101
|
Maeda S, Otomo C, Otomo T. The autophagic membrane tether ATG2A transfers lipids between membranes. eLife 2019; 8:45777. [PMID: 31271352 PMCID: PMC6625793 DOI: 10.7554/elife.45777] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
An enigmatic step in de novo formation of the autophagosome membrane compartment is the expansion of the precursor membrane phagophore, which requires the acquisition of lipids to serve as building blocks. Autophagy-related 2 (ATG2), the rod-shaped protein that tethers phosphatidylinositol 3-phosphate (PI3P)-enriched phagophores to the endoplasmic reticulum (ER), is suggested to be essential for phagophore expansion, but the underlying mechanism remains unclear. Here, we demonstrate that human ATG2A is a lipid transfer protein. ATG2A can extract lipids from membrane vesicles and unload them to other vesicles. Lipid transfer by ATG2A is more efficient between tethered vesicles than between untethered vesicles. The PI3P effectors WIPI4 and WIPI1 associate ATG2A stably to PI3P-containing vesicles, thereby facilitating ATG2A-mediated tethering and lipid transfer between PI3P-containing vesicles and PI3P-free vesicles. Based on these results, we propose that ATG2-mediated transfer of lipids from the ER to the phagophore enables phagophore expansion.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Chinatsu Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
102
|
Affiliation(s)
- Michael J. Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ellen Yeh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
103
|
Osawa T, Noda NN. Atg2: A novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein Sci 2019; 28:1005-1012. [PMID: 30993752 PMCID: PMC6511744 DOI: 10.1002/pro.3623] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
The degradation of cytoplasmic components via autophagy is crucial for intracellular homeostasis. In the process of autophagy, a newly synthesized isolation membrane (IM) is developed to sequester degradation targets and eventually the IM seals, forming an autophagosome. One of the most poorly understood autophagy-related proteins is Atg2, which is known to localize to a contact site between the edge of the expanding IM and the exit site of the endoplasmic reticulum (ERES). Recent advances in structural and biochemical analyses have been applied to Atg2 and have revealed it to be a novel multifunctional protein that tethers membranes and transfers phospholipids between them. Considering that Atg2 is essential for the expansion of the IM that requires phospholipids as building blocks, it is suggested that Atg2 transfers phospholipids from the ERES to the IM during the process of autophagosome formation, suggesting that lipid transfer proteins can mediate de novo organelle biogenesis.
Collapse
Affiliation(s)
- Takuo Osawa
- Institute of Microbial Chemistry (BIKAKEN)Tokyo 141‐0021Japan
| | - Nobuo N. Noda
- Institute of Microbial Chemistry (BIKAKEN)Tokyo 141‐0021Japan
| |
Collapse
|
104
|
Tzimas C, Rau CD, Buergisser PE, Jean-Louis G, Lee K, Chukwuneke J, Dun W, Wang Y, Tsai EJ. WIPI1 is a conserved mediator of right ventricular failure. JCI Insight 2019; 5:122929. [PMID: 31021818 DOI: 10.1172/jci.insight.122929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Right ventricular dysfunction is highly prevalent across cardiopulmonary diseases and independently predicts death in both heart failure (HF) and pulmonary hypertension (PH). Progression towards right ventricular failure (RVF) can occur in spite of optimal medical treatment of HF or PH, highlighting current insufficient understanding of RVF molecular pathophysiology. To identify molecular mechanisms that may distinctly underlie RVF, we investigated the cardiac ventricular transcriptome of advanced HF patients, with and without RVF. Using an integrated systems genomic and functional biology approach, we identified an RVF-specific gene module, for which WIPI1 served as a hub and HSPB6 and MAP4 as drivers, and confirmed the ventricular specificity of Wipi1, Hspb6, and Map4 transcriptional changes in adult murine models of pressure overload induced RV- versus LV- failure. We uncovered a shift towards non-canonical autophagy in the failing RV that correlated with RV-specific Wipi1 upregulation. In vitro siRNA silencing of Wipi1 in neonatal rat ventricular myocytes limited non-canonical autophagy and blunted aldosterone-induced mitochondrial superoxide levels. Our findings suggest that Wipi1 regulates mitochondrial oxidative signaling and non-canonical autophagy in cardiac myocytes. Together with our human transcriptomic analysis and corroborating studies in an RVF mouse model, these data render Wipi1 a potential target for RV-directed HF therapy.
Collapse
Affiliation(s)
- Christos Tzimas
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Christoph D Rau
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Petra E Buergisser
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gaston Jean-Louis
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Katherine Lee
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jeffrey Chukwuneke
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Wen Dun
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Yibin Wang
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Emily J Tsai
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
105
|
Wu Y, Tang L, Wang B, Sun Q, Zhao P, Li W. The role of autophagy in maintaining intestinal mucosal barrier. J Cell Physiol 2019; 234:19406-19419. [PMID: 31020664 DOI: 10.1002/jcp.28722] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The intestinal mucosal barrier is the first line to defense against luminal content penetration and performs numerous biological functions. The intestinal epithelium contains a huge surface that is lined by a monolayer of intestinal epithelial cells (IECs). IECs are dominant mediators in maintaining intestinal homeostasis that drive diverse functions including nutrient absorption, physical segregation, secretion of antibacterial peptides, and modulation of immune responses. Autophagy is a cellular self-protection mechanism in response to various stresses, and accumulating studies have revealed its importance in participating physiological processes of IECs. The regulatory effects of autophagy depend on the specific IEC types. This review aims to elucidate the myriad roles of autophagy in regulating the functions of different IECs (stem cells, enterocytes, goblet cells, and Paneth cells), and present the progress of autophagy-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide new preventive and therapeutic strategies for gastrointestinal dysfunction and diseases.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
106
|
Hor CHH, Tang BL. Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Rev Neurosci 2019; 30:261-277. [DOI: 10.1515/revneuro-2018-0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
AbstractAutophagy is an essential and conserved cellular homeostatic process. Defects in the core and accessory components of the autophagic machinery would most severely impact terminally differentiated cells, such as neurons. The neurodevelopmental/neurodegenerative disorder β-propeller protein-associated neurodegeneration (BPAN) resulted from heterozygous or hemizygous germline mutations/pathogenic variant of the X chromosome geneWDR45, encoding WD40 repeat protein interacting with phosphoinositides 4 (WIPI4). This most recently identified subtype of the spectrum of neurodegeneration with brain iron accumulation diseases is characterized by a biphasic mode of disease manifestation and progression. The first phase involves early-onset of epileptic seizures, global developmental delay, intellectual disability and autistic syndrome. Subsequently, Parkinsonism and dystonia, as well as dementia, emerge in a subacute manner in adolescence or early adulthood. BPAN disease phenotypes are thus complex and linked to a wide range of other neuropathological disorders. WIPI4/WDR45 has an essential role in autophagy, acting as a phosphatidylinositol 3-phosphate binding effector that participates in autophagosome biogenesis and size control. Here, we discuss recent updates on WIPI4’s mechanistic role in autophagy and link the neuropathological manifestations of BPAN’s biphasic infantile onset (epilepsy, autism) and adolescent onset (dystonic, Parkinsonism, dementia) phenotypes to neurological consequences of autophagy impairment that are now known or emerging in many other neurodevelopmental and neurodegenerative disorders. As monogenicWDR45mutations in BPAN result in a large spectrum of disease phenotypes that stem from autophagic dysfunctions, it could potentially serve as a simple and unique genetic model to investigate disease pathology and therapeutics for a wider range of neuropathological conditions with autophagy defects.
Collapse
|
107
|
Chung T. How phosphoinositides shape autophagy in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:146-158. [PMID: 30824047 DOI: 10.1016/j.plantsci.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/06/2023]
Abstract
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
108
|
Lu G, Yi J, Gubas A, Wang YT, Wu Y, Ren Y, Wu M, Shi Y, Ouyang C, Tan HWS, Wang T, Wang L, Yang ND, Deng S, Xia D, Chen RH, Tooze SA, Shen HM. Suppression of autophagy during mitosis via CUL4-RING ubiquitin ligases-mediated WIPI2 polyubiquitination and proteasomal degradation. Autophagy 2019; 15:1917-1934. [PMID: 30898011 DOI: 10.1080/15548627.2019.1596484] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macroautophagy/autophagy is a cellular process in which cytosolic contents are degraded by lysosome in response to various stress conditions. Apart from its role in the maintenance of cellular homeostasis, autophagy also involves in regulation of cell cycle progression under nutrient-deprivation conditions. However, whether and how autophagy is regulated by the cell cycle especially during mitosis remains largely undefined. Here we show that WIPI2/ATG18B (WD repeat domain, phosphoinositide interacting 2), an autophagy-related (ATG) protein that plays a critical role in autophagosome biogenesis, is a direct substrate of CUL4-RING ubiquitin ligases (CRL4s). Upon mitosis induction, CRL4s are activated via neddylation, and recruit WIPI2 via DDB1 (damage specific DNA binding protein 1), leading to polyubiquitination and proteasomal degradation of WIPI2 and suppression of autophagy. The WIPI2 protein level and autophagy during mitosis could be rescued by knockdown of CRL4s or treatment with MLN4924/Pevonedistat, a selective inhibitor of CRLs, via suppression of NAE1 (NEDD8 activating enzyme E1 subunit 1). Moreover, restoration of WIPI2 rescues autophagy during mitosis and leads to mitotic slippage and cell senescence. Our study thus discovers a novel function of CRL4s in autophagy by targeting WIPI2 for polyubiquitination and proteasomal degradation during mitosis. Abbreviations: ACTB, actin beta; ATG, autophagy-related; AMPK, AMP-activated protein kinase; AURKB/ARK2, aurora kinase B; BafA1, bafilomycin A1; CCNB1, cyclin B1; CDK1, cyclin dependent kinase 1; CHX, cycloheximide; CQ, chloroquine; CRL4s, CUL4-RING ubiquitin ligases; DDB1, damage specific DNA binding protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione S-transferase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; STK11/LKB1,serine/threonine kinase 11; MTORC1/MTOR complex 1, mechanistic target of rapamycin kinase complex 1; NAE1, NEDD8 activating enzyme E1 subunit 1; NOC, nocodazole; RING, really interesting new gene; RBX1, ring-box 1; SA-GLB1/β-gal, senescence-associated galactosidase beta 1; TSC2, TSC complex subunit 2; TUBA, tubulin alpha; WIPI2, WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Juan Yi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Andrea Gubas
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute , London UK
| | - Ya-Ting Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Yihua Wu
- School of Public Health, Zhejiang University , Hangzhou , China
| | - Yi Ren
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Man Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yin Shi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine , Hangzhou , China
| | - Chenxi Ouyang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Tianru Wang
- Life Sciences Program, Faculty of Arts and Sciences, University of Toronto , Toronto , Canada
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Nai-Di Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Dajing Xia
- School of Public Health, Zhejiang University , Hangzhou , China
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute , London UK
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| |
Collapse
|
109
|
ATG-18 and EPG-6 are Both Required for Autophagy but Differentially Contribute to Lifespan Control in Caenorhabditis elegans. Cells 2019; 8:cells8030236. [PMID: 30871075 PMCID: PMC6468378 DOI: 10.3390/cells8030236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
During macroautophagy, the human WIPI (WD-repeat protein interacting with phosphoinositides) proteins (WIPI1–4) function as phosphatidylinositol 3-phosphate effectors at the nascent autophagosome. Likewise, the two WIPI homologues in Caenorhabditis elegans, ATG-18 and EPG-6, play important roles in autophagy, whereby ATG-18 is considered to act upstream of EPG-6 at the onset of autophagy. Due to its essential role in autophagy, ATG-18 was found to be also essential for lifespan extension in Caenorhabditis elegans; however, this has not yet been addressed with regard to EPG-6. Here, we wished to address this point and generated mutant strains that expressed the autophagy marker GFP::LGG-1 (GFP-LC3 in mammals) and harbored functional deletions of either atg-18 (atg18(gk378)), epg-6 (epg-6(bp242)) or both (atg-18(gk378);epg-6(bp242)). Using quantitative fluorescence microscopy, Western blotting, and lifespan assessments, we provide evidence that in the absence of either ATG-18 or EPG-6 autophagy was impaired, and while atg-18 mutant animals showed a short-lived phenotype, lifespan was significantly increased in epg-6 mutant animals. We speculate that the long-lived phenotype of epg-6 mutant animals points towards an autophagy-independent function of EPG-6 in lifespan control that warrants further mechanistic investigations in future studies.
Collapse
|
110
|
Rab7a and Mitophagosome Formation. Cells 2019; 8:cells8030224. [PMID: 30857122 PMCID: PMC6468461 DOI: 10.3390/cells8030224] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
The small GTPase, Rab7a, and the regulators of its GDP/GTP-binding status were shown to have roles in both endocytic membrane traffic and autophagy. Classically known to regulate endosomal retrograde transport and late endosome-lysosome fusion, earlier work has indicated a role for Rab7a in autophagosome-lysosome fusion as well as autolysosome maturation. However, as suggested by recent findings on PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, Rab7a and its regulators are critical for the correct targeting of Atg9a-bearing vesicles to effect autophagosome formation around damaged mitochondria. This mitophagosome formation role for Rab7a is dependent on an intact Rab cycling process mediated by the Rab7a-specific guanine nucleotide exchange factor (GEF) and GTPase activating proteins (GAPs). Rab7a activity in this regard is also dependent on the retromer complex, as well as phosphorylation by the TRAF family-associated NF-κB activator binding kinase 1 (TBK1). Here, we discuss these recent findings and broadened perspectives on the role of the Rab7a network in PINK1-Parkin mediated mitophagy.
Collapse
|
111
|
Liang R, Ren J, Zhang Y, Feng W. Structural Conservation of the Two Phosphoinositide-Binding Sites in WIPI Proteins. J Mol Biol 2019; 431:1494-1505. [DOI: 10.1016/j.jmb.2019.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
|
112
|
Abstract
Classically, canonical autophagy has been considered a survival mechanism initiated in response to nutrient insufficiency. We now understand that autophagy functions in multiple scenarios where it is necessary to maintain homeostasis. Recent evidence has established that a variety of non-canonical functions for autophagy proteins are mechanistically and functionally distinct from autophagy. LC3-associated phagocytosis (LAP) is one such novel function for autophagy proteins and is a contributor to immune regulation and inflammatory responses across various cell and tissue types. Characterized by the conjugation of LC3 family proteins to phagosome membranes, LAP uses a portion of the canonical autophagy machinery, following ligation of surface receptors that recognize a variety of cargos including pathogens, dying cells, soluble ligands and protein aggregates. However, instead of affecting canonical autophagy, manipulation of the LAP pathway in vivo alters immune activation and inflammatory responses. In this Cell Science at a Glance article and the accompanying poster, we detail the divergence of this distinctive mechanism from that of canonical autophagy by comparing and contrasting shared and unique components of each pathway.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Cancer Biology Program, St. Jude Pediatric Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Cancer Biology Program, St. Jude Pediatric Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
113
|
Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells 2019; 8:cells8020103. [PMID: 30704144 PMCID: PMC6406467 DOI: 10.3390/cells8020103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies. Therefore, it comes as no surprise that hematopoietic tumours develop in higher frequency in elderly people. Unfortunately, elderly patients with leukaemia or lymphoma still have an unsatisfactory prognosis compared to younger ones highlighting the need to develop more efficient therapies for this group of patients. Growing evidence indicates that macroautophagy (hereafter referred to as autophagy) is essential for health and longevity. This review is focusing on the role of autophagy in normal haematopoiesis as well as in leukaemia and lymphoma development. Attenuated autophagy may support early hematopoietic neoplasia whereas activation of autophagy in later stages of tumour development and in response to a variety of therapies rather triggers a pro-tumoral response. Novel insights into the role of autophagy in haematopoiesis will be discussed in light of designing new autophagy modulating therapies in hematopoietic cancers.
Collapse
|
114
|
Mueller AJ, Proikas-Cezanne T. Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays. Methods Mol Biol 2019; 1880:429-445. [PMID: 30610713 DOI: 10.1007/978-1-4939-8873-0_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence microscopy-based detection of intracellular LC3, p62, and/or WIPI punctate structures is a robust tool to monitor and assess macroautophagy/autophagy in single cells. This method was established for automated high-throughput/content analysis to reliably detect narrow differences in autophagy activity/capacity and to provide screening opportunities for biological and chemical libraries.
Collapse
Affiliation(s)
- Amelie J Mueller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Tübingen, Germany
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tübingen, Germany. .,International Max Planck Research School "From Molecules to Organisms", Tübingen, Germany.
| |
Collapse
|
115
|
Davient B, Ng JPZ, Xiao Q, Li L, Yang L. Comparative Transcriptomics Unravels Prodigiosin's Potential Cancer-Specific Activity Between Human Small Airway Epithelial Cells and Lung Adenocarcinoma Cells. Front Oncol 2018; 8:573. [PMID: 30568916 PMCID: PMC6290060 DOI: 10.3389/fonc.2018.00573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Non-Small Cell Lung Cancer (NSCLC) is extremely lethal upon metastasis and requires safe and effective systemic therapies to improve a patient's prognosis. Prodigiosin (PG) appears to selectively and effectively target cancer but not healthy cells. However, PG's cancer-specific activity has remained elusive until recently. Methods: PG's cancer-specific performance was compared to Docetaxel (DTX), Paclitaxel (PTX), and Doxorubicin (DOX) against human lung adenocarcinoma (A549) and human small airway epithelial cells (HSAEC). Combination of PG with DTX, PTX, or DOX in a 1:1 ED50 ratio was also evaluated. MTT assay was used to determine the post-treatment cell viability. RNA-sequencing was used for comparative transcriptomics analysis between A549 and HSAEC treated with 1.0 μM PG for 24 h. Results: PG reduced A549 cell viability by four-folds greater than HSAEC. In comparison to DTX, PTX and DOX, PG was ~1.7 times more toxic toward A549, and 2.5 times more protective toward HSAEC. Combination of PG in a 1:1 ED50 ratio with DTX, PTX, or DOX failed to exhibit synergistic toxicity toward A549 or protection toward HSAEC. In A549, genes associated in DNA replication were downregulated, while genes directly or indirectly associated in lipid and cholesterol biogenesis were upregulated. In HSAEC, co-upregulation of oncogenic and tumor-suppressive genes was observed. Conclusion: An overactive lipid and cholesterol biogenesis could have caused A549's autophagy, while a balancing-act between genes of oncogenic and tumor-suppressive nature could have conferred HSAEC heightened survival. Overall, PG appears to be a smart chemotherapeutic agent that may be both safe and effective for NSCLC patients.
Collapse
Affiliation(s)
- Bala Davient
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jessica Pei Zhen Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qiang Xiao
- Respiratory Medicine, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan, Foshan, China
| | - Liang Li
- Shenzhen Institute of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
116
|
WIPI1, BAG1, and PEX3 Autophagy-Related Genes Are Relevant Melanoma Markers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1471682. [PMID: 30622661 PMCID: PMC6304818 DOI: 10.1155/2018/1471682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels.
Collapse
|
117
|
A new complex rearrangement in infant ALL: t(X;11;17)(p11.2;q23;q12). Cancer Genet 2018; 228-229:110-114. [DOI: 10.1016/j.cancergen.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022]
|
118
|
Moparthi SB, Wollert T. Reconstruction of destruction – in vitro reconstitution methods in autophagy research. J Cell Sci 2018; 132:132/4/jcs223792. [DOI: 10.1242/jcs.223792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
Autophagy is one of the most elaborative membrane remodeling systems in eukaryotic cells. Its major function is to recycle cytoplasmic material by delivering it to lysosomes for degradation. To achieve this, a membrane cisterna is formed that gradually captures cargo such as organelles or protein aggregates. The diversity of cargo requires autophagy to be highly versatile to adapt the shape of the phagophore to its substrate. Upon closure of the phagophore, a double-membrane-surrounded autophagosome is formed that eventually fuses with lysosomes. In response to environmental cues such as cytotoxicity or starvation, bulk cytoplasm can be captured and delivered to lysosomes. Autophagy thus supports cellular survival under adverse conditions. During the past decades, groundbreaking genetic and cell biological studies have identified the core machinery involved in the process. In this Review, we are focusing on in vitro reconstitution approaches to decipher the details and spatiotemporal control of autophagy, and how such studies contributed to our current understanding of the pathways in yeast and mammals. We highlight studies that revealed the function of the autophagy machinery at a molecular level with respect to its capacity to remodel membranes.
Collapse
Affiliation(s)
- Satish Babu Moparthi
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
119
|
Breglio KF, Amato R, Eastman R, Lim P, Sa JM, Guha R, Ganesan S, Dorward DW, Klumpp-Thomas C, McKnight C, Fairhurst RM, Roberts D, Thomas C, Simon AK. A single nucleotide polymorphism in the Plasmodium falciparum atg18 gene associates with artemisinin resistance and confers enhanced parasite survival under nutrient deprivation. Malar J 2018; 17:391. [PMID: 30367653 PMCID: PMC6204056 DOI: 10.1186/s12936-018-2532-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/17/2018] [Indexed: 01/20/2023] Open
Abstract
Background Artemisinin-resistant Plasmodium falciparum has been reported throughout the Greater Mekong subregion and threatens to disrupt current malaria control efforts worldwide. Polymorphisms in kelch13 have been associated with clinical and in vitro resistance phenotypes; however, several studies suggest that the genetic determinants of resistance may involve multiple genes. Current proposed mechanisms of resistance conferred by polymorphisms in kelch13 hint at a connection to an autophagy-like pathway in P. falciparum. Results A SNP in autophagy-related gene 18 (atg18) was associated with long parasite clearance half-life in patients following artemisinin-based combination therapy. This gene encodes PfAtg18, which is shown to be similar to the mammalian/yeast homologue WIPI/Atg18 in terms of structure, binding abilities, and ability to form puncta in response to stress. To investigate the contribution of this polymorphism, the atg18 gene was edited using CRISPR/Cas9 to introduce a T38I mutation into a k13-edited Dd2 parasite. The presence of this SNP confers a fitness advantage by enabling parasites to grow faster in nutrient-limited settings. The mutant and parent parasites were screened against drug libraries of 6349 unique compounds. While the SNP did not modulate the parasite’s susceptibility to any of the anti-malarial compounds using a 72-h drug pulse, it did alter the parasite’s susceptibility to 227 other compounds. Conclusions These results suggest that the atg18 T38I polymorphism may provide additional resistance against artemisinin derivatives, but not partner drugs, even in the absence of kelch13 mutations, and may also be important in parasite survival during nutrient deprivation. Electronic supplementary material The online version of this article (10.1186/s12936-018-2532-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly F Breglio
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA. .,Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Roberto Amato
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Richard Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juliana M Sa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.,Vertex Pharmaceuticals, Boston, MA, USA
| | - Sundar Ganesan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David W Dorward
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rick M Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Roberts
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Craig Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
120
|
Seibler P, Burbulla LF, Dulovic M, Zittel S, Heine J, Schmidt T, Rudolph F, Westenberger A, Rakovic A, Münchau A, Krainc D, Klein C. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain 2018; 141:3052-3064. [PMID: 30169597 PMCID: PMC7190033 DOI: 10.1093/brain/awy230] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 01/10/2023] Open
Abstract
Beta-propeller protein-associated neurodegeneration is a subtype of monogenic neurodegeneration with brain iron accumulation caused by de novo mutations in WDR45. The WDR45 protein functions as a beta-propeller scaffold and plays a putative role in autophagy through its interaction with phospholipids and autophagy-related proteins. Loss of WDR45 function due to disease-causing mutations has been linked to defects in autophagic flux in patient and animal cells. However, the role of WDR45 in iron homeostasis remains elusive. Here we studied patient-specific WDR45 mutant fibroblasts and induced pluripotent stem cell-derived midbrain neurons. Our data demonstrated that loss of WDR45 increased cellular iron levels and oxidative stress, accompanied by mitochondrial abnormalities, autophagic defects, and diminished lysosomal function. Restoring WDR45 levels partially rescued oxidative stress and the susceptibility to iron treatment, and activation of autophagy reduced the observed iron overload in WDR45 mutant cells. Our data suggest that iron-containing macromolecules and organelles cannot effectively be degraded through the lysosomal pathway due to loss of WDR45 function.
Collapse
Affiliation(s)
- Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marija Dulovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Simone Zittel
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanne Heine
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Thomas Schmidt
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
121
|
|
122
|
Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. Proc Natl Acad Sci U S A 2018; 115:E9792-E9801. [PMID: 30185561 DOI: 10.1073/pnas.1811874115] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an enigmatic cellular process in which double-membrane compartments, called "autophagosomes, form de novo adjacent to the endoplasmic reticulum (ER) and package cytoplasmic contents for delivery to lysosomes. Expansion of the precursor membrane phagophore requires autophagy-related 2 (ATG2), which localizes to the PI3P-enriched ER-phagophore junction. We combined single-particle electron microscopy, chemical cross-linking coupled with mass spectrometry, and biochemical analyses to characterize human ATG2A in complex with the PI3P effector WIPI4. ATG2A is a rod-shaped protein that can bridge neighboring vesicles through interactions at each of its tips. WIPI4 binds to one of the tips, enabling the ATG2A-WIPI4 complex to tether a PI3P-containing vesicle to another PI3P-free vesicle. These data suggest that the ATG2A-WIPI4 complex mediates ER-phagophore association and/or tethers vesicles to the ER-phagophore junction, establishing the required organization for phagophore expansion via the transfer of lipid membranes from the ER and/or the vesicles to the phagophore.
Collapse
|
123
|
Mészáros G, Pasquier A, Vivot K, Goginashvili A, Ricci R. Lysosomes in nutrient signalling: A focus on pancreatic β-cells. Diabetes Obes Metab 2018; 20 Suppl 2:104-115. [PMID: 30230186 DOI: 10.1111/dom.13389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/12/2023]
Abstract
Regulated insulin secretion from pancreatic β-cells is a major process maintaining glucose homeostasis in mammals. Enhancing insulin release in response to chronic nutrient overload and obesity-related insulin resistance (pre-diabetes) requires several adaptive cellular mechanisms maintaining β-cell health under such stresses. Once these mechanisms are overwhelmed, β-cell failure occurs leading to full-blown Type 2 Diabetes (T2D). Nutrient-dependent macroautophagy represents one such adaptive mechanism in β-cells. While macroautophagy levels are high and protective in β-cells in pre-diabetes, they decrease at later stages contributing to β-cell failure. However, mechanisms compromising macroautophagy in β-cells remain poorly understood. In this review, we discuss how recently discovered signalling cascades that emanate from the limiting membrane of lysosomes contribute to changes in macroautophagy flux in physiology and disease. In particular, these mechanisms are put into context with β-cell function highlighting most recently described links between nutrient-dependent lysosomal signalling pathways and insulin secretion. Understanding these mechanisms in response to metabolic stress might pave the way for development of more tailored treatment strategies aimed at preserving β-cell health.
Collapse
Affiliation(s)
- Gergő Mészáros
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Adrien Pasquier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Kevin Vivot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Alexander Goginashvili
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Romeo Ricci
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
124
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
125
|
Tao J, Yang M, Wu H, Ma T, He C, Chai M, Zhang X, Zhang J, Ding F, Wang S, Deng S, Zhu K, Song Y, Ji P, Liu H, Lian Z, Liu G. Effects of AANAT overexpression on the inflammatory responses and autophagy activity in the cellular and transgenic animal levels. Autophagy 2018; 14:1850-1869. [PMID: 29985091 DOI: 10.1080/15548627.2018.1490852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore the anti-inflammatory activity of endogenous produced melatonin, a melatonin-enriched animal model (goat) with AANAT transfer was successfully generated with somatic cell nuclear transfer (SCNT) technology. Basically, a pIRES2-EGFP-AANAT expression vector was constructed and was transferred into the female fetal fibroblast cells (FFCs) via electrotransfection and then the nuclear of the transgenic FFC was transferred to the eggs of the donor goats. The peripheral blood mononuclear cells (PBMCs) of the transgenic offspring expressed significantly higher levels of AANAT and melatonin synthetic function than those PBMCs from the wild-type (WT) animals. After challenge with lipopolysaccharide (LPS), the transgenic PBMCs had increased autophagosomes and LC3B expression while they exhibited suppressed production of the proinflammatory cytokines, IL1B and IL12 (IL12A-IL12B/p70), compared to their WT. The mechanistic analysis indicated that the anti-inflammatory activity of endogenous melatonin was mediated by MTNR1B (melatonin receptor 1B). MTNR1B stimulation activated the MAPK14 signaling pathway to promote cellular macroautophagy/autophagy, thus, suppressing the excessive inflammatory response of cellular. However, when the intact animals challenged with LPS, the serum proinflammatory cytokines were significantly higher in the transgenic goats than that in the WT. The results indicated that endogenous melatonin inhibited the MAPK1/3 signaling pathway and ROS production, subsequently downregulated gene expression of BECN1, ATG5 in PMBCs and then suppressed the autophagy activity of PBMCs and finally elevated levels of serum proinflammatory cytokines in transgenic animals, Herein we provided a novel melatonin-enriched animal model to study the potential effects of endogenously produced melatonin on inflammatory responses and autophagy activity.
Collapse
Affiliation(s)
- Jingli Tao
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Minghui Yang
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Hao Wu
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Teng Ma
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Changjiu He
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China.,b College of Animal Science and Technology , Huazhong Agricultural University , Wuhan , China
| | - Menglong Chai
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Xiaosheng Zhang
- c Institute of Animal Husbandry and Veterinary , Academy of Agricultural Sciences of Tianjin , Tianjin , China
| | - Jinlong Zhang
- c Institute of Animal Husbandry and Veterinary , Academy of Agricultural Sciences of Tianjin , Tianjin , China
| | - Fangrong Ding
- d State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Beijing , China
| | - Sutian Wang
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Shoulong Deng
- e State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China
| | - Kuanfeng Zhu
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Yukun Song
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Pengyun Ji
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Haijun Liu
- c Institute of Animal Husbandry and Veterinary , Academy of Agricultural Sciences of Tianjin , Tianjin , China
| | - Zhengxing Lian
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Guoshi Liu
- a National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology , China Agricultural University , Beijing , China
| |
Collapse
|
126
|
Kumar P, Yao LJ, Saidin S, Paleja B, van Loosdregt J, Chua C, Arkachaisri T, Consolaro A, Gattorno M, Martini A, Pischel KD, Williams GW, Lotz M, Albani S. Molecular mechanisms of autophagic memory in pathogenic T cells in human arthritis. J Autoimmun 2018; 94:90-98. [PMID: 30077426 DOI: 10.1016/j.jaut.2018.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023]
Abstract
T-cell resilience is critical to the immune pathogenesis of human autoimmune arthritis. Autophagy is essential for memory T cell generation and associated with pathogenesis in rheumatoid arthritis (RA). Our aim here was to delineate the role and molecular mechanism of autophagy in resilience and persistence of pathogenic T cells from autoimmune arthritis. We demonstrated "Autophagic memory" as elevated autophagy levels in CD4+ memory T cells compared to CD4+ naive T cells and in Jurkat Human T cell line trained with starvation stress. We then showed increased levels of autophagy in pathogenic CD4+ T cells subsets from autoimmune arthritis patients. Using RNA-sequencing, transcription factor gene regulatory network and methylation analyses we identified MYC as a key regulator of autophagic memory. We validated MYC levels using qPCR and further demonstrated that inhibiting MYC increased autophagy. The present study proposes the novel concept of autophagic memory and suggests that autophagic memory confers metabolic advantage to pathogenic T cells from arthritis and supports its resilience and long term survival. Particularly, suppression of MYC imparted the heightened autophagy levels in pathogenic T cells. These studies have a direct translational valency as they identify autophagy and its metabolic controllers as a novel therapeutic target.
Collapse
Affiliation(s)
- Pavanish Kumar
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore
| | - Leong Jing Yao
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore
| | - Suzan Saidin
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore
| | - Bhairav Paleja
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jorg van Loosdregt
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore
| | - Camillus Chua
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Alessandro Consolaro
- Second Pediatrics Division, University of Genoa and Gaslini Institute, Genova, Italy
| | - Marco Gattorno
- Second Pediatrics Division, University of Genoa and Gaslini Institute, Genova, Italy
| | - Alberto Martini
- Second Pediatrics Division, University of Genoa and Gaslini Institute, Genova, Italy
| | | | | | - Martin Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore.
| |
Collapse
|
127
|
Regulation and Roles of Autophagy at Synapses. Trends Cell Biol 2018; 28:646-661. [DOI: 10.1016/j.tcb.2018.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
|
128
|
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis. EMBO J 2018; 37:embj.201898960. [PMID: 30065071 DOI: 10.15252/embj.201898960] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Roeland Vanhauwaert
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
129
|
Lu Y, Wang Y, Xu H, Shi C, Jin F, Li W. Profilin 1 induces drug resistance through Beclin1 complex-mediated autophagy in multiple myeloma. Cancer Sci 2018; 109:2706-2716. [PMID: 29945297 PMCID: PMC6125445 DOI: 10.1111/cas.13711] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023] Open
Abstract
Autophagy plays an important role in multiple myeloma (MM) for homeostasis, survival and drug resistance, but which genes participate in this process is unclear. We identified several cytoskeleton genes upregulated in MM patients by gene expression profiling (GEP) datasets; in particular, patients with high profilin 1 (PFN1) expression had poor prognosis in MM. In vitro, overexpressed PFN1 promotes proliferation and bortezomib (BTZ) resistance in MM cells. Further study indicated overexpression of PFN1 significantly promoted the process of autophagy and induced BTZ resistance in MM. Otherwise, knockdown of PFN1 blocked autophagy and sensitized MM to BTZ. Co‐immunoprecipitation in MM cells indicated that PFN1 could bind Beclin1 complex and promote the initiation of autophagy. Inhibition of autophagy by blocking the formation of Beclin1 complex could reverse the phenotype of BTZ resistance in MM. Our findings suggested that PFN1 could promote autophagy through taking part in Beclin1 complex and contribute to BTZ resistance, which may become a novel molecular target in the therapy of MM.
Collapse
Affiliation(s)
- Yichen Lu
- Cancer Center, the First Bethune Hospital of Jilin University, Jilin, China
| | - Ya Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), National Key Clinical Specialty, Xiangya Hospital, Central South University, Hunan, China
| | - He Xu
- Cancer Center, the First Bethune Hospital of Jilin University, Jilin, China
| | - Chen Shi
- Cancer Center, the First Bethune Hospital of Jilin University, Jilin, China
| | - Fengyan Jin
- Cancer Center, the First Bethune Hospital of Jilin University, Jilin, China
| | - Wei Li
- Cancer Center, the First Bethune Hospital of Jilin University, Jilin, China
| |
Collapse
|
130
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
131
|
Abstract
Macroautophagy (herein referred to as autophagy) is a highly conserved stress response that engulfs damaged proteins, lipids, and/or organelles within double-membrane vesicles called autophagosomes for lysosomal degradation. Dysregulated autophagy is a hallmark of cancer; and thus, there is great interest in modulating autophagy for cancer therapy. Sphingolipids regulate each step of autophagosome biogenesis with roles for sphingolipid metabolites and enzymes spanning from the initial step of de novo ceramide synthesis to the sphingosine-1-phosphate lyase 1-mediated exit from the sphingolipid pathway. Notably, sphingolipid metabolism occurs at several of the organelles that contribute to autophagosome biogenesis to suggest that local changes in sphingolipids may regulate autophagy. As sphingolipid metabolism is frequently dysregulated in cancer, a molecular understanding of sphingolipids in stress-induced autophagy may provide insight into the mechanisms driving tumor development and progression. On the contrary, modulation of sphingolipid metabolites and/or enzymes can induce autophagy-dependent cell death for cancer therapy. This chapter will overview the major steps in mammalian autophagy, discuss the regulation of each step by sphingolipid metabolites, and describe the functions of sphingolipid-mediated autophagy in cancer. While our understanding of the signaling and biophysical properties of sphingolipids in autophagy remains in its infancy, the unique cross talk between the two pathways is an exciting area for further development, particularly in the context of cancer therapy.
Collapse
Affiliation(s)
- Megan M Young
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
132
|
Agop-Nersesian C, Niklaus L, Wacker R, Theo Heussler V. Host cell cytosolic immune response during Plasmodium liver stage development. FEMS Microbiol Rev 2018; 42:324-334. [PMID: 29529207 PMCID: PMC5995216 DOI: 10.1093/femsre/fuy007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Recent years have witnessed a great gain in knowledge regarding parasite-host cell interactions during Plasmodium liver stage development. It is now an accepted fact that a large percentage of sporozoites invading hepatocytes fail to form infectious merozoites. There appears to be a delicate balance between parasite survival and elimination and we now start to understand why this is so. Plasmodium liver stage parasites replicate within the parasitophorous vacuole (PV), formed during invasion by invagination of the host cell plasma membrane. The main interface between the parasite and hepatocyte is the parasitophorous vacuole membrane (PVM) that surrounds the PV. Recently, it was shown that autophagy marker proteins decorate the PVM of Plasmodium liver stage parasites and eliminate a proportion of them by an autophagy-like mechanism. Successfully developing Plasmodium berghei parasites are initially also labeled but in the course of development, they are able to control this host defense mechanism by shedding PVM material into the tubovesicular network (TVN), an extension of the PVM that releases vesicles into the host cell cytoplasm. Better understanding of the molecular events at the PVM/TVN during parasite elimination could be the basis of new antimalarial measures.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, MA 02118, USA
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Volker Theo Heussler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| |
Collapse
|
133
|
SGK1 Inhibits Autophagy in Murine Muscle Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4043726. [PMID: 29849891 PMCID: PMC5937381 DOI: 10.1155/2018/4043726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/20/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Abstract
Background/Aims As autophagy is linked to several pathological conditions, like cancer and neurodegenerative diseases, it is crucial to understand its regulatory signaling network. In this study, we investigated the role of the serum- and glucocorticoid-induced protein kinase 1 (SGK1) in the control of autophagy. Methods To measure autophagic activity in vivo, we quantified the abundance of the autophagy conjugates LC3-PE (phosphatidylethanolamine) and ATG12-ATG5 in tissue extracts of SGK1 wild-type (Sgk1+/+) and knockout (Sgk1-/-) mice that were either fed or starved for 24 h prior sacrifice. In vitro, we targeted SGK1 by RNAi using GFP-WIPI1 expressing U-2 OS cells to quantify the numbers of cells displaying newly formed autophagosomes. In parallel, these cells were also assessed with regard to LC3 and ULK1 by quantitative Western blotting. Results The abundance of both LC3-PE (LC3-II) and ATG12-ATG5 was significantly increased in red muscle tissues of SGK1 knockout mice. This was found in particular in fed conditions, suggesting that SGK1 may keep basal autophagy under control in red muscle in vivo. Under starved conditions, significant differences were observed in SGK1-deficient white muscle tissue and, under fed conditions, also in the liver. In vitro, we found that SGK1 silencing provoked a significant increase of cells displaying WIPI1-positive autophagosomes and autophagosomal LC3 (LC3-II). Moreover, autophagic flux assessments revealed that autophagic degradation significantly increased in the absence of SGK1, strongly suggesting that SGK1 inhibits both autophagosome formation and autophagic degradation in vitro. In addition, more ULK1 protein lacking the inhibitory, TORC1-specific phosphorylation at serine 758 was detected in the absence of SGK1. Conclusions Combined, our data strongly support the idea that SGK1 inhibits the process of autophagy. Mechanistically, our data suggest that SGK1 should act upstream of ULK1 in regulating autophagy, and we hypothesize that SGK1 contributes to the regulation of ULK1 gene expression.
Collapse
|
134
|
Nguyen HM, Liu S, Daher W, Tan F, Besteiro S. Characterisation of two Toxoplasma PROPPINs homologous to Atg18/WIPI suggests they have evolved distinct specialised functions. PLoS One 2018; 13:e0195921. [PMID: 29659619 PMCID: PMC5901921 DOI: 10.1371/journal.pone.0195921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/02/2018] [Indexed: 01/20/2023] Open
Abstract
Toxoplasma gondii is a parasitic protist possessing a limited set of proteins involved in the autophagy pathway, a self-degradative machinery for protein and organelle recycling. This distant eukaryote has even repurposed part of this machinery, centered on protein ATG8, for a non-degradative function related to the maintenance of the apicoplast, a parasite-specific organelle. However, some evidence also suggest Toxoplasma is able to generate autophagic vesicles upon stress, and that some autophagy-related proteins, such as ATG9, might be involved solely in the canonical autophagy function. Here, we have characterised TgPROP1 and TgPROP2, two Toxoplasma proteins containing WD-40 repeat that can bind lipids for their recruitment to vesicular structures upon stress. They belong to the PROPPIN family and are homologues to ATG18/WIPI, which are known to be important for the autophagic process. We conducted a functional analysis of these two Toxoplasma PROPPINs. One of them is dispensable for normal in vitro growth, although it may play a role for parasite survival in specific stress conditions or for parasite fitness in the host, through a canonical autophagy-related function. The other, however, seems important for parasite viability in normal growth conditions and could be primarily involved in a non-canonical function. These divergent roles for two proteins from the same family illustrate the functional versatility of the autophagy-related machinery in Toxoplasma.
Collapse
Affiliation(s)
- Hoa Mai Nguyen
- DIMNP, UMR5235 CNRS - Université de Montpellier, Montpellier, France
| | - Shuxian Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wassim Daher
- DIMNP, UMR5235 CNRS - Université de Montpellier, Montpellier, France
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (FT); (SB)
| | - Sébastien Besteiro
- DIMNP, UMR5235 CNRS - Université de Montpellier, Montpellier, France
- * E-mail: (FT); (SB)
| |
Collapse
|
135
|
Orsini M, Morceau F, Dicato M, Diederich M. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol 2018; 152:347-361. [PMID: 29656115 DOI: 10.1016/j.bcp.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Autophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers. Thus, the use of autophagy modulators to induce or inhibit autophagy emerges as a potential therapeutic approach for treating these diseases and could be particularly interesting for differentiation therapy of leukemia cells. This review presents therapeutic strategies and pharmacological agents in the context of hematological disorders. The pros and cons of autophagy modulators in therapy will also be discussed.
Collapse
Affiliation(s)
- Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
136
|
Fusco C, Mandriani B, Di Rienzo M, Micale L, Malerba N, Cocciadiferro D, Sjøttem E, Augello B, Squeo GM, Pellico MT, Jain A, Johansen T, Fimia GM, Merla G. TRIM50 regulates Beclin 1 proautophagic activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:908-919. [PMID: 29604308 DOI: 10.1016/j.bbamcr.2018.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation.
Collapse
Affiliation(s)
- Carmela Fusco
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Barbara Mandriani
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Martina Di Rienzo
- National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Dario Cocciadiferro
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy; Ph.D Program in Experimental and Regenerative Medicine, University of Foggia, Italy
| | - Eva Sjøttem
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Gabriella Maria Squeo
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Maria Teresa Pellico
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce 73100, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
137
|
Enrique Gomez R, Joubès J, Valentin N, Batoko H, Satiat-Jeunemaître B, Bernard A. Lipids in membrane dynamics during autophagy in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1287-1299. [PMID: 29140451 DOI: 10.1093/jxb/erx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is a critical pathway for plant adaptation to stress. Macroautophagy relies on the biogenesis of a specialized membrane named the phagophore that maturates into a double membrane vesicle. Proteins and lipids act synergistically to promote membrane structure and functions, yet research on autophagy has mostly focused on autophagy-related proteins while knowledge of supporting lipids in the formation of autophagic membranes remains scarce. This review expands on studies in plants with examples from other organisms to present and discuss our current understanding of lipids in membrane dynamics associated with the autophagy pathway in plants.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | - Jérôme Joubès
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | - Nicolas Valentin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Henri Batoko
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, Louvain-la-Neuve, Belgium
| | - Béatrice Satiat-Jeunemaître
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Amélie Bernard
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| |
Collapse
|
138
|
Schänzer A, Rupp S, Gräf S, Zengeler D, Jux C, Akintürk H, Gulatz L, Mazhari N, Acker T, Van Coster R, Garvalov BK, Hahn A. Dysregulated autophagy in restrictive cardiomyopathy due to Pro209Leu mutation in BAG3. Mol Genet Metab 2018; 123:388-399. [PMID: 29338979 DOI: 10.1016/j.ymgme.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Myofibrillary myopathies (MFM) are hereditary myopathies histologically characterized by degeneration of myofibrils and aggregation of proteins in striated muscle. Cardiomyopathy is common in MFM but the pathophysiological mechanisms are not well understood. The BAG3-Pro209Leu mutation is associated with early onset MFM and severe restrictive cardiomyopathy (RCM), often necessitating heart transplantation during childhood. We report on a young male patient with a BAG3-Pro209Leu mutation who underwent heart transplantation at eight years of age. Detailed morphological analyses of the explanted heart tissue showed intracytoplasmic inclusions, aggregation of BAG3 and desmin, disintegration of myofibers and Z-disk alterations. The presence of undegraded autophagosomes, seen by electron microscopy, as well as increased levels of p62, LC3-I and WIPI1, detected by immunohistochemistry and western blot analyses, indicated a dysregulation of autophagy. Parkin and PINK1, proteins involved in mitophagy, were slightly increased whereas mitochondrial OXPHOS activities were not altered. These findings indicate that altered autophagy plays a role in the pathogenesis and rapid progression of RCM in MFM caused by the BAG3-Pro209Leu mutation, which could have implications for future therapeutic strategies.
Collapse
Affiliation(s)
- A Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - S Rupp
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - S Gräf
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - D Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, 72076 Tübingen, Germany
| | - C Jux
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - H Akintürk
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - L Gulatz
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - N Mazhari
- Pediatric Heart Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - T Acker
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - R Van Coster
- Division of Child Neurology, Department of Pediatrics, University Hospital Gent, 9000 Gent, Belgium
| | - B K Garvalov
- Institute of Neuropathology, Justus Liebig University Giessen, 35392 Giessen, Germany; Department of Microvascular Biology and Pathobiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - A Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
139
|
Mishra SK, Gao YG, Deng Y, Chalfant CE, Hinchcliffe EH, Brown RE. CPTP: A sphingolipid transfer protein that regulates autophagy and inflammasome activation. Autophagy 2018; 14:862-879. [PMID: 29164996 PMCID: PMC6070007 DOI: 10.1080/15548627.2017.1393129] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 02/01/2023] Open
Abstract
The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.
Collapse
Affiliation(s)
| | - Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Yibin Deng
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Charles E. Chalfant
- Department of Biochemistry & Molecular Biology, VCU Massey Cancer Center, VCU Institute of Molecular Medicine, VCU Johnson Center for Critical Care and Pulmonary Research, Virginia Commonwealth University, Richmond, VA USA
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA USA
| | | | | |
Collapse
|
140
|
Cui Y, He Y, Cao W, Gao J, Jiang L. The Multivesicular Body and Autophagosome Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1837. [PMID: 30619408 PMCID: PMC6299029 DOI: 10.3389/fpls.2018.01837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
In eukaryotic cells, the endomembrane system consists of multiple membrane-bound organelles, which play essential roles in the precise transportation of various cargo proteins. In plant cells, vacuoles are regarded as the terminus of catabolic pathways whereas the selection and transport of vacuolar cargoes are mainly mediated by two types of organelles, multivesicular bodies (MVBs) also termed prevacuolar compartments (PVCs) and autophagosomes. MVBs are single-membrane bound organelles with intraluminal vesicles and mediate the transport between the trans-Golgi network (TGN) and vacuoles, while autophagosomes are double-membrane bound organelles, which mediate cargo delivery to the vacuole for degradation and recycling during autophagy. Great progress has been achieved recently in identification and characterization of the conserved and plant-unique regulators involved in the MVB and autophagosome pathways. In this review, we present an update on the current knowledge of these key regulators and pay special attention to their conserved protein domains. In addition, we discuss the possible interplay between the MVB and autophagosome pathways in regulating vacuolar degradation in plants.
Collapse
Affiliation(s)
- Yong Cui
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Yong Cui, Liwen Jiang,
| | - Yilin He
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenhan Cao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Yong Cui, Liwen Jiang,
| |
Collapse
|
141
|
To be or not to be cell autonomous? Autophagy says both. Essays Biochem 2017; 61:649-661. [PMID: 29233875 DOI: 10.1042/ebc20170025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Although cells are a part of the whole organism, classical dogma emphasizes that individual cells function autonomously. Many physiological and pathological conditions, including cancer, and metabolic and neurodegenerative diseases, have been considered mechanistically as cell-autonomous pathologies, meaning those that damage or defect within a selective population of affected cells suffice to produce disease. It is becoming clear, however, that cells and cellular processes cannot be considered in isolation. Best known for shuttling cytoplasmic content to the lysosome for degradation and repurposing of recycled building blocks such as amino acids, nucleotides, and fatty acids, autophagy serves a housekeeping function in every cell and plays key roles in cell development, immunity, tissue remodeling, and homeostasis with the surrounding environment and the distant organs. In this review, we underscore the importance of taking interactions with the microenvironment into consideration while addressing the cell autonomous and non-autonomous functions of autophagy between cells of the same and different types and in physiological and pathophysiological situations.
Collapse
|
142
|
Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy 2017; 14:3-21. [PMID: 28980859 PMCID: PMC5846505 DOI: 10.1080/15548627.2017.1384887] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases. Recently, ion channels, mediating ion fluxes across cellular membranes, have emerged as important regulators of both basal and induced autophagy. However, the mechanisms by which specific ion channels regulate autophagy are still poorly understood, thus underscoring the need for further research in this field. Here we discuss the involvement of major types of ion channels in autophagy regulation.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Daniel J. Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology; University of Michigan, Ann Arbor, MI, USA
| | - Natalia Prevarskaya
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
143
|
Gopaldass N, Fauvet B, Lashuel H, Roux A, Mayer A. Membrane scission driven by the PROPPIN Atg18. EMBO J 2017; 36:3274-3291. [PMID: 29030482 DOI: 10.15252/embj.201796859] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Sorting, transport, and autophagic degradation of proteins in endosomes and lysosomes, as well as the division of these organelles, depend on scission of membrane-bound tubulo-vesicular carriers. How scission occurs is poorly understood, but family proteins bind these membranes. Here, we show that the yeast PROPPIN Atg18 carries membrane scission activity. Purified Atg18 drives tubulation and scission of giant unilamellar vesicles. Upon membrane contact, Atg18 folds its unstructured CD loop into an amphipathic α-helix that inserts into the bilayer. This allows the protein to engage its two lipid binding sites for PI3P and PI(3,5)P2 PI(3,5)P2 induces Atg18 oligomerization, which should concentrate lipid-inserted α-helices in the outer membrane leaflet and drive membrane tubulation and scission. The scission activity of Atg18 is compatible with its known roles in endo-lysosomal protein trafficking, autophagosome biogenesis, and vacuole fission. Key features required for membrane tubulation and scission by Atg18 are shared by other PROPPINs, suggesting that membrane scission may be a generic function of this protein family.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hilal Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Andreas Mayer
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
144
|
Archna A, Scrima A. Identification, biochemical characterization and crystallization of the central region of human ATG16L1. Acta Crystallogr F Struct Biol Commun 2017; 73:560-567. [PMID: 28994404 PMCID: PMC5633923 DOI: 10.1107/s2053230x17013280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
ATG16L1 plays a major role in autophagy. It acts as a molecular scaffold which mediates protein-protein interactions essential for autophagosome formation. The ATG12~ATG5-ATG16L1 complex is one of the key complexes involved in autophagosome formation. Human ATG16L1 comprises 607 amino acids with three functional domains named ATG5BD, CCD and WD40, where the C-terminal WD40 domain represents approximately 50% of the full-length protein. Previously, structures of the C-terminal WD40 domain of human ATG16L1 as well as of human ATG12~ATG5 in complex with the ATG5BD of ATG16L1 have been reported. However, apart from the ATG5BD, no structural information for the N-terminal half, including the CCD, of human ATG16L1 is available. In this study, the authors aimed to structurally characterize the N-terminal half of ATG16L1. ATG16L111-307 in complex with ATG5 has been purified and crystallized in two crystal forms. However, both crystal structures revealed degradation of ATG16L1, resulting in crystals comprising only full-length ATG5 and the ATG5BD of ATG16L1. The structures of ATG5-ATG5BD in two novel crystal forms are presented, further supporting the previously observed dimerization of ATG5-ATG16L1. The reported degradation points towards a high instability at the linker region between the ATG5BD and the CCD in ATG16L1. Based on this observation and further biochemical analysis of ATG16L1, a stable 236-amino-acid subfragment comprising residues 72-307 of the N-terminal half of ATG16L1, covering the residual, so far structurally uncharacterized region of human ATG16L1, was identified. Here, the identification, purification, biochemical characterization and crystallization of the proteolytically stable ATG16L172-307 subfragment are reported.
Collapse
Affiliation(s)
- Archna Archna
- Structural Biology of Autophagy Group, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Andrea Scrima
- Structural Biology of Autophagy Group, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
145
|
Melani M, Valko A, Romero NM, Aguilera MO, Acevedo JM, Bhujabal Z, Perez-Perri J, de la Riva-Carrasco RV, Katz MJ, Sorianello E, D'Alessio C, Juhász G, Johansen T, Colombo MI, Wappner P. Zonda is a novel early component of the autophagy pathway in Drosophila. Mol Biol Cell 2017; 28:3070-3081. [PMID: 28904211 PMCID: PMC5662263 DOI: 10.1091/mbc.e16-11-0767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022] Open
Abstract
Zonda, a novel Drosophila immunophilin, is an early component of the autophagy machinery necessary for Vps34-mediated phosphatidylinositol 3-phosphate deposition prior to omegasome formation. We propose that Zonda is critically required for the initiation of autophagosome biogenesis. Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum–associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.
Collapse
Affiliation(s)
- Mariana Melani
- Fundación Instituto Leloir, Buenos Aires 1405, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Ayelén Valko
- Fundación Instituto Leloir, Buenos Aires 1405, Argentina
| | - Nuria M Romero
- Fundación Instituto Leloir, Buenos Aires 1405, Argentina
| | - Milton O Aguilera
- Laboratorio de Biología Celular y Molecular-Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | | | | | | | - Eleonora Sorianello
- Fundación Instituto Leloir, Buenos Aires 1405, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Fundación Instituto Leloir, Buenos Aires 1405, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Gabor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, 1053 Budapest, Hungary.,Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - María I Colombo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Biología Celular y Molecular-Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Pablo Wappner
- Fundación Instituto Leloir, Buenos Aires 1405, Argentina .,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| |
Collapse
|
146
|
Liu Y, Hu M, Luo D, Yue M, Wang S, Chen X, Zhou Y, Wang Y, Cai Y, Hu X, Ke Y, Yang Z, Hu H. Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase. Arterioscler Thromb Vasc Biol 2017; 37:2075-2086. [PMID: 28882875 DOI: 10.1161/atvbaha.117.309751] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Class III phosphoinositide 3-kinase, also known as VPS34 (vacuolar protein sorting 34), is a highly conserved enzyme regulating important cellular functions such as NADPH oxidase (NOX) assembly, membrane trafficking, and autophagy. Although VPS34 is expressed in platelets, its involvement in platelet activation remains unclear. Herein, we investigated the role of VPS34 in platelet activation and thrombus formation using VPS34 knockout mice. APPROACH AND RESULTS Platelet-specific VPS34-deficient mice were generated and characterized. VPS34 deficiency in platelets did not influence tail bleeding time. In a ferric chloride-induced mesenteric arteriolar thrombosis model, VPS34-/- mice exhibited a prolonged vessel occlusion time compared with wild-type mice (42.05±4.09 versus 18.30±2.47 minutes). In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on collagen under arterial shear was significantly reduced for VPS34-/- platelets. VPS34-/- platelets displayed an impaired aggregation and dense granule secretion in response to low doses of collagen or thrombin. VPS34 deficiency delayed clot retraction but did not influence platelet spreading on fibrinogen. We also demonstrated that VPS34 deficiency altered the basal level of autophagy in resting platelets and hampered NOX assembly and mTOR (mammalian target of rapamycin) signaling during platelet activation. Importantly, we identified the NOX-dependent reactive oxygen species generation as the major downstream effector of VPS34, which in turn can mediate platelet activation. In addition, by using a specific inhibitor 3-methyladenine, VPS34 was found to operate through a similar NOX-dependent mechanism to promote human platelet activation. CONCLUSIONS Platelet VPS34 is critical for thrombosis but dispensable for hemostasis. VPS34 regulates platelet activation by influencing NOX assembly.
Collapse
Affiliation(s)
- Yangyang Liu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Mengjiao Hu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Dongjiao Luo
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Ming Yue
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Shuai Wang
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Xiaoyan Chen
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yangfan Zhou
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yi Wang
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yanchun Cai
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Xiaolan Hu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Zhongzhou Yang
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.).
| | - Hu Hu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.).
| |
Collapse
|
147
|
Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR. LC3-Associated Phagocytosis and Inflammation. J Mol Biol 2017; 429:3561-3576. [PMID: 28847720 DOI: 10.1016/j.jmb.2017.08.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
LC3-associated phagocytosis (LAP) is a novel form of non-canonical autophagy where LC3 (microtubule-associated protein 1A/1B-light chain 3) is conjugated to phagosome membranes using a portion of the canonical autophagy machinery. The impact of LAP to immune regulation is best characterized in professional phagocytes, in particular macrophages, where LAP has instrumental roles in the clearance of extracellular particles including apoptotic cells and pathogens. Binding of dead cells via receptors present on the macrophage surface results in the translocation of the autophagy machinery to the phagosome and ultimately LC3 conjugation. These events promote a rapid form of phagocytosis that produces an "immunologically silent" clearance of the apoptotic cells. Consequences of LAP deficiency include a decreased capacity to clear dying cells and the establishment of a lupus-like autoimmune disease in mice. The ability of LAP to attenuate autoimmunity likely occurs through the dampening of pro-inflammatory signals upon engulfment of dying cells and prevention of autoantigen presentation to other immune cells. However, it remains unclear how LAP shapes both the activation and outcome of the immune response at the molecular level. Herein, we provide a detailed review of LAP and its known roles in the immune response and provide further speculation on the putative mechanisms by which LAP may regulate immune function, perhaps through the metabolic reprogramming and polarization of macrophages.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Larissa D Cunha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Joelle Magne
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
148
|
Nascimbeni AC, Codogno P, Morel E. Local detection of PtdIns3P at autophagosome biogenesis membrane platforms. Autophagy 2017; 13:1602-1612. [PMID: 28813193 DOI: 10.1080/15548627.2017.1341465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphatidylinositol 3-phosphate (PtdIns3P) is a key player of membrane trafficking regulation, mostly synthesized by the PIK3C3 lipid kinase. The presence of PtdIns3P on endosomes has been demonstrated; however, the role and dynamics of the pool of PtdIns3P dedicated to macroautophagy/autophagy remains elusive. Here we addressed this question by studying the mobilization of PtdIns3P in time and space during autophagosome biogenesis. We compared different dyes known to specifically detect PtdIns3P by fluorescence microscopy analysis, based on PtdIns3P-binding FYVE and PX domains, and show that these transfected dyes induce defects in endosomal dynamics as well as artificial and sustained autophagosome formation. In contrast, indirect use of recombinant FYVE enabled us to track and discriminate endosomal and autophagosomal pools of PtdIns3P. We used this method to analyze localization and dynamics of PtdIns3P subdomains on the endoplasmic reticulum, at sites of pre-autophagosome associated protein recruitment such as the PtdIns3P-binding ZFYVE1/DFCP1 and WIPI2 autophagy regulators. This approach thus revealed the presence of a specific pool of PtdIns3P at the site where autophagosome assembly is initiated.
Collapse
Affiliation(s)
- Anna Chiara Nascimbeni
- a Cell Biology Department , Institut Necker-Enfants Malades (INEM) , INSERM U1151-CNRS UMR 8253, Paris , France.,b Université Paris Descartes-Sorbonne Paris Cité , Paris , France
| | - Patrice Codogno
- a Cell Biology Department , Institut Necker-Enfants Malades (INEM) , INSERM U1151-CNRS UMR 8253, Paris , France.,b Université Paris Descartes-Sorbonne Paris Cité , Paris , France
| | - Etienne Morel
- a Cell Biology Department , Institut Necker-Enfants Malades (INEM) , INSERM U1151-CNRS UMR 8253, Paris , France.,b Université Paris Descartes-Sorbonne Paris Cité , Paris , France
| |
Collapse
|
149
|
Kim M, Ho A, Lee JH. Autophagy and Human Neurodegenerative Diseases-A Fly's Perspective. Int J Mol Sci 2017; 18:ijms18071596. [PMID: 28737703 PMCID: PMC5536083 DOI: 10.3390/ijms18071596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases in humans are frequently associated with prominent accumulation of toxic protein inclusions and defective organelles. Autophagy is a process of bulk lysosomal degradation that eliminates these harmful substances and maintains the subcellular environmental quality. In support of autophagy's importance in neuronal homeostasis, several genetic mutations that interfere with autophagic processes were found to be associated with familial neurodegenerative disorders. In addition, genetic mutations in autophagy-regulating genes provoked neurodegenerative phenotypes in animal models. The Drosophila model significantly contributed to these recent developments, which led to the theory that autophagy dysregulation is one of the major underlying causes of human neurodegenerative disorders. In the current review, we discuss how studies using Drosophila enhanced our understanding of the relationship between autophagy and neurodegenerative processes.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Allison Ho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
150
|
Protein Degradation Systems as Antimalarial Therapeutic Targets. Trends Parasitol 2017; 33:731-743. [PMID: 28688800 DOI: 10.1016/j.pt.2017.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Artemisinin (ART)-based combination therapies are the most efficacious treatment of uncomplicated Plasmodium falciparum malaria. Alarmingly, P. falciparum strains have acquired resistance to ART across much of Southeast Asia. ART creates widespread protein and lipid damage inside intraerythrocytic parasites, necessitating macromolecule degradation. The proteasome is the main engine of Plasmodium protein degradation. Indeed, proteasome inhibition and ART have shown synergy in ART-resistant parasites. Moreover, ubiquitin modification is associated with altered parasite susceptibility to multiple antimalarials. Targeting the ubiquitin-proteasome system (UPS), therefore, is an attractive avenue to combat drug resistance. Here, we review recent advances leading to specific targeting of the Plasmodium proteasome. We also highlight the potential for targeting other nonproteasomal protein degradation systems as an additional strategy to disrupt protein homeostasis.
Collapse
|