/Sty1 or on blockage of Spc1/Sty1-dependent Polo SPB recruitment. Therefore, TOR signalling modulates mitotic onset through the stress MAPK pathway via the Pyp2 phosphatase.
Collapse
|
121
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
122
|
Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci U S A 2007; 104:3514-9. [PMID: 17360675 PMCID: PMC1805553 DOI: 10.1073/pnas.0608510104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Indexed: 12/19/2022] Open
Abstract
Rheb is a unique member of the Ras superfamily GTP-binding proteins. We as well as others previously have shown that Rheb is a critical component of the TSC/TOR signaling pathway. In fission yeast, Rheb is encoded by the rhb1 gene. Rhb1p is essential for growth and directly interacts with Tor2p. In this article, we report identification of 22 single amino acid changes in the Tor2 protein that enable growth in the absence of Rhb1p. These mutants also exhibit decreased mating efficiency. Interestingly, the mutations are located in the C-terminal half of the Tor2 protein, clustering mainly within the FAT and kinase domains. We noted some differences in the effect of a mutation in the FAT domain (L1310P) and in the kinase domain (E2221K) on growth and mating. Although the Tor2p mutations bypass Rhb1p's requirement for growth, they are incapable of suppressing Rhb1p's requirement for resistance to stress and toxic amino acids, pointing to multiple functions of Rhb1p. In mammalian systems, we find that mammalian target of rapamycin (mTOR) carrying analogous mutations (L1460P or E2419K), although sensitive to rapamycin, exhibits constitutive activation even when the cells are starved for nutrients. These mutations do not show significant difference in their ability to form complexes with Raptor, Rictor, or mLST8. Furthermore, we present evidence that mutant mTOR can complex with wild-type mTOR and that this heterodimer is active in nutrient-starved cells.
Collapse
Affiliation(s)
- Jun Urano
- *Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
| | - Tatsuhiro Sato
- *Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
| | - Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoko Otsubo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Fuyuhiko Tamanoi
- *Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
123
|
Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 2007; 27:3154-64. [PMID: 17261596 PMCID: PMC1899950 DOI: 10.1128/mcb.01039-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G(1) arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G(1) phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G(1) arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
124
|
Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M. Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics 2006; 175:1153-62. [PMID: 17179073 PMCID: PMC1840069 DOI: 10.1534/genetics.106.064170] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TOR protein kinases exhibit a conserved role in regulating cellular growth and proliferation. In the fission yeast two TOR homologs are present. tor1(+) is required for starvation and stress responses, while tor2(+) is essential. We report here that Tor2 depleted cells show a phenotype very similar to that of wild-type cells starved for nitrogen, including arrest at the G(1) phase of the cell cycle, induction of nitrogen-starvation-specific genes, and entrance into the sexual development pathway. The phenotype of tor2 mutants is in a striking contrast to the failure of tor1 mutants to initiate sexual development or arrest in G(1) under nitrogen starvation conditions. Tsc1 and Tsc2, the genes mutated in the human tuberous sclerosis complex syndrome, negatively regulate the mammalian TOR via inactivation of the GTPase Rheb. We analyzed the genetic relationship between the two TOR genes and the Schizosaccharomyces pombe orthologs of TSC1, TSC2, and Rheb. Our data suggest that like in higher eukaryotes, the Tsc1-2 complex negatively regulates Tor2. In contrast, the Tsc1-2 complex and Tor1 appear to work in parallel, both positively regulating amino acid uptake through the control of expression of amino acid permeases. Additionally, either Tsc1/2 or Tor1 are required for growth on a poor nitrogen source such as proline. Mutants lacking Tsc1 or Tsc2 are highly sensitive to rapamycin under poor nitrogen conditions, suggesting that the function of Tor1 under such conditions is sensitive to rapamycin. We discuss the complex genetic interactions between tor1(+), tor2(+), and tsc1/2(+) and the implications for rapamycin sensitivity in tsc1 or tsc2 mutants.
Collapse
Affiliation(s)
- Ronit Weisman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|