101
|
Niedzielska M, Raffi FAM, Tel J, Muench S, Jozefowski K, Alati N, Lahl K, Mages J, Billmeier U, Schiemann M, Appelt UK, Wirtz S, Sparwasser T, Hochrein H, Figdor CG, Keyse SM, Lang R. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production. THE JOURNAL OF IMMUNOLOGY 2015; 195:1753-62. [PMID: 26170386 DOI: 10.4049/jimmunol.1400658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/12/2015] [Indexed: 01/01/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-β, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-β and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-β expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-β production by these cells.
Collapse
Affiliation(s)
- Magdalena Niedzielska
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Sandra Muench
- Cancer Research UK Stress Response Laboratory, Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Katrin Jozefowski
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Nour Alati
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Katharina Lahl
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; Section of Virology, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg, Denmark; Immunology Section, Lund University, 221 00 Lund, Sweden
| | - Jörg Mages
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany
| | - Ulrike Billmeier
- Medical Clinic 1, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Matthias Schiemann
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany
| | - Uwe K Appelt
- Cell Sorting Unit, Nikolaus-Fiebiger-Center for Molecular Medicine, 91054 Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; TWINCORE-Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; and
| | - Hubertus Hochrein
- Department of Research, Bavarian Nordic GmbH, 82152 Martinsried, Germany
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Stephen M Keyse
- Cancer Research UK Stress Response Laboratory, Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany; Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany;
| |
Collapse
|
102
|
Abstract
Extracellular-signal-regulated kinase 5 (ERK5), also termed big MAPK1 (BMK1), is the most recently discovered member of the mitogen-activated protein kinase (MAPK) family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that, in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling and regulating tumour angiogenesis. The present review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function.
Collapse
|
103
|
Hirai G, Sodeoka M. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings. Acc Chem Res 2015; 48:1464-73. [PMID: 25894598 DOI: 10.1021/acs.accounts.5b00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane permeability. Therefore, we next modified the core structure from acidic to neutral by transformation to the enamine derivative and constructed a second-generation focused library (RE derivatives). The resulting compounds showed dramatically improved cell membrane permeability and inhibitory selectivity and included VHR (vaccinia VH1-related)-selective RE12 and CDC25A/B (cell division cycle 25A/B)-selective RE44. These inhibitors act on target enzymes in cellulo and do not generate reactive oxygen species, which is a potential problem with quinoid-type inhibitors of CDC25s. The cellular activity of RE12 was further improved by replacement of the side chain to afford RE176, which showed more potent antiproliferative activity than RE12 against HeLa cells. The dramatic change of inhibitory selectivity obtained by core structure modification from 3-acyltetronic acid to its enamine derivative was associated with a change in the mode of action. Namely, RE derivatives were found to be noncompetitive inhibitors with respect to a small-molecular substrate of CDC25A/B, whereas RK-682 was a competitive inhibitor of VHR. We identified the binding site of RE derivatives on the CDC25A as a pocket adjacent to the active site; this appears to be a promising target site for development of further novel inhibitors of CDC25s.
Collapse
Affiliation(s)
- Go Hirai
- Synthetic Organic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- CREST-JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
104
|
Wang CH, Zhang XL, Li Y, Wang GD, Wang XK, Dong J, Ning QF. Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress. Cell Mol Neurobiol 2015; 35:473-82. [PMID: 25410305 PMCID: PMC11486271 DOI: 10.1007/s10571-014-0141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/14/2014] [Indexed: 01/09/2023]
Abstract
Stressful life events especially the chronic unpredictable stress are the obvious precipitating factors of depression. The biological information transduction in cells plays an important role in the molecular biology mechanism of depression. Mitogen-activated protein kinase phosphatase-1 (MKP-1) regulates the cell physiological activity and involves in the adjustment of neural plasticity, function, and survival. This experiment tried to explore the possible effects of MKP-1 in hippocampus on depression of rats by determining the expression of MKP-1 mRNA and DNA methylation in MKP-1 gene promoter. The animal model was established by chronic unpredictable stress, and evaluated by open-field test and weight changes. All the rats were divided into the sham stimulation, the physiological saline, and the fluoxetine (1.25, 2.50, and 5.00 mg/kg) groups randomly. The expression of MKP-1 mRNA in the hippocampus was measured by RT-PCR and the methylation of MKP-1 promoter DNA was detected by COBRA. The chronic unpredicted stress (1) increased the animal movement scores in open-field test, and fluoxetine could prevent this increasement; (2) increased the body weight, and fluoxetine could not prevent this increasement; and (3) increased MKP-1 mRNA expression in the hippocampus, and fluoxetine could prevent it. However, fluoxetine did not influence the DNA methylation of MKP-1 gene promoter in the hippocampus during the chronic unpredicted stress. MKP-1 in the hippocampus might be involved in the etiology of depression, and DNA methylation of MKP-1 gene promoter in the hippocampus did not related with the depression.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Xiao-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Yan Li
- Department of Child and Adolescent, Public Health College, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001 Henan China
| | - Guo-Dong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Xin-Kai Wang
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Qiu-Fen Ning
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| |
Collapse
|
105
|
Pavic K, Duan G, Köhn M. VHR/DUSP3 phosphatase: structure, function and regulation. FEBS J 2015; 282:1871-90. [PMID: 25757426 DOI: 10.1111/febs.13263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 01/13/2023]
Abstract
Vaccinia H1-related (VHR) phosphatase, also known as dual-specificity phosphatase (DUSP) 3, is a small member of the DUSP (also called DSP) family of phosphatases. VHR has a preference for phospho-tyrosine substrates, and has important roles in cellular signaling ranging from cell-cycle regulation and the DNA damage response to MAPK signaling, platelet activation and angiogenesis. VHR/DUSP3 has been implicated in several human cancers, where its tumor-suppressing and -promoting properties have been described. We give a detailed overview of VHR/DUSP3 phosphatase and compare it with its most closely related phosphatases DUSP13B, DUSP26 and DUSP27.
Collapse
Affiliation(s)
- Karolina Pavic
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Guangyou Duan
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
106
|
Feng X, Zhang Y, Shao N, Wang Y, Zhuang Z, Wu P, Lee MJ, Liu Y, Wang X, Zhuang J, Delpire E, Gu D, Cai H. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway. Am J Physiol Renal Physiol 2015; 308:F1119-27. [PMID: 25761881 DOI: 10.1152/ajprenal.00543.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Thiazide-sensitive sodium chloride cotransporter (NCC) plays an important role in maintaining blood pressure. Aldosterone is known to modulate NCC abundance. Previous studies reported that dietary salts modulated NCC abundance through either WNK4 [with no lysine (k) kinase 4]-SPAK (Ste20-related proline alanine-rich kinase) or WNK4-extracellular signal-regulated kinase-1 and -2 (ERK1/2) signaling pathways. To exclude the influence of SPAK signaling pathway on the role of the aldosterone-mediated ERK1/2 pathway in NCC regulation, we investigated the effects of dietary salt changes and aldosterone on NCC abundance in SPAK knockout (KO) mice. We found that in SPAK KO mice low-salt diet significantly increased total NCC abundance while reducing ERK1/2 phosphorylation, whereas high-salt diet decreased total NCC while increasing ERK1/2 phosphorylation. Importantly, exogenous aldosterone administration increased total NCC abundance in SPAK KO mice while increasing DUSP6 expression, an ERK1/2-specific phosphatase, and led to decreasing ERK1/2 phosphorylation without changing the ratio of phospho-T53-NCC/total NCC. In mouse distal convoluted tubule (mDCT) cells, aldosterone increased DUSP6 expression while reducing ERK1/2 phosphorylation. DUSP6 Knockdown increased ERK1/2 phosphorylation while reducing total NCC expression. Inhibition of DUSP6 by (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased ERK1/2 phosphorylation and reversed the aldosterone-mediated increments of NCC partly by increasing NCC ubiquitination. Therefore, these data suggest that aldosterone modulates NCC abundance via altering NCC ubiquitination through a DUSP6-dependent ERK1/2 signal pathway in SPAK KO mice and part of the effects of dietary salt changes may be mediated by aldosterone in the DCTs.
Collapse
Affiliation(s)
- Xiuyan Feng
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yiqian Zhang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ningjun Shao
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yanhui Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Renal Division, the First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Zhizhi Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ping Wu
- Renal Division, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Matthew J Lee
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yingli Liu
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jieqiu Zhuang
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Dingying Gu
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Hui Cai
- Renal Division, the Second Affiliated Hospital, Wenzhou Medical University, Zhejiang, China; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
107
|
Chen WC, Yen CS, Huang WJ, Hsu YF, Ou G, Hsu MJ. WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-inflammatory properties via MKP-1 in LPS-stimulated RAW264.7 macrophages. Br J Pharmacol 2015; 172:1894-908. [PMID: 25521622 DOI: 10.1111/bph.13040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydroxamate derivatives have attracted considerable attention because of their broad pharmacological properties. Recent studies reported their potential use in the treatment of cardiovascular diseases, arthritis and infectious diseases. However, the mechanisms of the anti-inflammatory effects of hydroxamate derivatives remain to be elucidated. In an effort to develop a novel pharmacological agent that could suppress abnormally activated macrophages, we investigated a novel aliphatic hydroxamate derivative, WMJ-S-001, and explored its anti-inflammatory mechanisms. EXPERIMENTAL APPROACH RAW264.7 macrophages were exposed to LPS in the absence or presence of WMJ-S-001. COX-2 expression and signalling molecules activated by LPS were assessed. KEY RESULTS LPS-induced COX-2 expression was suppressed by WMJ-S-001. WMJ-S-001 inhibited p38MAPK, NF-κB subunit p65 and CCAAT/enhancer-binding protein (C/EBP)β phosphorylation in cells exposed to LPS. Treatment of cells with a p38MAPK inhibitor (p38MAPK inhibitor III) markedly inhibited LPS-induced p65 and C/EBPβ phosphorylation and COX-2 expression. LPS-increased p65 and C/EBPβ binding to the COX-2 promoter region was suppressed in the presence of WMJ-S-001. In addition, WMJ-S-001 suppression of p38MAPK, p65 and C/EBPβ phosphorylation, and subsequent COX-2 expression were restored in cells transfected with a dominant-negative (DN) mutant of MAPK phosphatase-1 (MKP-1). WMJ-S-001 also caused an increase in MKP-1 activity in RAW264.7 macrophages. CONCLUSIONS AND IMPLICATIONS WMJ-S-001 may activate MKP-1, which then dephosphorylates p38MAPK, resulting in a decrease in p65 and C/EBPβ binding to the COX-2 promoter region and COX-2 down-regulation in LPS-stimulated RAW264.7 macrophages. The present study suggests that WMJ-S-001 may be a potential drug candidate for alleviating LPS-associated inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
108
|
Pérez-Sen R, Queipo MJ, Morente V, Ortega F, Delicado EG, Miras-Portugal MT. Neuroprotection Mediated by P2Y13 Nucleotide Receptors in Neurons. Comput Struct Biotechnol J 2015; 13:160-8. [PMID: 25750704 PMCID: PMC4348571 DOI: 10.1016/j.csbj.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022] Open
Abstract
ADP-specific P2Y13 receptor constitutes one of the most recently identified nucleotide receptor and the understanding of their physiological role is currently under investigation. Cerebellar astrocytes and granule neurons provide excellent models to study P2Y13 expression and function since the first identification of ADP-evoked calcium responses not attributable to the related P2Y1 receptor was performed in these cell populations. In this regard, all responses induced by ADP analogues in astrocytes resulted to be Gi-coupled activities mediated by P2Y13 instead of P2Y1 receptors. Similarly, both glycogen synthase kinase-3 (GSK3) and ERK1/2 signaling triggered by 2MeSADP in cerebellar granule neurons were also dependent on Gi-coupled receptors, and mediated by PI3K activity. In granule neurons, P2Y13 receptor was specifically coupled to the main neuronal survival PI3K/Akt-cascade targeting GSK3 phosphorylation. GSK3 inhibition led to nuclear translocation of transcriptional targets, including β-catenin and Nrf2. The activation of the Nrf2/heme oxygenase-1 (HO-1) axis was responsible for the prosurvival effect against oxidative stress. In addition, P2Y13-mediated ERK1/2 signaling in granule neurons also triggered activation of transcription factors, such as CREB, which underlined the antiapoptotic action against glutamate-induced excitotoxicity. Finally, a novel signaling mechanism has been recently described for a P2Y13 receptor in granule neurons that involved the expression of a dual protein phosphatase, DUSP2. This activity contributed to regulate MAPK activation after genotoxic stress. In conclusion, P2Y13 receptors harbored in cerebellar astrocytes and granule neurons exhibit specific signaling properties that link them to specialized functions at the level of neuroprotection and trophic activity in both cerebellar cell populations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - M José Queipo
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - Verónica Morente
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - Felipe Ortega
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - Esmerilda G Delicado
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| | - M Teresa Miras-Portugal
- Biochemistry Department, School of Veterinary Sciences, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain
| |
Collapse
|
109
|
Sanderson M, Sadie-Van Gijsen H, Hough S, Ferris WF. The Role of MKP-1 in the Anti-Proliferative Effects of Glucocorticoids in Primary Rat Pre-Osteoblasts. PLoS One 2015; 10:e0135358. [PMID: 26263165 PMCID: PMC4532462 DOI: 10.1371/journal.pone.0135358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/04/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis has been attributed to a GC-induced suppression of pre-osteoblast proliferation. Our previous work identified a critical role for mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in mediating the anti-proliferative effects of GCs in immortalized pre-osteoblasts, but we subsequently found that MKP-1 null mice were not protected against the pathological effects of GCs on bone. In order to reconcile this discrepancy, we have assessed the effects of GCs on proliferation, activation of the MAPK ERK1/2 and MKP-1 expression in primary adipose-derived stromal cells (ADSCs) and ADSC-derived pre-osteoblasts (ADSC-OBs). ADSCs were isolated by means of collagenase digestion from adipose tissue biopsies harvested from adult male Wistar rats. ADSC-OBs were prepared by treating ADSCs with osteoblast differentiation media for 7 days. The effects of increasing concentrations of the GC dexamethasone on basal and mitogen-stimulated cell proliferation were quantified by tritiated thymidine incorporation. ERK1/2 activity was measured by Western blotting, while MKP-1 expression was quantified on both RNA and protein levels, using semi-quantitative real-time PCR and Western blotting, respectively. GCs were strongly anti-proliferative in both naïve ADSCs and ADSC-OBs, but had very little effect on mitogen-induced ERK1/2 activation and did not upregulate MKP-1 protein expression. These findings suggest that the anti-proliferative effects of GCs in primary ADSCs and ADSC-OBs in vitro do not require the inhibition of ERK1/2 activation by MKP-1, which is consistent with our in vivo findings in MKP-1 null mice.
Collapse
Affiliation(s)
- Micheline Sanderson
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow, South Africa
| | - Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow, South Africa
| | - Stephen Hough
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow, South Africa
| | - William F. Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Parow, South Africa
- * E-mail:
| |
Collapse
|
110
|
Podok P, Wang H, Xu L, Xu D, Lu L. Characterization of myeloid-specific peroxidase, keratin 8, and dual specificity phosphatase 1 as innate immune genes involved in the resistance of crucian carp (Carassius auratus gibelio) to Cyprinid herpesvirus 2 infection. FISH & SHELLFISH IMMUNOLOGY 2014; 41:531-540. [PMID: 25312688 DOI: 10.1016/j.fsi.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Myeloid-specific peroxidase (MPO), keratin 8 (KRT-8), and dual specificity phosphatase 1 (DUSP-1) are believed to play essential roles in innate immunity. Through suppression subtractive hybridization (SSH) analysis, we previously identified MPO, KRT-8, and DUSP-1 as the three genes that were the most significantly upregulated in crucian carp (Carassius auratus gibelio) that survived Cyprinid herpesvirus 2 (CyHV-2) infection. Here, we have further characterized these three genes and their response to pathogen challenge. The open reading frames (ORF) of MPO, KRT-8, and DUSP-1 were cloned by RACE technique and sequenced. The full-length cDNAs of the three genes contained ORFs of 2289, 1575 and 1083 bp respectively. The polypeptides from each ORF were projected to contain 762 (MPO), 524 (KRT-8), and 360 (DUSP-1) amino acids. Phylogenetic analysis showed that the three genes were most closely related to zebrafish. We found that MPO, KRT-8, and DUSP-1 were expressed at low levels in all of the tissues examined in healthy crucian carp. Quantitative real-time RT-PCR analysis indicated that MPO, KRT-8, and DUSP-1 mRNA expression was significantly upregulated within 72 h of CyHV-2 infection compared to mock infected controls. Maximum expression of MPO was detected at 24 hpi (2.71-fold, P < 0.05). While, 12 hpi (3.80-fold, P < 0.01) and 6 hpi (8.70-fold, P < 0.01) were the highest expression time points for KRT-8 and DUSP-1, respectively. In contrast, after Aeromonas hydrophila challenge, the transcripts of these three genes remained unchanged or slightly down-regulated. For the fish survived from viral infection, expression levels of MPO and KRT-8 were 2.72 fold and 2.47 fold higher than those of fish died from acute infection, and similar level of DUSP-1 was observed in samples of survived fish. These data suggested MPO, KRT-8 and DUSP-1 might be involved in the antiviral, but not antibacterial innate immune response in crucian carp. These findings also support the use of MPO and KRT-8 as immunological markers for a response to viral infection in crucian carp.
Collapse
Affiliation(s)
- Patarida Podok
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, 201306, PR China
| | - Hao Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, 201306, PR China
| | - Lijuan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, 201306, PR China
| | - Dan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, 201306, PR China
| | - Liqun Lu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, 201306, PR China.
| |
Collapse
|
111
|
Ghorbel M, Zaidi I, Robe E, Ranty B, Mazars C, Galaud JP, Hanin M. The activity of the wheat MAP kinase phosphatase 1 is regulated by manganese and by calmodulin. Biochimie 2014; 108:13-9. [PMID: 25447143 DOI: 10.1016/j.biochi.2014.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 11/16/2022]
Abstract
MAPK phosphatases (MKPs) are negative regulators of MAPKs in eukaryotes and play key roles in the regulation of different cellular processes. However in plants, little is known about the regulation of these Dual Specific Phosphatases (DSPs) by Ca(2+) and calmodulin (CaM). Here, we showed that the wheat MKP (TMKP1) harboring a calmodulin (CaM) binding domain, binds to CaM in a Ca(2+)-dependent manner. In addition, TMKP1 exhibited a phosphatase activity in vitro that is specifically enhanced by Mn(2+) and to a lesser extent by Mg(2+), but without any synergistic effect between the two bivalent cations. Most interestingly, CaM/Ca(2+) complex inhibits the catalytic activity of TMKP1 in a CaM-dose dependent manner. However, in the presence of Mn(2+) this activity is enhanced by CaM/Ca(2+) complex. These dual regulatory effects seem to be mediated via interaction of CaM/Ca(2+) to the CaM binding domain in the C-terminal part of TMKP1. Such effects were not reported so far, and raise a possible role for CaM and Mn(2+) in the regulation of plant MKPs during cellular response to external signals.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France
| | - Ikram Zaidi
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia
| | - Eugénie Robe
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Benoit Ranty
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Christian Mazars
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Jean-Philippe Galaud
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Moez Hanin
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, BP1177, 3018 Sfax, Tunisia; University of Sfax, Institute of Biotechnology, BP "1175", 3038 Sfax, Tunisia.
| |
Collapse
|
112
|
Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2936-50. [PMID: 25196308 DOI: 10.1016/j.ajpath.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
Protein phosphatase magnesium dependent 1A (PPM1A) has been implicated in fibrosis and skin wounding. We generated PPM1A knockout mice to study the role of PPM1A in the wound healing-inflammation-angiogenesis cross talk. The role of PPM1A in these processes was studied using the ocular alkali burn model system. In the injured cornea the absence of PPM1A led to enhanced inflammatory response, stromal keratocyte transactivation, fibrosis, increased p38 mitogen-activated protein kinase phosphorylation, elevated expression of transforming growth factor-β-related genes (including Acta2, TGF-β, Col1, MMP9, and VEGF) and subsequently to neovascularization. Augmented angiogenesis in the absence of PPM1A is a general process occurring in vivo in PPM1A knockout mice upon subcutaneous Matrigel injection and ex vivo in aortic ring Matrigel cultures. Using primary keratocyte cultures and various experimental approaches, we found that phospho-p38 is a favored PPM1A substrate and that by its dephosphorylation PPM1A participates in the regulation of the transforming growth factor-β signaling cascade, the hallmark of inflammation and the angiogenic process. On the whole, the studies presented here position PPM1A as a new player in the wound healing-inflammation-angiogenesis axis in mouse, reveal its crucial role in homeostasis on injury, and highlight its potential as a therapeutic mediator in pathologic conditions, such as inflammation and angiogenesis disorders, including cancer.
Collapse
|
113
|
Feng B, Jiao P, Helou Y, Li Y, He Q, Walters MS, Salomon A, Xu H. Mitogen-activated protein kinase phosphatase 3 (MKP-3)-deficient mice are resistant to diet-induced obesity. Diabetes 2014; 63:2924-34. [PMID: 24722245 PMCID: PMC4141371 DOI: 10.2337/db14-0066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitogen-activated protein kinase phosphatase 3 (MKP-3) is a negative regulator of extracellular signal-related kinase signaling. Our laboratory recently demonstrated that MKP-3 plays an important role in obesity-related hyperglycemia by promoting hepatic glucose output. This study shows that MKP-3 deficiency attenuates body weight gain induced by a high-fat diet (HFD) and protects mice from developing obesity-related hepatosteatosis. Triglyceride (TG) contents are dramatically decreased in the liver of MKP-3(-/-) mice fed an HFD compared with wild-type (WT) controls. The absence of MKP-3 also reduces adiposity, possibly by repressing adipocyte differentiation. In addition, MKP-3(-/-) mice display increased energy expenditure, enhanced peripheral glucose disposal, and improved systemic insulin sensitivity. We performed global phosphoproteomic studies to search for downstream mediators of MKP-3 action in liver lipid metabolism. Our results revealed that MKP-3 deficiency increases the phosphorylation of histone deacetylase (HDAC) 1 on serine 393 by 3.3-fold and HDAC2 on serine 394 by 2.33-fold. Activities of HDAC1 and 2 are increased in the livers of MKP-3(-/-) mice fed an HFD. Reduction of HDAC1/2 activities is sufficient to restore TG content of MKP-3(-/-) primary hepatocytes to a level similar to that in WT cells.
Collapse
Affiliation(s)
- Bin Feng
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown University, Warren Alpert Medical School, Providence, RI
| | - Ping Jiao
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown University, Warren Alpert Medical School, Providence, RI School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ynes Helou
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI
| | - Yujie Li
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown University, Warren Alpert Medical School, Providence, RI
| | - Qin He
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown University, Warren Alpert Medical School, Providence, RI
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI Department of Chemistry, Brown University, Providence, RI
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Brown University, Warren Alpert Medical School, Providence, RI Pathobiology Program, Brown University, Providence, RI
| |
Collapse
|
114
|
Barajas-Espinosa A, Basye A, Jesse E, Yan H, Quan D, Chen CA. Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd²⁺-induced apoptosis. Free Radic Biol Med 2014; 74:188-199. [PMID: 24973647 PMCID: PMC4146716 DOI: 10.1016/j.freeradbiomed.2014.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.
Collapse
Affiliation(s)
- Alma Barajas-Espinosa
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Ariel Basye
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Erin Jesse
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Haixu Yan
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - David Quan
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Chun-An Chen
- Corresponding Author: Chun-An (Andy) Chen, Department of Emergency Medicine, 760 Prior Hall 376 W 10 Ave Columbus, OH 43210, Tel. 614-366-6380, Fax. 614-293-3124,
| |
Collapse
|
115
|
Feng B, He Q, Xu H. FOXO1-dependent up-regulation of MAP kinase phosphatase 3 (MKP-3) mediates glucocorticoid-induced hepatic lipid accumulation in mice. Mol Cell Endocrinol 2014; 393:46-55. [PMID: 24946098 PMCID: PMC4130747 DOI: 10.1016/j.mce.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/15/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
Long-term treatment with glucocorticoids (GCs) or dysregulation of endogenous GC levels induces a series of metabolic diseases, such as insulin resistance, obesity and type 2 diabetes. We previously showed that MAP kinase phosphatase-3 (MKP-3) plays an important role in glucose metabolism. The aim of this study is to investigate the role of MKP-3 in GC-induced metabolic disorders. Dexamethasone (Dex), a synthetic GC, increases MKP-3 protein expression both in cultured hepatoma cells and in the liver of lean mice. This effect is likely mediated by forkhead box protein O1 (FOXO1) because disruption of endogenous FOXO1 function by either interfering RNA mediated FOXO1 knockdown or overexpression of a dominant negative FOXO1 mutant blocks Dex-induced upregulation of MKP-3 protein. In addition, overexpression of FOXO1 is sufficient to induce MKP-3 protein expression. MKP-3 deficient mice are protected from several side effects of chronic Dex exposure, such as body weight gain, adipose tissue enlargement, hepatic lipid accumulation, and insulin resistance. The beneficial phenotypes in mice lacking MKP-3 are largely attributed to the absence of MKP-3 in the liver since only hepatic insulin signaling has been preserved among the three insulin target tissues (liver, muscle and adipose tissue).
Collapse
Affiliation(s)
- Bin Feng
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Qin He
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
116
|
Ryynänen J, Neme A, Tuomainen TP, Virtanen JK, Voutilainen S, Nurmi T, de Mello VDF, Uusitupa M, Carlberg C. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals. Mol Nutr Food Res 2014; 58:2036-45. [DOI: 10.1002/mnfr.201400291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Jussi Ryynänen
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Antonio Neme
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Vanessa D. F. de Mello
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
117
|
Xu T, Wu X, Chen Q, Zhu S, Liu Y, Pan D, Chen X, Li D. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway. PLoS One 2014; 9:e102292. [PMID: 25019380 PMCID: PMC4096914 DOI: 10.1371/journal.pone.0102292] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/17/2014] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Tongda Xu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
| | - Xin Wu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiuping Chen
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shasha Zhu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yang Liu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Defeng Pan
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaohu Chen
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
- * E-mail: (DL); (XC)
| | - Dongye Li
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
- * E-mail: (DL); (XC)
| |
Collapse
|
118
|
Yi HX, Zhang M, Wang JY, Luo RB, Jiang SY, Wang JA. Determination of protein phosphatase type 2A in monocytes from multiple trauma patients: a potential biomarker for sepsis. J Surg Res 2014; 189:89-95. [DOI: 10.1016/j.jss.2014.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 12/29/2022]
|
119
|
Morente V, Pérez-Sen R, Ortega F, Huerta-Cepas J, Delicado EG, Miras-Portugal MT. Neuroprotection elicited by P2Y13 receptors against genotoxic stress by inducing DUSP2 expression and MAPK signaling recovery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1886-98. [PMID: 24851838 DOI: 10.1016/j.bbamcr.2014.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Nucleotides activating P2Y13 receptors display neuroprotective actions against different apoptotic stimuli in cerebellar granule neurons. In the present study, P2Y13 neuroprotection was analyzed in conditions of genotoxic stress. Exposure to cisplatin and UV radiation induced caspase-3-dependent apoptotic cell death, and p38 MAPK signaling de-regulation. Pre-treatment with P2Y13 nucleotide agonist, 2methyl-thio-ADP (2MeSADP), restored granule neuron survival and prevented p38 long-lasting activation induced by cytotoxic treatments. Microarray gene expression analysis in 2MeSADP-stimulated cells revealed over-representation of genes related to protein phosphatase activity. Among them, dual-specificity phosphatase-2, DUSP2, was validated as a transcriptional target for P2Y13 receptors by QPCR. This effect could explain 2MeSADP ability to dephosphorylate a DUSP2 substrate, p38, reestablishing the inactive form. In addition, cisplatin-induced p38 sustained activation correlated perfectly with progressive reduction in DUSP2 expression. In conclusion, P2Y13 receptors regulate DUSP2 expression and contribute to p38 signaling homeostasis and survival in granule neurons.
Collapse
Affiliation(s)
- Verónica Morente
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain
| | - Raquel Pérez-Sen
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain.
| | - Felipe Ortega
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-Universität Mainz, Germany
| | - Jaime Huerta-Cepas
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88., Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Esmerilda G Delicado
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain
| | - M Teresa Miras-Portugal
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain
| |
Collapse
|
120
|
Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. BIOMED RESEARCH INTERNATIONAL 2014; 2014:305239. [PMID: 24812611 PMCID: PMC4000953 DOI: 10.1155/2014/305239] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/01/2014] [Indexed: 12/28/2022]
Abstract
At present, noncoding small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, canonical small RNA pathways seem to be lost or excessively simplified in some unicellular organisms including Trypanosoma cruzi which lack functional RNAi pathways. Recently, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by homogeneous populations of tRNA- and rRNA-derived small RNAs, which are secreted to the extracellular medium included in extracellular vesicles. Extracellular vesicle cargo could be delivered to other parasites and to mammalian susceptible cells promoting metacyclogenesis and conferring susceptibility to infection, respectively. Here we analyzed the changes in gene expression of host HeLa cells induced by extracellular vesicles from T. cruzi. As assessed by microarray assays a large set of genes in HeLa cells were differentially expressed upon incorporation of T. cruzi-derived extracellular vesicles. The elicited response modified mainly host cell cytoskeleton, extracellular matrix, and immune responses pathways. Some genes were also modified by the most abundant tRNA-derived small RNAs included in extracellular vesicles. These data suggest that microvesicles secreted by T. cruzi could be relevant players in early events of the T. cruzi host cell interplay.
Collapse
|
121
|
Dellinger AL, Zhou Z, Kepley CL. A steroid-mimicking nanomaterial that mediates inhibition of human lung mast cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1185-93. [PMID: 24566277 DOI: 10.1016/j.nano.2014.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/18/2014] [Accepted: 02/12/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Water-soluble fullerenes can be engineered to regulate activation of mast cells (MC) and control MC-driven diseases in vivo. To further understand their anti-inflammatory mechanisms a C70-based fullerene conjugated to four myo-inositol molecules (C70-I) was examined in vitro for its effects on the signaling pathways leading to mediator release from human lung MC. The C70-I fullerene stabilizes MC and acts synergistically with long-acting β2-adrenergic receptor agonists (LABA) to enhance inhibition of MC mediator release through FcεRI-simulation. The inhibition was paralleled by the upregulation of dual-specificity phosphatase one (DUSP1) gene and protein levels. Concomitantly, increases in MAPK were blunted in C70-I treated cells. The increase in DUSP1 expression was due to the ability of C70-I to prevent the ubiquitination and degradation of DUSP1. These findings identify a mechanism of how fullerenes inhibit inflammatory mediator release from MC and suggest they could potentially be an alternative therapy for steroid resistant asthmatics. FROM THE CLINICAL EDITOR This study investigates the role and mechanism of action of fullerenes in deactivating mast cell-based inflammation, paving the way to the development of a novel, non-steroid therapy in reactive airway disease.
Collapse
Affiliation(s)
- Anthony L Dellinger
- Luna nanoWorks Division, Luna Innovations Inc., Danville, VA, USA; University of North Carolina Greensboro, Joint School of Nanoscience and Nanoengineering, Greensboro, NC, USA
| | - Zhiguo Zhou
- Luna nanoWorks Division, Luna Innovations Inc., Danville, VA, USA
| | - Christopher L Kepley
- University of North Carolina Greensboro, Joint School of Nanoscience and Nanoengineering, Greensboro, NC, USA.
| |
Collapse
|
122
|
Lee DH, Cho S. Dual-specificity Phosphatase 8 Promotes the Degradation of the Polyglutamine Protein Ataxin-1. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
123
|
Jeong Y, Du R, Zhu X, Yin S, Wang J, Cui H, Cao W, Lowenstein CJ. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. J Leukoc Biol 2013; 95:651-659. [DOI: 10.1189/jlb.1013565] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractThe MAPK pathway mediates TLR signaling during innate immune responses. We discovered previously that MKP-1 is acetylated, enhancing its interaction with its MAPK substrates and deactivating TLR signaling. As HDACs modulate inflammation by deacetylating histone and nonhistone proteins, we hypothesized that HDACs may regulate LPS-induced inflammation by deacetylating MKP-1. We found that mouse macrophages expressed a subset of HDAC isoforms (HDAC1, HDAC2, and HDAC3), which all interacted with MKP-1. Genetic silencing or pharmacologic inhibition of HDAC1, −2, and −3 increased MKP-1 acetylation in cells. Furthermore, knockdown or pharmacologic inhibition of HDAC1, −2, and −3 decreased LPS-induced phosphorylation of the MAPK member p38. Also, pharmacologic inhibition of HDAC did not decrease MAPK signaling in MKP-1 null cells. Finally, inhibition of HDAC1, −2, and −3 decreased LPS-induced expression of TNF-α, IL-1β, iNOS (NOS2), and nitrite synthesis. Taken together, our results show that HDAC1, −2, and −3 deacetylate MKP-1 and that this post-translational modification increases MAPK signaling and innate immune signaling. Thus, HDAC1, −2, and −3 isoforms are potential therapeutic targets in inflammatory diseases.
Collapse
Affiliation(s)
- Youngtae Jeong
- Stanford Cancer Center, Stanford University School of Medicine , Stanford, California, USA
| | - Ronghui Du
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Xiaolei Zhu
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Shasha Yin
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Jian Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins School of Medicine , Baltimore, Maryland, USA
| | - Hengmi Cui
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Charles J Lowenstein
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry , Rochester, New York, USA
| |
Collapse
|
124
|
|
125
|
Lehoczky JA, Thomas PE, Patrie KM, Owens KM, Villarreal LM, Galbraith K, Washburn J, Johnson CN, Gavino B, Borowsky AD, Millen KJ, Wakenight P, Law W, Van Keuren ML, Gavrilina G, Hughes ED, Saunders TL, Brihn L, Nadeau JH, Innis JW. A novel intergenic ETnII-β insertion mutation causes multiple malformations in polypodia mice. PLoS Genet 2013; 9:e1003967. [PMID: 24339789 PMCID: PMC3854779 DOI: 10.1371/journal.pgen.1003967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022] Open
Abstract
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. Mobile genetic elements, particularly early transposons (ETn), cause malformations by inserting within genes leading to disruption of exons, splicing or polyadenylation. Few mutagenic early transposon insertions have been found outside genes and the effects of such insertions on surrounding gene regulation is poorly understood. We discovered a novel intergenic ETnII-β insertion in the mouse mutant Polypodia (Ppd). We reproduced the mutant phenotype after engineering the mutation in wild-type cells with homologous recombination, proving that this early transposon insertion is Ppd. Mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. Embryonic stem cells from mutant mice show upregulated transcription of an adjacent gene, Dusp9. Thus, at an early and critical stage of development, dysregulated gene transcription is one consequence of the insertion mutation. DNA methylation of the ETn 5′ LTR is not correlated with phenotypic outcome in mutant mice. Polypodia is an example of an intergenic mobile element insertion in mice causing dramatic morphogenetic defects and fetal death.
Collapse
Affiliation(s)
- Jessica A. Lehoczky
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peedikayil E. Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin M. Patrie
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kailey M. Owens
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa M. Villarreal
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth Galbraith
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joe Washburn
- Biomedical Research Core Facilities, DNA Sequencing Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Biomedical Research Core Facilities, DNA Sequencing Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bryant Gavino
- Murine Molecular Constructs Laboratory-MMCL Mouse Biology Program, University of California, Davis, California, United States of America
| | - Alexander D. Borowsky
- University of California, Davis, Center for Comparative Medicine and Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, Davis, California, United States of America
| | - Kathleen J. Millen
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Paul Wakenight
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - William Law
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margaret L. Van Keuren
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Galina Gavrilina
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth D. Hughes
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Saunders
- Transgenic Animal Model Core Lab, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lesil Brihn
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph H. Nadeau
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Jeffrey W. Innis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
126
|
Niedzielska M, Bodendorfer B, Münch S, Eichner A, Derigs M, da Costa O, Schweizer A, Neff F, Nitschke L, Sparwasser T, Keyse SM, Lang R. Gene trap mice reveal an essential function of dual specificity phosphatase Dusp16/MKP-7 in perinatal survival and regulation of Toll-like receptor (TLR)-induced cytokine production. J Biol Chem 2013; 289:2112-26. [PMID: 24311790 DOI: 10.1074/jbc.m113.535245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAPK activity is negatively regulated by members of the dual specificity phosphatase (Dusp) family, which differ in expression, substrate specificity, and subcellular localization. Here, we investigated the function of Dusp16/MKP-7 in the innate immune system. The Dusp16 isoforms A1 and B1 were inducibly expressed in macrophages and dendritic cells following Toll-like receptor stimulation. A gene trap approach was used to generate Dusp16-deficient mice. Homozygous Dusp16tp/tp mice developed without gross abnormalities but died perinatally. Fetal liver cells from Dusp16tp/tp embryos efficiently reconstituted the lymphoid and myeloid compartments with Dusp16-deficient hematopoietic cells. However, GM-CSF-induced proliferation of bone marrow progenitors in vitro was impaired in the absence of Dusp16. In vivo challenge with Escherichia coli LPS triggered higher production of IL-12p40 in mice with a Dusp16-deficient immune system. In vitro, Dusp16-deficient macrophages, but not dendritic cells, selectively overexpressed a subset of TLR-induced genes, including the cytokine IL-12. Dusp16-deficient fibroblasts showed enhanced activation of p38 and JNK MAPKs. In macrophages, pharmacological inhibition and siRNA knockdown of JNK1/2 normalized IL-12p40 secretion. Production of IL-10 and its inhibitory effect on IL-12 production were unaltered in Dusp16tp/tp macrophages. Altogether, the Dusp16 gene trap mouse model identifies an essential role in perinatal survival and reveals selective control of differentiation and cytokine production of myeloid cells by the MAPK phosphatase Dusp16.
Collapse
Affiliation(s)
- Magdalena Niedzielska
- From the Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Echavarria R, Hussain SNA. Regulation of angiopoietin-1/Tie-2 receptor signaling in endothelial cells by dual-specificity phosphatases 1, 4, and 5. J Am Heart Assoc 2013; 2:e000571. [PMID: 24308939 PMCID: PMC3886752 DOI: 10.1161/jaha.113.000571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Angiopoietin‐1 (Ang‐1) promotes survival and migration of endothelial cells, in part through the activation of mitogen‐activated protein kinase (MAPK) pathways downstream of Tie‐2 receptors. Dual‐specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine residues on target MAPKs. The mechanisms by which DUSPs modulate MAPK activation in Ang‐1/Tie‐2 receptor signaling are unknown in endothelial cells. Methods and Results Expression of various DUSPs in human umbilical vein endothelial cells exposed to Ang‐1 was measured. The functional roles of DUSPs in Ang‐1‐induced regulation of MAPK activation, endothelial cell survival, migration, differentiation, and permeability were measured using selective siRNA oligos. Ang‐1 differentially induces DUSP1, DUSP4, and DUSP5 in human umbilical vein endothelial cells through activation of the PI‐3 kinase, ERK1/2, p38, and SAPK/JNK pathways. Lack‐of‐function siRNA screening revealed that DUSP1 preferentially dephosphorylates p38 protein and is involved in Ang‐1‐induced cell migration and differentiation. DUSP4 preferentially dephosphorylates ERK1/2, p38, and SAPK/JNK proteins and, under conditions of serum deprivation, is involved in Ang‐1‐induced cell migration, several antiapoptotic effects, and differentiation. DUSP5 preferentially dephosphorylates ERK1/2 proteins and is involved in cell survival and inhibition of permeability. Conclusions DUSP1, DUSP4, and DUSP5 differentially modulate MAPK signaling pathways downstream of Tie‐2 receptors, thus highlighting the importance of these phosphatases to Ang‐1‐induced angiogenesis.
Collapse
Affiliation(s)
- Raquel Echavarria
- Department of Critical Care Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
128
|
Pereira L, Igea A, Canovas B, Dolado I, Nebreda AR. Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med 2013; 5:1759-74. [PMID: 24115572 PMCID: PMC3840490 DOI: 10.1002/emmm.201302732] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/11/2022] Open
Abstract
The p38 MAPK pathway is an important regulator of many cellular responses. It is well established that p38 MAPK signalling negatively regulates epithelial cell transformation, but enhanced p38 MAPK activity has been also correlated with bad clinical prognosis in some tumour types. Here, we provide genetic and pharmacological evidence showing that p38 MAPK inhibition cooperates with the chemotherapeutic agent cisplatin to kill tumour cells. We show that p38 MAPK inhibition results in ROS upregulation, which in turn activates the JNK pathway via inactivation of phosphatases, sensitizing human tumour cells to cisplatin-induced apoptosis. Using a mouse model for breast cancer, we confirm that inhibition of p38 MAPK cooperates with cisplatin treatment to reduce tumour size and malignancy in vivo. Taken together, our results illustrate a new function of p38 MAPK that helps tumour cells to survive chemotherapeutic drug treatments, and reveal that the combination of p38 MAPK inhibitors with cisplatin can be potentially exploited for cancer therapy.
Collapse
Affiliation(s)
- Lorena Pereira
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | | | | | | | | |
Collapse
|
129
|
Yan R, Peng X, Yuan X, Huang D, Chen J, Lu Q, Lv N, Luo S. Suppression of growth and migration by blocking the Hedgehog signaling pathway in gastric cancer cells. Cell Oncol (Dordr) 2013; 36:421-35. [PMID: 24027019 DOI: 10.1007/s13402-013-0149-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Previous studies have indicated that Hedgehog signaling is essential for gastric cancer development, but its precise role is still unclear. The aim of this study was to clarify the role of Hedgehog signaling in gastric cancer development. METHODS The expression of key Hedgehog signaling components in clinical samples of sequential gastric cancer stages was assessed by immunohistochemistry. The roles and regulatory mechanisms of Hedgehog signaling in human gastric cancer cells and normal gastric epithelial cells were investigated using multiple cell biological approaches and cDNA microarray analyses. RESULTS Hedgehog signaling was found to be abnormally activated in a ligand-independent manner during gastric cancer development. Gli1 over-expression and reduced SuFu expression were found to be typical events in gastric cancer tissues. Gli1 over-expression was found to correlate with a poorly differentiated histology, advanced clinical stage, membrane serosa infiltration and lymph node metastasis in patients with gastric cancer. Data obtained from multiple cell biological assays showed that human gastric cancer cells require active Hedgehog signaling for survival, proliferation, migration and colony formation. N-Shh treatment significantly enhanced the migration, invasion and colony formation of gastric cancer cells. Moreover, the results of cDNA microarray analyses indicated that after treatment with cyclopamine or GANT61 (inhibitors of Hedgehog signaling), differentially expressed genes in gastric cancer cells were enriched in the apoptosis and MAPK pathways. Inhibitors of the Hedgehog pathway were found to suppress gastric cancer cell growth via apoptosis induction. CONCLUSIONS Our findings indicate a vital role of the activated Hedgehog signaling pathway in promoting gastric initiation and progression. The Hedgehog signaling pathway may serve as a target for gastric cancer therapy.
Collapse
Affiliation(s)
- Runwei Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17 Yongwai street, Donghu district, Nanchang, 330006, China
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol 2013; 69:1863-74. [PMID: 23929259 DOI: 10.1007/s00228-013-1568-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
CONTEXT Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. BACKGROUND Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. OBJECTIVE This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
131
|
|
132
|
Cady RJ, Denson JE, Durham PL. Inclusion of cocoa as a dietary supplement represses expression of inflammatory proteins in spinal trigeminal nucleus in response to chronic trigeminal nerve stimulation. Mol Nutr Food Res 2013; 57:996-1006. [PMID: 23576361 PMCID: PMC3777559 DOI: 10.1002/mnfr.201200630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/19/2022]
Abstract
SCOPE Central sensitization is implicated in the pathology of temporomandibular joint disorder and other types of orofacial pain. We investigated the effects of dietary cocoa on expression of proteins involved in the development of central sensitization in the spinal trigeminal nucleus (STN) in response to inflammatory stimulation of trigeminal nerves. METHODS AND RESULTS Male Sprague-Dawley rats were fed either a control diet or an isocaloric diet consisting of 10% cocoa powder 14 days prior to bilateral injection of complete Freund's adjuvant (CFA) into the temporomandibular joint to promote prolonged activation of trigeminal ganglion neurons and glia. While dietary cocoa stimulated basal expression of glutamate-aspartate transporter and mitogen-activated protein kinase phosphatase-1 when compared to animals on a normal diet, cocoa suppressed basal calcitonin gene-related peptide levels in the STN. CFA-stimulated levels of protein kinase A, P2X3 , P-p38, glial fibrillary-associated protein, and OX-42, whose elevated levels in the STN are implicated in central sensitization, were repressed to near control levels in animals on a cocoa-enriched diet. Similarly, dietary cocoa repressed CFA-stimulated inflammatory cytokine expression. CONCLUSION Based on our findings, we speculate that cocoa-enriched diets could be beneficial as a natural therapeutic option for temporomandibular joint disorder and other chronic orofacial pain conditions.
Collapse
Affiliation(s)
- Ryan J Cady
- Center for Biomedical & Life Sciences, Missouri State University, Springfield, MO 65806, USA
| | | | | |
Collapse
|
133
|
Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2013; 110:9806-11. [PMID: 23720316 DOI: 10.1073/pnas.1301509110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is a strong predictor of morbidity and mortality in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors have been shown to suppress cardiac hypertrophy through mechanisms that remain poorly understood. We report that class I HDACs function as signal-dependent repressors of cardiac hypertrophy via inhibition of the gene encoding dual-specificity phosphatase 5 (DUSP5) DUSP5, a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. Inhibition of DUSP5 by class I HDACs requires activity of the ERK kinase, mitogen-activated protein kinase kinase (MEK), revealing a self-reinforcing mechanism for promotion of cardiac ERK signaling. In cardiac myocytes treated with highly selective class I HDAC inhibitors, nuclear ERK1/2 signaling is suppressed in a manner that is absolutely dependent on DUSP5. In contrast, cytosolic ERK1/2 activation is maintained under these same conditions. Ectopic expression of DUSP5 in cardiomyocytes results in potent inhibition of agonist-dependent hypertrophy through a mechanism involving suppression of the gene program for hypertrophic growth. These findings define unique roles for class I HDACs and DUSP5 as integral components of a regulatory signaling circuit that controls cardiac hypertrophy.
Collapse
|
134
|
Gómez NV, Gorostizaga AB, Mori Sequeiros García MM, Brion L, Acquier A, González-Calvar SI, Méndez CF, Podestá EJ, Paz C. MAPK phosphatase-2 (MKP-2) is induced by hCG and plays a role in the regulation of CYP11A1 expression in MA-10 Leydig cells. Endocrinology 2013; 154:1488-500. [PMID: 23471219 DOI: 10.1210/en.2012-2032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MAPKs such as ERK1/2 are dephosphorylated, and consequently inactivated, by dual specificity phosphatases (MKPs). In Leydig cells, LH triggers ERK1/2 phosphorylation through the action of protein kinase A. We demonstrate that, in MA-10 Leydig cells, LH receptor activation by human chorionic gonadotropin (hCG) up-regulates MKP-2, a phosphatase that dephosphorylates ERK1/2, among other MAPKs. After 2 hours, hCG and 8-bromo-cAMP (8Br-cAMP) significantly increased MKP-2 mRNA levels (3-fold), which declined to basal levels after 6 hours. MKP-2 protein accumulation exhibited a similar kinetic profile. In cells transiently expressing flag-MKP-2 protein, hCG/8Br-cAMP stimulation promoted the accumulation of the chimera (2.5-fold after 3 h of stimulation). Pharmacologic and biochemical approaches showed that the accumulation of flag-MKP-2 involves a posttranslational modification that increases MKP-2 half-life. MKP-2 down-regulation by a short hairpin RNA (MKP-2 shRNA) raised the levels of phosphorylated ERK1/2 reached by 8Br-cAMP stimulation. This effect was evident after 180 min of stimulation, which suggests that MKP-2 down-regulates the late phase of cAMP-induced ERK1/2 activity. Also, MKP-2 down-regulation by MKP-2 shRNA increased the stimulatory effect of 8Br-cAMP on both promoter activity and messenger levels of CYP11A1, which encodes for the steroidogenic enzyme P450scc and is induced by LH/hCG through protein kinase A and ERK1/2 activities. Our findings demonstrate, for the first time, that LH/hCG tightly regulates MKP-2 expression, which modulates the induction of CYP11A1 by 8Br-cAMP. MKP-2 up-regulation might control ERK1/2 activity in a specific temporal frame to modulate the expression of a finite repertory of ERK-dependent genes.
Collapse
Affiliation(s)
- Natalia V Gómez
- Laboratory of Phosphatases in Signal Transduction, Institute for Biomedical Research (INBIOMED), Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, (C1121ABG) Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Shi H, Verma M, Zhang L, Dong C, Flavell RA, Bennett AM. Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. J Clin Invest 2013; 123:2064-77. [PMID: 23543058 DOI: 10.1172/jci64375] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 01/31/2013] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in dystrophin. The degree of functional deterioration in muscle stem cells determines the severity of DMD. The mitogen-activated protein kinases (MAPKs), which are inactivated by MAPK phosphatases (MKPs), represent a central signaling node in the regulation of muscle stem cell function. Here we show that the dual-specificity protein phosphatase DUSP10/MKP-5 negatively regulates muscle stem cell function in mice. MKP-5 controlled JNK to coordinate muscle stem cell proliferation and p38 MAPK to control differentiation. Genetic loss of Mkp5 in mice improved regenerative myogenesis and dystrophin-deficient mdx mice lacking Mkp5 exhibited an attenuated dystrophic muscle phenotype. Hence, enhanced promyogenic MAPK activity preserved muscle stem cell function even in the absence of dystrophin and ultimately curtailed the pathogenesis associated with DMD. These results identify MKP-5 as an essential negative regulator of the promyogenic actions of the MAPKs and suggest that MKP-5 may serve as a target to promote muscle stem cell function in the treatment of degenerative skeletal muscle diseases.
Collapse
Affiliation(s)
- Hao Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | | | | | |
Collapse
|
136
|
Koveal D, Clarkson MW, Wood TK, Page R, Peti W. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa. J Mol Biol 2013; 425:2219-31. [PMID: 23524133 DOI: 10.1016/j.jmb.2013.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Tyrosine phosphatase related to biofilm formation A (TpbA) is a periplasmic dual-specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA adopts a typical DUSP fold, it also possesses distinct structural features that distinguish it from eukaryotic DUSPs. These include additional secondary structural elements, β0 and α6, and unique conformations of the variable insert, the α4-α5 loop and helix α5 that impart TpbA with a flat active-site surface. In the absence of ligand, the protein tyrosine phosphatase loop is disordered and the general acid loop adopts an open conformation, placing the catalytic aspartate, Asp105, more than 11Å away from the active site. Furthermore, the loops surrounding the active site experience motions on multiple timescales, consistent with a combination of conformational heterogeneity and fast (picosecond to nanosecond) timescale dynamics, which are significantly reduced upon ligand binding. Taken together, these data structurally distinguish TpbA and possibly other bacterial DUSPs from eukaryotic DUSPs and provide a rich picture of active-site dynamics in the ligand-free state that are lost upon ligand binding.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
137
|
Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013; 154:993-1007. [PMID: 23384835 DOI: 10.1210/en.2012-2045] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.
Collapse
Affiliation(s)
- Sofie Vandevyver
- VIB-Department for Molecular Biomedical Research /Ugent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | | | | | | |
Collapse
|
138
|
Oehrl W, Cotsiki M, Panayotou G. Differential regulation of M3/6 (DUSP8) signaling complexes in response to arsenite-induced oxidative stress. Cell Signal 2013; 25:429-38. [DOI: 10.1016/j.cellsig.2012.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022]
|
139
|
Mortensen OV. MKP3 eliminates depolarization-dependent neurotransmitter release through downregulation of L-type calcium channel Cav1.2 expression. Cell Calcium 2013; 53:224-30. [PMID: 23337371 DOI: 10.1016/j.ceca.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/06/2012] [Accepted: 12/24/2012] [Indexed: 01/17/2023]
Abstract
Release of neurotransmitters is a fundamental and regulated process that is essential for normal brain functioning. Regulation of this process is potentially important for any neuronal process, and disruption of the release process may contribute to the pathophysiology associated with psychiatric diseases. In this work it is shown that expression of the negative regulator of mitogen-activated protein kinase (MAPK) signaling the MAPK phosphatase MKP3/DUSP6 eliminates depolarization-dependent release of dopamine in rat PC12 cells. Pharmacologic interventions with latrotroxin (LTX) or A23187, which make the cells permeable to calcium, reestablish the dopamine release. Calcium imaging also reveals that calcium influx is impaired in MKP3-expressing cells. Because acute pharmacologic inhibition of MAPKs has no effect on dopamine release in naïve PC12 cells, the MKP3-mediated elimination of neurotransmitter release must be caused by a long-term process, such as changes in gene expression. In support of this the expression of the L-type calcium channel cav1.2 alpha subunit (Cacna1c) is decreased in MKP3-expressing PC12 cells. With the reintroduction of cav1.2 expression, neurotransmitter release is restored in the MKP3-expressing PC12 cells. Thus, MKP3 expression reduces neurotransmitter release by decreasing the expression of cav1.2. Because MKP3 is increased when neuronal activity is elevated, this process could play a role in regulating neurotransmitter homeostasis.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
140
|
Kim SY, Baek SH. Role of Extracellular Signal-Regulated Kinase 1/2 and Reactive Oxygen Species in Toll-Like Receptor 2-Mediated Dual-Specificity Phosphatase 4 Expression. Yeungnam Univ J Med 2013. [DOI: 10.12701/yujm.2013.30.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- So-Yeon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
141
|
In vivo expression of angiotensin-(1-7) lowers blood pressure and improves baroreflex function in transgenic (mRen2)27 rats. J Cardiovasc Pharmacol 2012; 60:150-7. [PMID: 22526299 DOI: 10.1097/fjc.0b013e3182588b32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transgenic (mRen2)27 rats are hypertensive with impaired baroreflex sensitivity for control of heart rate compared with Hannover Sprague-Dawley rats. We assessed blood pressure and baroreflex function in male hemizygous (mRen2)27 rats (30-40 weeks of age) instrumented for arterial pressure recordings and receiving into the cisterna magna either an Ang-(1-7) fusion protein or a control fusion protein (CTL-FP). The maximum reduction in mean arterial pressure achieved was -38 ± 7 mm Hg on day 3, accompanied by a 55% enhancement in baroreflex sensitivity in Ang-(1-7) fusion protein-treated rats. Both the high-frequency alpha index (HF-α) and heart rate variability increased, suggesting increased parasympathetic tone for cardiac control. The mRNA levels of several components of the renin-angiotensin system in the dorsal medulla were markedly reduced including renin (-80%), neprilysin (-40%), and the AT1a receptor (-40%). However, there was a 2-fold to 3-fold increase in the mRNA levels of the phosphatases PTP-1b and dual-specificity phosphatase 1 in the medulla of Ang-(1-7) fusion protein-treated rats. Our finding that replacement of Ang-(1-7) in the brain of (mRen2)27 rats reverses in part the hypertension and baroreflex impairment is consistent with a functional deficit of Ang-(1-7) in this hypertensive strain. We conclude that the increased mRNA expression of phosphatases known to counteract the phosphoinositol 3 kinase and mitogen-activated protein kinases, and the reduction of renin and AT1a receptor mRNA levels may contribute to the reduction in arterial pressure and improvement in baroreflex sensitivity in response to Ang-(1-7).
Collapse
|
142
|
Jeong MW, Kang TH, Kim W, Choi YH, Kim KT. Mitogen-activated protein kinase phosphatase 2 regulates histone H3 phosphorylation via interaction with vaccinia-related kinase 1. Mol Biol Cell 2012; 24:373-84. [PMID: 23223570 PMCID: PMC3564537 DOI: 10.1091/mbc.e12-06-0456] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is a histone kinase that phosphorylates histone H3 at Thr-3 and Ser-10. This study shows that mitogen-activated protein kinase phosphatase 2 regulates this phosphorylation negatively via interaction with VRK1, regardless of VRK1’s phosphatase activity. Mitogen-activated protein kinase phosphatase 2 (MKP2) is a member of the dual-specificity MKPs that regulate MAP kinase signaling. However, MKP2 functions are still largely unknown. In this study, we showed that MKP2 could regulate histone H3 phosphorylation under oxidative stress conditions. We found that MKP2 inhibited histone H3 phosphorylation by suppressing vaccinia-related kinase 1 (VRK1) activity. Moreover, this regulation was dependent on the selective interaction with VRK1, regardless of its phosphatase activity. The interaction between MKP2 and VRK1 mainly occurred in the chromatin, where histones are abundant. We also observed that the protein level of MKP2 and its interaction with histone H3 increased from G1 to M phase during the cell cycle, which is similar to the VRK1 profile. Furthermore, MKP2 specifically regulated the VRK1-mediated histone H3 phosphorylation at M phase. Taken together, these data suggest a novel function of MKP2 as a negative regulator of VRK1-mediated histone H3 phosphorylation.
Collapse
Affiliation(s)
- Min-Woo Jeong
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
143
|
Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases. Genes Immun 2012. [PMID: 23190643 DOI: 10.1038/gene.2012.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dual-specificity phosphatases (DUSPs) is an emerging subclass of the protein tyrosine phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. Recently, a series of investigations of DUSPs defined their essential roles in cell proliferation, cancer and the immune response. This review will focus on DUSP2, its involvement in different diseases and its potential as a therapeutic target.
Collapse
|
144
|
González Besteiro MA, Ulm R. Phosphorylation and stabilization of Arabidopsis MAP kinase phosphatase 1 in response to UV-B stress. J Biol Chem 2012. [PMID: 23188831 DOI: 10.1074/jbc.m112.434654] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAP kinase phosphatases (MKPs) are important regulators of the activation levels and kinetics of MAP kinases. This is crucial for a large number of physiological processes during development and growth, as well as interactions with the environment, including the response to ultraviolet-B (UV-B) stress. Arabidopsis MKP1 is a key regulator of MAP kinases MPK3 and MPK6 in response to UV-B stress. However, virtually nothing is presently known about the post-translational regulation of plant MKPs in vivo. Here, we provide evidence that MKP1 is a phosphoprotein in vivo and that MKP1 accumulates in response to UV-B stress. Moreover, proteasome inhibitor experiments suggest that MKP1 is constantly turned-over under non-stress conditions and that MKP1 is stabilized upon stress treatment. Stress-responsive phosphorylation and stabilization of MKP1 demonstrate the post-translational regulation of a plant MKP in vivo, adding an additional regulatory layer to MAP kinase signaling in plants.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
145
|
Gröschl B, Bettstetter M, Giedl C, Woenckhaus M, Edmonston T, Hofstädter F, Dietmaier W. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int J Cancer 2012; 132:1537-46. [DOI: 10.1002/ijc.27834] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022]
|
146
|
Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, van Berlo JH, Willette RN, Molkentin JD. Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res 2012; 112:48-56. [PMID: 22993413 DOI: 10.1161/circresaha.112.272963] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mitogen-activated protein kinases (MAPKs) are activated in the heart by disease-inducing and stress-inducing stimuli, where they participate in hypertrophy, remodeling, contractility, and heart failure. A family of dual-specificity phosphatases (DUSPs) directly inactivates each of the MAPK terminal effectors, potentially serving a cardioprotective role. OBJECTIVE To determine the role of DUSP1 and DUSP4 in regulating p38 MAPK function in the heart and the effect on disease. METHODS AND RESULTS Here, we generated mice and mouse embryonic fibroblasts lacking both Dusp1 and Dusp4 genes. Although single nulls showed no molecular effects, combined disruption of Dusp1/4 promoted unrestrained p38 MAPK activity in both mouse embryonic fibroblasts and the heart, with no change in the phosphorylation of c-Jun N-terminal kinases or extracellular signal-regulated kinases at baseline or with stress stimulation. Single disruption of either Dusp1 or Dusp4 did not result in cardiac pathology, although Dusp1/4 double-null mice exhibited cardiomyopathy and increased mortality with aging. Pharmacological inhibition of p38 MAPK with SB731445 ameliorated cardiomyopathy in Dusp1/4 double-null mice, indicating that DUSP1/4 function primarily through p38 MAPK in affecting disease. At the cellular level, unrestrained p38 MAPK activity diminished cardiac contractility and Ca2+ handling, which was acutely reversed with a p38 inhibitory compound. Poor function in Dusp1/4 double-null mice also was partially rescued by phospholamban deletion. CONCLUSIONS Our data demonstrate that Dusp1 and Dusp4 are cardioprotective genes that play a critical role in the heart by dampening p38 MAPK signaling that would otherwise reduce contractility and induce cardiomyopathy.
Collapse
Affiliation(s)
- Mannix Auger-Messier
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Fey D, Croucher DR, Kolch W, Kholodenko BN. Crosstalk and signaling switches in mitogen-activated protein kinase cascades. Front Physiol 2012; 3:355. [PMID: 23060802 PMCID: PMC3449335 DOI: 10.3389/fphys.2012.00355] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/19/2012] [Indexed: 12/24/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to induce apoptosis.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, University College Dublin Dublin, Ireland
| | | | | | | |
Collapse
|
148
|
Clark AR, Dean JLE. The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatol J 2012; 6:209-19. [PMID: 23028406 PMCID: PMC3460412 DOI: 10.2174/1874312901206010209] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway has been strongly implicated in many of
the processes that underlie the pathology of rheumatoid arthritis (RA). For many years it has been considered a promising
target for development of new anti-inflammatory drugs with which to treat RA and other chronic immune-mediated
inflammatory diseases. However, several recent clinical trials have concluded in a disappointing manner. Why is this so, if
p38 MAPK clearly contributes to the excessive production of inflammatory mediators, the destruction of bone and
cartilage? We argue that, to explain the apparent failure of p38 inhibitors in the rheumatology clinic, we need to
understand better the complexities of the p38 pathway and its many levels of communication with other cellular signaling
pathways. In this review we look at the p38 MAPK pathway from a slightly different perspective, emphasising its role in
post-transcriptional rather than transcriptional control of gene expression, and its contribution to the off-phase rather than
the on-phase of the inflammatory response.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
149
|
Abstract
Dual-specificity MAP kinase phosphatases (MKPs) provide a complex negative regulatory network that acts to shape the duration, magnitude and spatiotemporal profile of MAP kinase activities in response to both physiological and pathological stimuli. Individual MKPs may exhibit either exquisite specificity towards a single mitogen-activated protein kinase (MAPK) isoform or be able to regulate multiple MAPK pathways in a single cell or tissue. They can act as negative feedback regulators of MAPK activity, but can also provide mechanisms of crosstalk between distinct MAPK pathways and between MAPK signalling and other intracellular signalling modules. In this review, we explore the current state of knowledge with respect to the regulation of MKP expression levels and activities, the mechanisms by which individual MKPs recognize and interact with different MAPK isoforms and their role in the spatiotemporal regulation of MAPK signalling.
Collapse
|
150
|
Takahashi H, Ozawa A, Nemoto K, Nozawa A, Seki M, Shinozaki K, Takeda H, Endo Y, Sawasaki T. Genome-wide biochemical analysis of Arabidopsis protein phosphatase using a wheat cell-free system. FEBS Lett 2012; 586:3134-41. [DOI: 10.1016/j.febslet.2012.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/23/2012] [Accepted: 08/07/2012] [Indexed: 12/31/2022]
|