101
|
Kobayashi S, Iwamoto M, Haraguchi T. Live correlative light-electron microscopy to observe molecular dynamics in high resolution. Microscopy (Oxf) 2016; 65:296-308. [DOI: 10.1093/jmicro/dfw024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
|
102
|
Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat Commun 2016; 7:ncomms11858. [PMID: 27292265 PMCID: PMC4910015 DOI: 10.1038/ncomms11858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. Studies imply that cell adhesion geometry during interphase dictates the orientation of the cell division axis. Here the authors show that accumulation of caveolin-1 to rapidly retracting regions during cell rounding sets the spindle orientation by recruiting Gαi1-LGN-NuMA to the cortex.
Collapse
|
103
|
Fukushima S, Furukawa T, Niioka H, Ichimiya M, Sannomiya T, Tanaka N, Onoshima D, Yukawa H, Baba Y, Ashida M, Miyake J, Araki T, Hashimoto M. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging. Sci Rep 2016; 6:25950. [PMID: 27185264 PMCID: PMC4869039 DOI: 10.1038/srep25950] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy.
Collapse
Affiliation(s)
- S Fukushima
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - T Furukawa
- Institute for NanoScience Design, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - H Niioka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - M Ichimiya
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.,School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| | - T Sannomiya
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8503, Japan
| | - N Tanaka
- Quantitative Biology Center (QBiC), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0874, Japan
| | - D Onoshima
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - H Yukawa
- ImPACT Research Center for Advanced Nanobiodevices, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Y Baba
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Taka matsu 761-0395, Japan
| | - M Ashida
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - J Miyake
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - T Araki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - M Hashimoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
104
|
Moriuchi T, Kuroda M, Kusumoto F, Osumi T, Hirose F. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif. Exp Cell Res 2016; 342:83-94. [DOI: 10.1016/j.yexcr.2016.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/01/2023]
|
105
|
de Castro IJ, Gokhan E, Vagnarelli P. Resetting a functional G1 nucleus after mitosis. Chromosoma 2016; 125:607-19. [PMID: 26728621 PMCID: PMC5023730 DOI: 10.1007/s00412-015-0561-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022]
Abstract
The maintenance of the correct cellular information goes beyond the simple transmission of an intact genetic code from one generation to the next. Epigenetic changes, topological cues and correct protein-protein interactions need to be re-established after each cell division to allow the next cell cycle to resume in the correct regulated manner. This process begins with mitotic exit and re-sets all the changes that occurred during mitosis thus restoring a functional G1 nucleus in preparation for the next cell cycle. Mitotic exit is triggered by inactivation of mitotic kinases and the reversal of their phosphorylation activities on many cellular components, from nuclear lamina to transcription factors and chromatin itself. To reverse all these phosphorylations, phosphatases act during mitotic exit in a timely and spatially controlled manner directing the events that lead to a functional G1 nucleus. In this review, we will summarise the recent developments on the control of phosphatases and their known substrates during mitotic exit, and the key steps that control the restoration of chromatin status, nuclear envelope reassembly and nuclear body re-organisation. Although pivotal work has been conducted in this area in yeast, due to differences between the mitotic exit network between yeast and vertebrates, we will mainly concentrate on the vertebrate system.
Collapse
Affiliation(s)
- Ines J de Castro
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
106
|
Kim SH, Ryu HG, Lee J, Shin J, Harikishore A, Jung HY, Kim YS, Lyu HN, Oh E, Baek NI, Choi KY, Yoon HS, Kim KT. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells. Sci Rep 2015; 5:14570. [PMID: 26412148 PMCID: PMC4585938 DOI: 10.1038/srep14570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023] Open
Abstract
Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Hoe-Youn Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ye Seul Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ha-Na Lyu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Eunji Oh
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Nam-In Baek
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kwan-Yong Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
107
|
Schellhaus AK, De Magistris P, Antonin W. Nuclear Reformation at the End of Mitosis. J Mol Biol 2015; 428:1962-85. [PMID: 26423234 DOI: 10.1016/j.jmb.2015.09.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
Cells have developed highly sophisticated ways to accurately pass on their genetic information to the daughter cells. In animal cells, which undergo open mitosis, the nuclear envelope breaks down at the beginning of mitosis and the chromatin massively condenses to be captured and segregated by the mitotic spindle. These events have to be reverted in order to allow the reformation of a nucleus competent for DNA transcription and replication, as well as all other nuclear processes occurring in interphase. Here, we summarize our current knowledge of how, in animal cells, the highly compacted mitotic chromosomes are decondensed at the end of mitosis and how a nuclear envelope, including functional nuclear pore complexes, reassembles around these decondensing chromosomes.
Collapse
Affiliation(s)
| | - Paola De Magistris
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany.
| |
Collapse
|
108
|
Kobayashi S, Haraguchi T. A novel pathway to detect and cope with exogenous dsDNA. Commun Integr Biol 2015; 8:e1065361. [PMID: 27064942 PMCID: PMC4802740 DOI: 10.1080/19420889.2015.1065361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/19/2023] Open
Abstract
How a living cell responds to exogenous materials is one of the fundamental questions in the life sciences. In particular, understanding the mechanisms by which a cell recognizes exogenous double-stranded DNA (dsDNA) is important for immunology research because it will facilitate the control of pathogen infections that entail the presence of exogenous dsDNA in the cytoplasm of host cells. Several cytosolic dsDNA sensor proteins that trigger innate immune responses have been identified and the downstream signaling pathways have been investigated. However, the events that occur at the site of exogenous dsDNA when it is exposed to the cytosol of the host cell remain unknown. Using dsDNA-coated polystyrene beads incorporated into living cells, we recently found that barrier-to-autointegration factor (BAF) binds to the exogenous dsDNA immediately after its appearance in the cytosol and plays a role in DNA avoidance of autophagy. Our findings reveal a novel pathway in which BAF plays a key role in the detection of and response to exogenous dsDNA.
Collapse
Affiliation(s)
- Shouhei Kobayashi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology ; Nishi-ku, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology; Nishi-ku, Japan; Graduate School of Frontier Biosciences, Osaka University; Suita, Japan; Graduate School of Science, Osaka University; Toyonaka, Japan
| |
Collapse
|
109
|
Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA, Zheng Y, Jaqaman K, Goldman RD. Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 2015; 26:4075-86. [PMID: 26310440 PMCID: PMC4710238 DOI: 10.1091/mbc.e15-07-0461] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Superresolution microscopy and computational image analysis demonstrate that the four nuclear lamin isoforms of mammalian cells are each organized into distinct meshwork structures sharing similar physical characteristics. Knockouts of single lamins alter the structure of the remaining lamins, suggesting interactions among the meshworks. The nuclear lamina is a key structural element of the metazoan nucleus. However, the structural organization of the major proteins composing the lamina is poorly defined. Using three-dimensional structured illumination microscopy and computational image analysis, we characterized the supramolecular structures of lamin A, C, B1, and B2 in mouse embryo fibroblast nuclei. Each isoform forms a distinct fiber meshwork, with comparable physical characteristics with respect to mesh edge length, mesh face area and shape, and edge connectivity to form faces. Some differences were found in face areas among isoforms due to variation in the edge lengths and number of edges per face, suggesting that each meshwork has somewhat unique assembly characteristics. In fibroblasts null for the expression of either lamins A/C or lamin B1, the remaining lamin meshworks are altered compared with the lamin meshworks in wild-type nuclei or nuclei lacking lamin B2. Nuclei lacking LA/C exhibit slightly enlarged meshwork faces and some shape changes, whereas LB1-deficient nuclei exhibit primarily a substantial increase in face area. These studies demonstrate that individual lamin isoforms assemble into complex networks within the nuclear lamina and that A- and B-type lamins have distinct roles in maintaining the organization of the nuclear lamina.
Collapse
Affiliation(s)
- Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mark Kittisopikul
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Joseph Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Anne E Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
110
|
Jamin A, Wiebe MS. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol 2015; 34:61-8. [PMID: 26072104 DOI: 10.1016/j.ceb.2015.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022]
Abstract
The Barrier to Autointegration Factor (BAF or BANF1) is an abundant, highly conserved DNA binding protein. BAF is involved in multiple pathways including mitosis, nuclear assembly, viral infection, chromatin and gene regulation and the DNA damage response. BAF is also essential for early development in metazoans and relevant to human physiology; BANF1 mutations cause a progeroid syndrome, placing BAF within the laminopathy disease spectrum. This review summarizes previous knowledge about BAF in the context of recent discoveries about its protein partners, posttranslational regulation, dynamic subcellular localizations and roles in disease, innate immunity, transposable elements and genome integrity.
Collapse
Affiliation(s)
- Augusta Jamin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Matthew S Wiebe
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583-0900, USA; Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA.
| |
Collapse
|
111
|
Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 2015; 522:231-5. [DOI: 10.1038/nature14408] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
|
112
|
Ungricht R, Kutay U. Establishment of NE asymmetry—targeting of membrane proteins to the inner nuclear membrane. Curr Opin Cell Biol 2015; 34:135-41. [DOI: 10.1016/j.ceb.2015.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/18/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
|
113
|
BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy. Proc Natl Acad Sci U S A 2015; 112:7027-32. [PMID: 25991860 DOI: 10.1073/pnas.1501235112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell's response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF(+) DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.
Collapse
|
114
|
Iwamoto M, Koujin T, Osakada H, Mori C, Kojidani T, Matsuda A, Asakawa H, Hiraoka Y, Haraguchi T. Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in Tetrahymena. J Cell Sci 2015; 128:1812-23. [PMID: 25788697 PMCID: PMC4432229 DOI: 10.1242/jcs.167353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/07/2015] [Indexed: 12/18/2022] Open
Abstract
Ciliates have two functionally distinct nuclei, a somatic macronucleus (MAC) and a germline micronucleus (MIC) that develop from daughter nuclei of the last postzygotic division (PZD) during the sexual process of conjugation. Understanding this nuclear dimorphism is a central issue in ciliate biology. We show, by live-cell imaging of Tetrahymena, that biased assembly of the nuclear pore complex (NPC) occurs immediately after the last PZD, which generates anterior-posterior polarized nuclei: MAC-specific NPCs assemble in anterior presumptive MACs but not in posterior presumptive MICs. MAC-specific NPC assembly in the anterior nuclei occurs much earlier than transport of Twi1p, which is required for MAC genome rearrangement. Correlative light-electron microscopy shows that addition of new nuclear envelope (NE) precursors occurs through the formation of domains of redundant NE, where the outer double membrane contains the newly assembled NPCs. Nocodazole inhibition of the second PZD results in assembly of MAC-specific NPCs in the division-failed zygotic nuclei, leading to failure of MIC differentiation. Our findings demonstrate that NPC type switching has a crucial role in the establishment of nuclear differentiation in ciliates.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Tomoko Kojidani
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan Japan Women's University, Tokyo 112-8681, Japan
| | - Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Haruhiko Asakawa
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
115
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
116
|
Poleshko A, Mansfield KM, Burlingame CC, Andrake MD, Shah NR, Katz RA. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep 2015; 5:292-301. [PMID: 24209742 DOI: 10.1016/j.celrep.2013.09.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/21/2013] [Accepted: 09/16/2013] [Indexed: 11/25/2022] Open
Abstract
The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here, we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a function in the selection of HP1-bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis.
Collapse
|
117
|
Morales-Martínez A, Dobrzynska A, Askjaer P. Inner nuclear membrane protein LEM-2 is required for proper nuclear separation and morphology. J Cell Sci 2015; 128:1090-6. [DOI: 10.1242/jcs.164202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The inner nuclear membrane proteins emerin and LEMD2 have both overlapping and separate functions in regulation of nuclear organization, gene expression and cell differentiation. We report here that emerin/EMR-1 and LEMD2/LEM-2 are expressed in all tissues throughout Caenorhaditis elegans development but their relative distribution differs between cell types. The ratio between EMR-1 and LEM-2 is particularly high in contractile tissues, intermediate in neurons and hypodermis and lowest in intestine and germ line. We find that LEM-2 is recruited earlier than EMR-1 to reforming nuclear envelopes, suggesting the presence of separate mitotic membrane compartments and specific functions of each protein. Concordantly, we observe that nuclei of lem-2 mutant embryos, but not of emr-1 mutants, have reduced nuclear circularity. Finally, we uncover a novel role of LEM-2 in nuclear separation and anchoring of microtubule organizing centers.
Collapse
|
118
|
Haraguchi T, Osakada H, Koujin T. Live CLEM imaging to analyze nuclear structures at high resolution. Methods Mol Biol 2015; 1262:89-103. [PMID: 25555577 DOI: 10.1007/978-1-4939-2253-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan,
| | | | | |
Collapse
|
119
|
Kim SH, Lyu HN, Kim YS, Jeon YH, Kim W, Kim S, Lim JK, Lee HW, Baek NI, Choi KY, Lee J, Kim KT. Brazilin Isolated from Caesalpinia sappan suppresses nuclear envelope reassembly by inhibiting barrier-to-autointegration factor phosphorylation. J Pharmacol Exp Ther 2015; 352:175-84. [PMID: 25369797 DOI: 10.1124/jpet.114.218792] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To date, many anticancer drugs have been developed by directly or indirectly targeting microtubules, which are involved in cell division. Although this approach has yielded many anticancer drugs, these drugs produce undesirable side effects. An alternative strategy is needed, and targeting mitotic exit may be one alternative approach. Localization of phosphorylated barrier-to-autointegration factor (BAF) to the chromosomal core region is essential for nuclear envelope compartment relocalization. In this study, we isolated brazilin from Caesalpinia sappan Leguminosae and demonstrated that it inhibited BAF phosphorylation in vitro and in vivo. Moreover, we demonstrated direct binding between brazilin and BAF. The inhibition of BAF phosphorylation induced abnormal nuclear envelope reassembly and cell death, indicating that perturbation of nuclear envelope reassembly could be a novel approach to anticancer therapy. We propose that brazilin isolated from C. sappan may be a new anticancer drug candidate that induces cell death by inhibiting vaccinia-related kinase 1-mediated BAF phosphorylation.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Ha-Na Lyu
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Ye Seul Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Yong Hyun Jeon
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Wanil Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Sangjune Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Jong-Kwan Lim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Ho Won Lee
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Nam-In Baek
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Kwan-Yong Choi
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Jaetae Lee
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Kyong-Tai Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| |
Collapse
|
120
|
Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS One 2014; 9:e115571. [PMID: 25535984 PMCID: PMC4275242 DOI: 10.1371/journal.pone.0115571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023] Open
Abstract
Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope.
Collapse
|
121
|
Fukushima S, Furukawa T, Niioka H, Ichimiya M, Miyake J, Ashida M, Araki T, Hashimoto M. Y 2 O 3 :Tm,Yb nanophosphors for correlative upconversion luminescence and cathodoluminescence imaging. Micron 2014; 67:90-95. [DOI: 10.1016/j.micron.2014.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 11/16/2022]
|
122
|
Kim YS, Kim SH, Shin J, Harikishore A, Lim JK, Jung Y, Lyu HN, Baek NI, Choi KY, Yoon HS, Kim KT. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1. PLoS One 2014; 9:e109655. [PMID: 25310002 PMCID: PMC4195671 DOI: 10.1371/journal.pone.0109655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/02/2014] [Indexed: 12/02/2022] Open
Abstract
Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Ye Seul Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jong-Kwan Lim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ha-Na Lyu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Nam-In Baek
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, Republic of Korea
| | - Kwan Yong Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
- * E-mail:
| |
Collapse
|
123
|
Zierhut C, Jenness C, Kimura H, Funabiki H. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nat Struct Mol Biol 2014; 21:617-25. [PMID: 24952593 PMCID: PMC4082469 DOI: 10.1038/nsmb.2845] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A-H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS.
Collapse
Affiliation(s)
- Christian Zierhut
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, New York, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, New York, USA
| | - Hiroshi Kimura
- 1] Graduate School of Frontier Biosciences, Osaka University, Suita, Japan. [2] Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Suita, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, New York, USA
| |
Collapse
|
124
|
Jamin A, Thunuguntla P, Wicklund A, Jones C, Wiebe MS. Barrier to auto integration factor becomes dephosphorylated during HSV-1 Infection and Can Act as a host defense by impairing viral DNA replication and gene expression. PLoS One 2014; 9:e100511. [PMID: 24945635 PMCID: PMC4063967 DOI: 10.1371/journal.pone.0100511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/28/2014] [Indexed: 12/28/2022] Open
Abstract
BAF (Barrier to Autointegration Factor) is a highly conserved DNA binding protein that senses poxviral DNA in the cytoplasm and tightly binds to the viral genome to interfere with DNA replication and transcription. To counteract BAF, a poxviral-encoded protein kinase phosphorylates BAF, which renders BAF unable to bind DNA and allows efficient viral replication to occur. Herein, we examined how BAF phosphorylation is affected by herpes simplex virus type 1 (HSV-1) infection and tested the ability of BAF to interfere with HSV-1 productive infection. Interestingly, we found that BAF phosphorylation decreases markedly following HSV-1 infection. To determine whether dephosphorylated BAF impacts HSV-1 productive infection, we employed cell lines stably expressing a constitutively unphosphorylated form of BAF (BAF-MAAAQ) and cells overexpressing wild type (wt) BAF for comparison. Although HSV-1 production in cells overexpressing wtBAF was similar to that in cells expressing no additional BAF, viral growth was reduced approximately 80% in the presence of BAF-MAAAQ. Experiments were also performed to determine the mechanism of the antiviral activity of BAF with the following results. BAF-MAAAQ was localized to the nucleus, whereas wtBAF was dispersed throughout cells prior to infection. Following infection, wtBAF becomes dephosphorylated and relocalized to the nucleus. Additionally, BAF was associated with the HSV-1 genome during infection, with BAF-MAAAQ associated to a greater extent than wtBAF. Importantly, unphosphorylated BAF inhibited both viral DNA replication and gene expression. For example, expression of two regulatory proteins, ICP0 and VP16, were substantially reduced in cells expressing BAF-MAAAQ. However, other viral genes were not dramatically affected suggesting that expression of certain viral genes can be differentially regulated by unphosphorylated BAF. Collectively, these results suggest that BAF can act in a phosphorylation-regulated manner to impair HSV-1 transcription and/or DNA replication, which is similar to the antiviral activity of BAF during vaccinia infection.
Collapse
Affiliation(s)
- Augusta Jamin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Prasanth Thunuguntla
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - April Wicklund
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Matthew S. Wiebe
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
125
|
Abstract
In eukaryotic cells the nuclear genome is enclosed by the nuclear envelope (NE). In metazoans, the NE breaks down in mitosis and it has been assumed that the physical barrier separating nucleoplasm and cytoplasm remains intact during the rest of the cell cycle and cell differentiation. However, recent studies suggest that nonmitotic NE remodeling plays a critical role in development, virus infection, laminopathies, and cancer. Although the mechanisms underlying these NE restructuring events are currently being defined, one common theme is activation of protein kinase C family members in the interphase nucleus to disrupt the nuclear lamina, demonstrating the importance of the lamina in maintaining nuclear integrity.
Collapse
Affiliation(s)
- Emily Hatch
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | | |
Collapse
|
126
|
Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity. J Virol 2014; 88:5342-55. [PMID: 24600006 DOI: 10.1128/jvi.00427-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. IMPORTANCE The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways, the best characterized of which are as a host defense against cytoplasmic DNA and as a regulator of mitotic nuclear reassembly. Although dynamic phosphorylation involving both viral and cellular enzymes is likely a key regulator of multiple BAF functions, the precise mechanisms involved are poorly understood. Here we demonstrate that phosphorylation coordinately regulates BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity. Overall, our findings provide new insights into how phosphoregulation of BAF modulates this protein at multiple levels and governs its effectiveness as an antiviral factor against foreign DNA.
Collapse
|
127
|
Asakawa H, Hiraoka Y, Haraguchi T. A method of correlative light and electron microscopy for yeast cells. Micron 2014; 61:53-61. [PMID: 24792447 DOI: 10.1016/j.micron.2014.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
Correlative light and electron microscopy (CLEM) is a method of imaging in which the same specimen is observed by both light microscopy and electron microscopy. Specifically, CLEM compares images obtained by light and electron microscopy and makes a correlation between them. After the advent of fluorescent proteins, CLEM was extended by combining electron microscopy with fluorescence microscopy to enable molecular-specific imaging of subcellular structures with a resolution at the nanometer level. This method is a powerful tool that is used to determine the localization of specific molecules of interest in the context of subcellular structures. Knowledge of the localization of target proteins coupled with the functions of the structures to which they are localized yields valuable information about the molecular functions of these proteins. However, this method has been mostly applied to adherent cells due to technical difficulties in immobilizing non-adherent target cells, such as yeasts, during sample preparation. We have developed a method of CLEM applicable to yeast cells. In this report, we detail this method and present its extension to Live CLEM. The Live CLEM method enabled us to link the dynamic properties of molecules of interest to cellular ultrastructures in the yeast cell. Since yeasts are premier organisms in molecular genetics, combining CLEM with yeast genetics promises to provide important new findings for understanding the molecular basis of the function of cellular structures.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
| |
Collapse
|
128
|
Abstract
A conserved organizational feature of eukaryotic nuclei is the peripheral heterochromatin compartment, which provides a protected area for epigenetically silent genes and gene-poor DNA. In metazoan cells this compartment is associated with the nuclear lamina, the protein meshwork at the inner edge of the nucleus. Heterochromatin-nuclear lamina interactions promote epigenetic gene silencing, which may drive many normal and diseased biological processes. We recently obtained evidence that a previously unstudied human protein, PRR14, participates in the tethering of heterochromatin to the inner nuclear periphery. PRR14 associates with the nuclear lamina and attaches to heterochromatin through its binding partner, heterochromatin protein 1 (HP1). After disassembly early in mitosis, PRR14 reassembles in two steps, first binding to anaphase chromosomes through HP1, followed by association with the nuclear lamina in telophase. PRR14 may thereby play a role in specifying HP1-bound heterochromatin for reattachment to the nuclear lamina at mitotic exit. Here we review the relevant literature, summarize our initial work, and provide additional comments and findings.
Collapse
Affiliation(s)
- Andrey Poleshko
- Fox Chase Cancer Center; Institute for Cancer Research; Philadelphia, PA USA
| | - Richard A Katz
- Fox Chase Cancer Center; Institute for Cancer Research; Philadelphia, PA USA
| |
Collapse
|
129
|
Abstract
Maintenance of nuclear architecture is crucial for gene regulation, cell proliferation and tissue development. However, during every open mitosis and meiosis, chromosomes are exposed to cytoskeletal forces until they are fully reassembled into mature nuclei. Here we discuss our recent study of nuclear assembly in Xenopus egg extracts, where we showed that the DNA binding protein Developmental pluripotency associated 2 (Dppa2) directly inhibits microtubule polymerization during nuclear formation, and that this is essential for normal nuclear shape and replication. We explore mechanisms by which microtubule dynamics could regulate nuclear formation and morphology, and discuss the importance of both spatial and temporal regulation of microtubules in this process. Moreover, expression of Dppa2 is limited to the early embryo and pluripotent tissues, and we highlight the specific demands of mitosis in these often rapidly dividing cells, in which telophase nuclear assembly must be expedited and may facilitate developmental changes in nuclear architecture.
Collapse
Affiliation(s)
- John Z Xue
- Laboratory of Chromosome and Cell Biology; The Rockefeller University; New York, NY USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology; The Rockefeller University; New York, NY USA
| |
Collapse
|
130
|
Abstract
Current anti-cancer therapies have a great deal of undesirable side effects; therefore, there is a need to develop efficient and cancer cell-specific new drugs without strong dose-limiting side effects. In my opinion, mechanisms of nuclear assembly and organization represent a novel platform for drug targets, which might fulfill these criteria. The nuclear stiffness and organization of some cancer types are often compromised, making them more vulnerable for further targeting the mechanisms of nuclear integrity than their normal counterparts. Here I will discuss the nuclear organization of normal cells and cancer cells, the molecular mechanisms that govern nuclear assembly with emphasis on those that, in my view, might be considered as targets for future anti-cancer therapies.
Collapse
Affiliation(s)
- Mátyás Gorjánácz
- Bayer Pharma AG; Bayer Healthcare Pharmaceuticals; Global Drug Discovery; Therapeutic Research Group Oncology; Berlin, Germany
| |
Collapse
|
131
|
Molitor TP, Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol Biol Cell 2014; 25:891-903. [PMID: 24430874 PMCID: PMC3952857 DOI: 10.1091/mbc.e13-10-0603] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The VRK1 protein kinase regulates the phosphorylation of BAF, which binds to dsDNA and LEM domain–containing proteins. VRK1 depletion increases the immobile fraction of BAF at the nuclear periphery and disturbs nuclear envelope architecture. It also leads to the retention of BAF on chromosomes as cells enter and progress through mitosis. Barrier to autointegration factor (BAF), which is encoded by the BANF1 gene, binds with high-affinity to double-stranded DNA and LEM domain–containing proteins at the nuclear periphery. A BANF1 mutation has recently been associated with a novel human progeria syndrome, and cells from these patients have aberrant nuclear envelopes. The interactions of BAF with its DNA- and protein-binding partners are known to be regulated by phosphorylation, and previously we validated BAF as a highly efficient substrate for the VRK1 protein kinase. Here we show that depletion of VRK1 in MCF10a and MDA-MB-231 cells results in aberrant nuclear architecture. The immobile fraction of green fluorescent protein (GFP)–BAF at the nuclear envelope (NE) is elevated, suggesting that prolonged interactions of BAF with its binding partners is likely responsible for the aberrant NE architecture. Because detachment of BAF from its binding partners is associated with NE disassembly, we performed live-imaging analysis of control and VRK1-depleted cells to visualize GFP-BAF dynamics during mitosis. In the absence of VRK1, BAF does not disperse but instead remains chromosome bound from the onset of mitosis. VRK1 depletion also increases the number of anaphase bridges and multipolar spindles. Thus phosphorylation of BAF by VRK1 is essential both for normal NE architecture and proper dynamics of BAF–chromosome interactions during mitosis. These results are consistent with previous studies of the VRK/BAF signaling axis in Caenorhabditis elegans and Drosophila melanogaster and validate VRK1 as a key regulator of NE architecture and mitotic chromosome dynamics in mammalian cells.
Collapse
Affiliation(s)
- Tyler P Molitor
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | | |
Collapse
|
132
|
Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol 2013; 29:95-106. [PMID: 24365856 DOI: 10.1016/j.semcdb.2013.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.
Collapse
Affiliation(s)
- Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Developmental, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
133
|
Zhuang X, Semenova E, Maric D, Craigie R. Dephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis. J Biol Chem 2013; 289:1119-27. [PMID: 24265311 DOI: 10.1074/jbc.m113.492777] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Barrier-to-autointegration factor (BAF or BANF1) is highly conserved in multicellular eukaryotes and was first identified for its role in retroviral DNA integration. Homozygous BAF mutants are lethal and depletion of BAF results in defects in chromatin segregation during mitosis and subsequent nuclear envelope assembly. BAF exists both in phosphorylated and unphosphorylated forms with phosphorylation sites Thr-2, Thr-3, and Ser-4, near the N terminus. Vaccinia-related kinase 1 is the major kinase responsible for phosphorylation of BAF. We have identified the major phosphatase responsible for dephosphorylation of Ser-4 to be protein phosphatase 4 catalytic subunit. By examining the cellular distribution of phosphorylated BAF (pBAF) and total BAF (tBAF) through the cell cycle, we found that pBAF is associated with the core region of telophase chromosomes. Depletion of BAF or perturbing its phosphorylation state results not only in nuclear envelope defects, including mislocalization of LEM domain proteins and extensive invaginations into the nuclear interior, but also impaired cell cycle progression. This phenotype is strikingly similar to that seen in cells from patients with progeroid syndrome resulting from a point mutation in BAF.
Collapse
|
134
|
Xue JZ, Woo EM, Postow L, Chait BT, Funabiki H. Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 2013; 27:47-59. [PMID: 24075807 DOI: 10.1016/j.devcel.2013.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/19/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Nuclear shape and size vary between species, during development, and in many tissue pathologies, but the causes and effects of these differences remain poorly understood. During fertilization, sperm nuclei undergo a dramatic conversion from a heavily compacted form into decondensed, spherical pronuclei, accompanied by rapid nucleation of microtubules from centrosomes. Here we report that the assembly of the spherical nucleus depends on a critical balance of microtubule dynamics, which is regulated by the chromatin-binding protein Developmental pluripotency-associated 2 (Dppa2). Whereas microtubules normally promote sperm pronuclear expansion, in Dppa2-depleted Xenopus egg extracts excess microtubules cause pronuclear assembly defects, leading to abnormal morphology and disorganized DNA replication. Dppa2 inhibits microtubule polymerization in vitro, and Dppa2 activity is needed at a precise time and location during nascent pronuclear formation. This demonstrates a strict spatiotemporal requirement for local suppression of microtubules during nuclear formation, fulfilled by chromatin-bound microtubule regulators.
Collapse
Affiliation(s)
- John Z Xue
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
135
|
Berk JM, Maitra S, Dawdy AW, Shabanowitz J, Hunt DF, Wilson KL. O-Linked β-N-acetylglucosamine (O-GlcNAc) regulates emerin binding to barrier to autointegration factor (BAF) in a chromatin- and lamin B-enriched "niche". J Biol Chem 2013; 288:30192-30209. [PMID: 24014020 DOI: 10.1074/jbc.m113.503060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerin, a membrane component of nuclear "lamina" networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified ("O-GlcNAcylated") in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ~50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ~66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ~30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that β-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B "niche." These results reveal direct control of a conserved LEM domain nuclear lamina component by β-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.
Collapse
Affiliation(s)
- Jason M Berk
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Sushmit Maitra
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew W Dawdy
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jeffrey Shabanowitz
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Donald F Hunt
- the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Katherine L Wilson
- From the Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and.
| |
Collapse
|
136
|
Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 2013; 110:E3388-97. [PMID: 23959860 DOI: 10.1073/pnas.1305275110] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock factors (HSFs) are the master regulators of transcription under protein-damaging conditions, acting in an environment where the overall transcription is silenced. We determined the genomewide transcriptional program that is rapidly provoked by HSF1 and HSF2 under acute stress in human cells. Our results revealed the molecular mechanisms that maintain cellular homeostasis, including HSF1-driven induction of polyubiquitin genes, as well as HSF1- and HSF2-mediated expression patterns of cochaperones, transcriptional regulators, and signaling molecules. We characterized the genomewide transcriptional response to stress also in mitotic cells where the chromatin is tightly compacted. We found a radically limited binding and transactivating capacity of HSF1, leaving mitotic cells highly susceptible to proteotoxicity. In contrast, HSF2 occupied hundreds of loci in the mitotic cells and localized to the condensed chromatin also in meiosis. These results highlight the importance of the cell cycle phase in transcriptional responses and identify the specific mechanisms for HSF1 and HSF2 in transcriptional orchestration. Moreover, we propose that HSF2 is an epigenetic regulator directing transcription throughout cell cycle progression.
Collapse
|
137
|
Abstract
Emerin, a conserved LEM-domain protein, is among the few nuclear membrane proteins for which extensive basic knowledge—biochemistry, partners, functions, localizations, posttranslational regulation, roles in development and links to human disease—is available. This review summarizes emerin and its emerging roles in nuclear “lamina” structure, chromatin tethering, gene regulation, mitosis, nuclear assembly, development, signaling and mechano-transduction. We also highlight many open questions, exploration of which will be critical to understand how this intriguing nuclear membrane protein and its “family” influence the genome.
Collapse
Affiliation(s)
- Jason M Berk
- Department of Cell Biology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | | | | |
Collapse
|
138
|
Takama H, Sugiura K, Ogawa Y, Muro Y, Akiyama M. Possible roles of barrier-to-autointegration factor 1 in regulation of keratinocyte differentiation and proliferation. J Dermatol Sci 2013; 71:100-6. [PMID: 23664529 DOI: 10.1016/j.jdermsci.2013.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/29/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Barrier-to-autointegration factor 1 (BANF1) is an essential component of the nuclear lamina. Recent studies have clarified that BANF1 is a causative molecule of Nestor-Guillermo progeria syndrome. Despite recent progress in studies on BANF1, the role of BANF1 in keratinocytes has not been addressed at all. OBJECTIVE This study aims to determine the localization of BANF1 in psoriatic epidermal keratinocytes as well as in normal keratinocytes and to clarify its possible function in those keratinocytes. METHODS Immunohistochemistry of BANF1 was performed on 10 cases of psoriasis and 10 healthy control individuals. Expression of molecules associated with inflammation of the skin by HSC-1, a human skin squamous cell carcinoma cell line, stimulated by TPA and treated with siRNA to BANF1 were analyzed with quantitative PCR and Western blot. RESULTS Strong nuclear-dominant immunostaining of BANF1 was seen in the epidermal keratinocytes of psoriatic lesions, although in the normal epidermis, all the KCs in the upper epidermis showed cytoplasmic-dominant staining of BANF1. By BANF1 knockdown in TPA-stimulated HSC-1 cells, the mRNA levels of S100A9 were significantly elevated compared with those of control HSC-1 cells treated with siRNA to CD4. The protein expression level of S100A9 and phosphorylated c-Jun was elevated by BANF1 knockdown. CONCLUSION BANF1 is translocated onto the nuclear envelope in the psoriatic epidermal keratinocytes, suggesting that BANF1 is associated with upregulated proliferation of keratinocytes in psoriatic lesions. Activation of BANF1 possibly suppresses S100A9 expression and inactivates c-Jun, resulting in suppression of cutaneous inflammation.
Collapse
Affiliation(s)
- Hiroyuki Takama
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
139
|
Clever M, Mimura Y, Funakoshi T, Imamoto N. Regulation and coordination of nuclear envelope and nuclear pore complex assembly. Nucleus 2013; 4:105-14. [PMID: 23412657 PMCID: PMC3621742 DOI: 10.4161/nucl.23796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In metazoans with “open” mitosis, cells undergo structural changes involving the complete disassembly of the nuclear envelope (NE). In post-mitosis, the dividing cell faces the difficulty to reassemble NE structures in a highly regulated fashion around separated chromosomes. The de novo formation of nuclear pore complexes (NPCs), which are gateways between the cytoplasm and nucleoplasm across the nuclear membrane, is an archetype of macromolecular assembly and is therefore of special interest. The reformation of a functional NE further involves the reassembly and organization of other NE components, the nuclear membrane and NE proteins, around chromosomes in late mitosis.
Here, we discuss the function of NE components, such as lamins and INM proteins, in NE reformation and highlight recent results on coordination of NPC and NE assembly.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute 2-1 Hirosawa, Wako, Japan
| | | | | | | |
Collapse
|
140
|
Choi JC, Doh J. High-throughput quantitative imaging of cell spreading dynamics by multi-step microscopy projection photolithography based on a cell-friendly photoresist. LAB ON A CHIP 2012; 12:4964-4967. [PMID: 23059818 DOI: 10.1039/c2lc40695k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new method for the high-throughput study of cell spreading dynamics is devised by multi-step microscopy projection photolithography based on a cell-friendly photoresist. By releasing a large number of rounded cells in single cell arrays and monitoring their spreading dynamics by interference reflection microscopy, a large number of cell spreading data can be acquired by a single experiment.
Collapse
Affiliation(s)
- Jong-Cheol Choi
- Department of Mechanical Engineering, POSTECH, San31, Hyoja-dong, Nam-Gu, Pohang, 790-784, Gyeongbuk, Korea.
| | | |
Collapse
|
141
|
Abstract
The transitions between the successive cell cycle stages depend on reversible protein phosphorylation events. The phosphorylation state of every protein within a cell is strictly determined by spatiotemporally controlled kinase and phosphatase activities. Nuclear disassembly and reassembly during open mitosis in higher eukaryotic cells is one such process that is tightly regulated by the reversible phosphorylation of key proteins. However, little is known about the regulation of these mitotic events. In particular, although kinase function during entry into mitosis is better studied, very little is known about how proteins are dephosphorylated to allow nuclear reformation at the end of mitosis. We have identified LEM‑4, a conserved protein of the nuclear envelope, as an essential coordinator of kinase and phosphatase activities during mitotic exit. Inhibition of VRK‑1 kinase and promotion of a PP2A phosphatase complex by LEM‑4 tightly regulate the phosphorylation state of BAF, an essential player of nuclear reformation at the end of mitosis. Here I offer extended comments on the contribution of LEM‑4 in the regulation of protein phosphorylation and nuclear reformation.
Collapse
|
142
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
143
|
Asencio C, Davidson I, Santarella-Mellwig R, Ly-Hartig T, Mall M, Wallenfang M, Mattaj I, Gorjánácz M. Coordination of Kinase and Phosphatase Activities by Lem4 Enables Nuclear Envelope Reassembly during Mitosis. Cell 2012; 150:122-35. [DOI: 10.1016/j.cell.2012.04.043] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/09/2012] [Accepted: 04/20/2012] [Indexed: 12/19/2022]
|
144
|
L'Hôte D, Georges A, Todeschini AL, Kim JH, Benayoun BA, Bae J, Veitia RA. Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles. Hum Mol Genet 2012; 21:3264-74. [PMID: 22544055 DOI: 10.1093/hmg/dds170] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
FOXL2 transcription factor is responsible for the Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES), a genetic disease involving craniofacial malformations often associated with ovarian failure. Recently, a somatic FOXL2 mutation (p.C134W) has been reported in >95% of adult-type granulosa cell tumors. Here, we have identified 10 novel FOXL2 partners by yeast-two-hybrid screening and co-immunoprecipitation. Most BPES-inducing mutated FOXL2 proteins display aggregation in cultured cells. Here, we show that two of the partners (NR2C1 and GMEB1) can be sequestered in such aggregates. This co-aggregation can contribute to the pathogenesis of FOXL2 mutations. We have also measured the effects of FOXL2 interactants on the transcriptional regulation of a series of target promoters. Some of the partners (CXXC4, CXXC5, BANF1) were able to repress FOXL2 activity indistinctively of the promoter. Interestingly, CREM-τ2α, which acted as a repressor on most promoters, increased wild-type (WT) FOXL2 activity on two promoters (PTGS2 and CYP19A1), but was unable to increase the activity of the oncogenic mutant p.C134W. Conversely, GMEB1, which also acted as a repressor on most promoters and increased WT FOXL2 activity on the Per2 promoter, increased to a greater extent the activity of the p.C134W variant. Interestingly, partners with intrinsic pro-apoptotic effect were able to increase apoptosis induction by WT FOXL2, but not by the p.C134W mutant, whereas partners with an anti-apoptotic effect decreased apoptosis induction by both FOXL2 versions. Altogether, these results suggest that the p.C134W mutated form fails to integrate signals through protein-protein interactions to regulate target promoter subsets and in particular to induce cell death.
Collapse
Affiliation(s)
- David L'Hôte
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris 75205, France
| | | | | | | | | | | | | |
Collapse
|
145
|
Kobayashi S, Hattori Y, Osakada H, Toma K, Maitani Y, Hiraoka Y, Haraguchi T. Early entry and deformation of macropinosomes correlates with high efficiency of decaarginine-polyethylene glycol-lipid-mediated gene delivery. J Gene Med 2012; 14:262-71. [DOI: 10.1002/jgm.2615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shouhei Kobayashi
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Iwaoka; Kobe; Japan
| | - Yoshiyuki Hattori
- Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe; National Institute of Information and Communications Technology; Iwaoka; Kobe; Japan
| | | | - Yoshie Maitani
- Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | | | | |
Collapse
|
146
|
Synthesis, transport and incorporation into the nuclear envelope of A-type lamins and inner nuclear membrane proteins. Biochem Soc Trans 2012; 39:1758-63. [PMID: 22103521 DOI: 10.1042/bst20110653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian NE (nuclear envelope), which separates the nucleus from the cytoplasm, is a complex structure composed of nuclear pore complexes, the outer and inner nuclear membranes, the perinuclear space and the nuclear lamina (A- and B-type lamins). The NE is completely disassembled and reassembled at each cell division. In the present paper, we review recent advances in the understanding of the mechanisms implicated in the transport of inner nuclear membrane and nuclear lamina proteins from the endoplasmic reticulum to the nucleus in interphase cells and mitosis, with special attention to A-type lamins.
Collapse
|
147
|
Clever M, Funakoshi T, Mimura Y, Takagi M, Imamoto N. The nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells. Nucleus 2012; 3:187-99. [PMID: 22555603 PMCID: PMC3383574 DOI: 10.4161/nucl.19595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In open mitosis the nuclear envelope (NE) reassembles at the end of each mitosis. This process involves the reformation of the nuclear pore complex (NPC), the inner and outer nuclear membranes, and the nuclear lamina. In human cells cell cycle-dependent NE subdomains exist, characterized as A-type lamin-rich/NPC-free or B-type lamin-rich/NPC-rich, which are initially formed as core or noncore regions on mitotic chromosomes, respectively. Although postmitotic NE formation has been extensively studied, little is known about the coordination of NPC and NE assembly. Here, we report that the nucleoporin ELYS/Mel28, which is crucial for postmitotic NPC formation, is essential for recruiting the lamin B receptor (LBR) to the chromosomal noncore region. Furthermore, ELYS/Mel28 is responsible for focusing of A-type lamin-binding proteins like emerin, Lap2α and the barrier-to-autointegration factor (BAF) at the chromosomal core region. ELYS/Mel28 biochemically interacts with the LBR in a phosphorylation-dependent manner. Recruitment of the LBR depends on the nucleoporin Nup107, which interacts with ELYS/Mel28 but not on nucleoporin Pom121, suggesting that the specific molecular interactions with ELYS/Mel28 are involved in the NE assembly at the noncore region. The depletion of the LBR affected neither the behavior of emerin nor Lap2α indicating that the recruitment of the LBR to mitotic chromosomes is not involved in formation of the core region. The depletion of ELYS/Mel28 also accelerates the entry into cytokinesis after recruitment of emerin to chromosomes. Our data show that ELYS/Mel28 plays a role in NE subdomain formation in late mitosis.
Collapse
Affiliation(s)
- Michaela Clever
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Tomoko Funakoshi
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
- Live-Cell Molecular Imaging Research Team; Riken Advanced Science Institute; Saitama, Japan
| | - Yasuhiro Mimura
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory; Riken Advanced Science Institute; Saitama, Japan
| |
Collapse
|
148
|
Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther 2012; 20:984-93. [PMID: 22334015 DOI: 10.1038/mt.2011.313] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endocytosis has been implicated in the cellular uptake of arginine-rich, cell-penetrating peptides (CPPs). However, accumulating evidence suggests that certain conditions allow the direct, non-endocytic penetration of arginine-rich peptides through the plasma membrane. We previously showed that Alexa Fluor 488-labeled dodeca-arginine (R12-Alexa488) directly enters cells at specific sites on the plasma membrane and subsequently diffuses throughout cells. In this study, we found that the peptide influx was accompanied by the formation of unique, "particle-like" multivesicular structures on the plasma membrane, together with topical inversion of the plasma membrane. Importantly, the conjugation of dodeca-arginine (R12) to Alexa Fluor 488 or a peptide tag derived from hemagglutinin (HAtag) significantly accelerated particle formation, suggesting that the chemical properties of the attached molecules (cargo molecules) may contribute to translocation of the R12 peptide. Coincubation with R12-HAtag allowed the membrane-impermeable R4-Alexa488 to permeate cells. These results suggest that R12 peptides attached to hydrophobic cargo molecules stimulate dynamic morphological alterations in the plasma membrane, and that these structural changes allow the peptides to permeate the plasma membrane. These findings may provide a novel mode of cell permeabilization by arginine-rich peptides as a means of drug delivery.
Collapse
|
149
|
Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 2011; 43:565-82. [PMID: 22244153 DOI: 10.1016/j.micron.2011.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/16/2022]
Abstract
Correlative microscopy is the application of two or more distinct microscopy techniques to the same region of a sample, generating complementary morphological, structural and chemical information that exceeds what is possible with any single technique. As a variety of complementary microscopy approaches rather than a specific type of instrument, correlative microscopy has blossomed in recent years as researchers have recognised that it is particularly suited to address the intricate questions of the modern biological sciences. Specialised technical developments in sample preparation, imaging methods, visualisation and data analysis have also accelerated the uptake of correlative approaches. In light of these advances, this critical review takes the reader on a journey through recent developments in, and applications of, correlative microscopy, examining its impact in biomedical research and in the field of plant science. This twin emphasis gives a unique perspective into use of correlative microscopy in fields that often advance independently, and highlights the lessons that can be learned from both fields for the future of this important area of research.
Collapse
Affiliation(s)
- K A Jahn
- Australian Centre for Microscopy & Microanalysis and The School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
150
|
Montes de Oca R, Andreassen PR, Wilson KL. Barrier-to-Autointegration Factor influences specific histone modifications. Nucleus 2011; 2:580-90. [PMID: 22127260 DOI: 10.4161/nucl.2.6.17960] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Defects in the nuclear envelope or nuclear 'lamina' networks cause disease and can perturb histone posttranslational (epigenetic) regulation. Barrier-to-Autointegration Factor (BAF) is an essential but enigmatic lamina component that binds lamins, LEM-domain proteins, DNA and histone H3 directly. We report that BAF copurified with nuclease-digested mononucleosomes and associated with modified histones in vivo. BAF overexpression significantly reduced global histone H3 acetylation by 18%. In cells that stably overexpressed BAF 3-fold, silencing mark H3-K27-Me1/3 and active marks H4-K16-Ac and H4-Ac5 decreased significantly. Significant increases were also seen for silencing mark H3-K9-Me3, active marks H3-K4-Me2, H3-K9/K14-Ac and H4-K5-Ac and a mark (H3-K79-Me2) associated with both active and silent chromatin. Other increases (H3-S10-P, H3-S28-P and silencing mark H3-K9-Me2) did not reach statistical significance. BAF overexpression also significantly influenced cell cycle distribution. Moreover, BAF associated in vivo with SET/I2PP2A (protein phosphatase 2A inhibitor; blocks H3 dephosphorylation) and G9a (H3-K9 methyltransferase), but showed no detectable association with HDAC1 or HATs. These findings reveal BAF as a novel epigenetic regulator and are discussed in relation to BAF deficiency phenotypes, which include a hereditary progeria syndrome and loss of pluripotency in embryonic stem cells.
Collapse
Affiliation(s)
- Rocío Montes de Oca
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|