101
|
Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 2013; 122:253-61. [PMID: 23652806 DOI: 10.1182/blood-2013-03-492801] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Platelets play a crucial role in the maintenance of hemostasis, as well as in thrombosis. Upon activation, platelets release small membrane-bound microparticles (MPs) containing bioactive proteins and genetic materials from their parental cells that may be transferred to, and exert potent biological effects in, recipient cells of the circulatory system. Platelets have been shown to contain an abundant and diverse array of microRNAs, and platelet-derived MPs are the most abundant microvesicles in the circulation. Here we demonstrate that human platelets activated with thrombin preferentially release their miR-223 content in MPs. These MPs can be internalized by human umbilical vein endothelial cells (HUVEC), leading to the accumulation of platelet-derived miR-223. Platelet MPs contain functional Argonaute 2 (Ago2)•miR-223 complexes that are capable of regulating expression of a reporter gene in recipient HUVEC. Moreover, we demonstrate a role for platelet MP-derived miR-223 in the regulation of 2 endogenous endothelial genes, both at the messenger RNA and protein levels. Our results support a scenario by which platelet MPs may act as intercellular carriers of functional Ago2•microRNA complexes that may exert heterotypic regulation of gene expression in endothelial cells, and possibly other recipient cells of the circulatory system.
Collapse
|
102
|
A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 2013; 33:2339-52. [PMID: 23547260 DOI: 10.1128/mcb.01714-12] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
hsa-miR-33a and hsa-miR-33b, intronic microRNAs (miRNAs) located within the sterol regulatory element-binding protein 2 and 1 genes (Srebp-2 and -1), respectively, have recently been shown to regulate lipid homeostasis in concert with their host genes. Although the functional role of miR-33a and -b has been highly investigated, the role of their passenger strands, miR-33a* and -b*, remains unclear. Here, we demonstrate that miR-33a* and -b* accumulate to steady-state levels in human, mouse, and nonhuman primate tissues and share a similar lipid metabolism target gene network as their sister strands. Analogous to miR-33, miR-33* represses key enzymes involved in cholesterol efflux (ABCA1 and NPC1), fatty acid metabolism (CROT and CPT1a), and insulin signaling (IRS2). Moreover, miR-33* also targets key transcriptional regulators of lipid metabolism, including SRC1, SRC3, NFYC, and RIP140. Importantly, inhibition of either miR-33 or miR-33* rescues target gene expression in cells overexpressing pre-miR-33. Consistent with this, overexpression of miR-33* reduces fatty acid oxidation in human hepatic cells. Altogether, these data support a regulatory role for the miRNA* species and suggest that miR-33 regulates lipid metabolism through both arms of the miR-33/miR-33* duplex.
Collapse
|
103
|
Chan YT, Lin YC, Lin RJ, Kuo HH, Thang WC, Chiu KP, Yu AL. Concordant and discordant regulation of target genes by miR-31 and its isoforms. PLoS One 2013; 8:e58169. [PMID: 23472152 PMCID: PMC3589381 DOI: 10.1371/journal.pone.0058169] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/30/2013] [Indexed: 01/19/2023] Open
Abstract
It has been shown that imprecise cleavage of a primary or precursor RNA by Drosha or Dicer, respectively, may yield a group of microRNA (miRNA) variants designated as "isomiR". Variations in the relative abundance of isoforms for a given miRNA among different species and different cell types beg the question whether these isomiRs might regulate target genes differentially. We compared the capacity of three miR-31 isoforms (miR-31-H, miR-31-P, and miR-31-M), which differ only slightly in their 5'- and/or 3'-end sequences, to regulate several known targets and a predicted target, Dicer. Notably, we found isomiR-31s displayed concordant and discordant regulation of 6 known target genes. Furthermore, we validated a predicted target gene, Dicer, to be a novel target of miR-31 but only miR-31-P could directly repress Dicer expression in both MCF-7 breast cancer cells and A549 lung cancer cells, resulting in their enhanced sensitivity to cisplatin, a known attribute of Dicer knockdown. This was further supported by reporter assay using full length 3'-untranslated region (UTR) of Dicer. Our findings not only revealed Dicer to be a direct target of miR-31, but also demonstrated that isomiRs displayed similar and disparate regulation of target genes in cell-based systems. Coupled with the variations in the distribution of isomiRs among different cells or conditions, our findings support the possibility of fine-tuning gene expression by miRNAs.
Collapse
Affiliation(s)
- Yu-Tzu Chan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Chin Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ruey-Jen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Huan-Hsien Kuo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Alice L. Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics/Hematology-Oncology, University of California San Diego Medical Center, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Wei Y, Schober A, Weber C. Pathogenic arterial remodeling: the good and bad of microRNAs. Am J Physiol Heart Circ Physiol 2013; 304:H1050-9. [PMID: 23396454 DOI: 10.1152/ajpheart.00267.2012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A number of cardiovascular diseases, such as restenosis, aneurysm, and atherosclerosis, lead to vascular remodeling associated with complex adaptive reactions of different cell populations. These reactions include growth of smooth muscle cells, proliferation of endothelial cells, and the inflammatory response of macrophages. MicroRNAs (miRNAs), a class of short RNAs, play key roles in various biological processes and in the development of human disease by post-transcriptional regulation of gene expression. Here, we review the molecular mechanisms of a subset of miRNAs involved in vascular remodeling, including miR-143/145, miR-221/222, miR-126, miR-21, and miR-155. Some of these miRNAs, such as miR-143/145 and miR-126, have been shown to be protective during vascular remodeling, whereas others, such as miR-21, may promote the cellular response that leads to neointima formation. The increasing knowledge regarding the roles of miRNAs in vascular remodeling opens novel avenues for the treatment of various cardiovascular diseases. However, more in vivo studies on the functional roles of these miRNAs are required in the future.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Munich, Germany
| | | | | |
Collapse
|
105
|
Huang TC, Pinto SM, Pandey A. Proteomics for understanding miRNA biology. Proteomics 2012; 13:558-67. [PMID: 23125164 DOI: 10.1002/pmic.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology.
Collapse
Affiliation(s)
- Tai-Chung Huang
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
106
|
Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 2012; 19:102. [PMID: 23241400 PMCID: PMC3541338 DOI: 10.1186/1423-0127-19-102] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is an important microenvironmental factor that induces cancer metastasis. Hypoxia/hypoxia-inducible factor-1α (HIF-1α) regulates many important steps of the metastatic processes, especially epithelial-mesenchymal transition (EMT) that is one of the crucial mechanisms to cause early stage of tumor metastasis. To have a better understanding of the mechanism of hypoxia-regulated metastasis, various hypoxia/HIF-1α-regulated target genes are categorized into different classes including transcription factors, histone modifiers, enzymes, receptors, kinases, small GTPases, transporters, adhesion molecules, surface molecules, membrane proteins, and microRNAs. Different roles of these target genes are described with regards to their relationship to hypoxia-induced metastasis. We hope that this review will provide a framework for further exploration of hypoxia/HIF-1α-regulated target genes and a comprehensive view of the metastatic picture induced by hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, No.155, Li-Nong St., Sec.2, Peitou, Taipei 112, Taiwan
| | - Kou-Juey Wu
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, No.155, Li-Nong St., Sec.2, Peitou, Taipei 112, Taiwan
- Head and Neck Cancer Research Program, Cancer Research Center, National Yang-Ming University, No.155, Li-Nong St., Sec.2, Peitou, Taipei 112, Taiwan
- Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
107
|
Sen CK, Roy S. OxymiRs in cutaneous development, wound repair and regeneration. Semin Cell Dev Biol 2012; 23:971-80. [PMID: 23063665 PMCID: PMC3762568 DOI: 10.1016/j.semcdb.2012.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/27/2012] [Indexed: 01/08/2023]
Abstract
The state of tissue oxygenation is widely recognized as a major microenvironmental cue that is known to regulate the expression of coding genes. Recent works have extended that knowledge to demonstrate that the state of tissue oxygenation may potently regulate the expression of microRNAs (miRs). Collectively, such miRs that are implicated in defining biological outcomes in response to a change in the state of tissue oxygenation may be referred to as oxymiRs. Broadly, oxymiRs may be categorized into three groups: (A) the existence (expression and/or turnover) of which is directly influenced by changes in the state of tissue oxygenation; (B) the existence of which is indirectly (e.g. oxygen-sensitive proteins, metabolites, pH, etc.) influenced by changes in the state of tissue oxygenation; and (C) those that modify biological outcomes to changes in the state of tissue oxygenation by targeting oxygen sensing pathways. This work represents the first review of how oxymiRs may regulate development, repair and regeneration. Currently known oxymiRs may affect the functioning of a large number of coding genes which have hitherto fore never been linked to oxygen sensing. Many of such target genes have been validated and that number is steadily growing. Taken together, our understanding of oxymiRs has vastly expanded the implications of changes in the state of tissue oxygenation. This emerging paradigm has major implications in untangling the complexities underlying diseases associated with ischemia and related hypoxic insult such as chronic wounds.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies, Comprehensive Wound Center and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
108
|
Cheng WC, Chung IF, Huang TS, Chang ST, Sun HJ, Tsai CF, Liang ML, Wong TT, Wang HW. YM500: a small RNA sequencing (smRNA-seq) database for microRNA research. Nucleic Acids Res 2012. [PMID: 23203880 PMCID: PMC3531161 DOI: 10.1093/nar/gks1238] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs ∼22 nt in length that are involved in the regulation of a variety of physiological and pathological processes. Advances in high-throughput small RNA sequencing (smRNA-seq), one of the next-generation sequencing applications, have reshaped the miRNA research landscape. In this study, we established an integrative database, the YM500 (http://ngs.ym.edu.tw/ym500/), containing analysis pipelines and analysis results for 609 human and mice smRNA-seq results, including public data from the Gene Expression Omnibus (GEO) and some private sources. YM500 collects analysis results for miRNA quantification, for isomiR identification (incl. RNA editing), for arm switching discovery, and, more importantly, for novel miRNA predictions. Wetlab validation on >100 miRNAs confirmed high correlation between miRNA profiling and RT-qPCR results (R = 0.84). This database allows researchers to search these four different types of analysis results via our interactive web interface. YM500 allows researchers to define the criteria of isomiRs, and also integrates the information of dbSNP to help researchers distinguish isomiRs from SNPs. A user-friendly interface is provided to integrate miRNA-related information and existing evidence from hundreds of sequencing datasets. The identified novel miRNAs and isomiRs hold the potential for both basic research and biotech applications.
Collapse
Affiliation(s)
- Wei-Chung Cheng
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Cicchillitti L, Di Stefano V, Isaia E, Crimaldi L, Fasanaro P, Ambrosino V, Antonini A, Capogrossi MC, Gaetano C, Piaggio G, Martelli F. Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts. J Biol Chem 2012; 287:44761-71. [PMID: 23148210 DOI: 10.1074/jbc.m112.421255] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-210 (miR-210) induction is a virtually constant feature of the hypoxic response in both normal and transformed cells, regulating several key aspects of cardiovascular diseases and cancer. We found that miR-210 was induced in normoxic myoblasts upon myogenic differentiation both in vitro and in vivo. miR-210 transcription was activated in an hypoxia-inducible factor 1-α (Hif1a)-dependent manner, and chromatin immunoprecipitation experiments show that Hif1a bound to the miR-210 promoter only in differentiated myotubes. Accordingly, luciferase reporter assays demonstrated the functional relevance of the Hif1a binding site for miR-210 promoter activation in differentiating myoblasts. To investigate the functional relevance of increased miR-210 levels in differentiated myofibers, we blocked miR-210 with complementary locked nucleic acid oligonucleotides (anti-miR-210). We found that C2C12 myoblast cell line differentiation was largely unaffected by anti-miR-210. Likewise, miR-210 inhibition did not affect skeletal muscle regeneration following cardiotoxin damage. However, we found that miR-210 blockade greatly increased myotube sensitivity to oxidative stress and mitochondrial dysfunction. In conclusion, miR-210 is induced in normoxic myofibers, playing a cytoprotective role.
Collapse
|
110
|
Antiangiogenic role of miR-361 in human umbilical vein endothelial cells: functional interaction with the peptide somatostatin. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:15-27. [PMID: 23128854 DOI: 10.1007/s00210-012-0808-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/22/2012] [Indexed: 12/15/2022]
Abstract
Somatostatin (SRIF) acts as antiangiogenic factor, but its role in the regulation of microRNAs (miRNAs) targeting proangiogenic factors is unknown. We used human umbilical vein endothelial cells (HUVEC) to investigate whether (1) miRNAs targeting proangiogenic factors are influenced by hypoxia, (2) their expression is regulated by SRIF, and (3) SRIF-regulated miRNAs affect HUVEC angiogenic phenotype. The involvement of signal transducer and activator of transcription (STAT) 3 and hypoxia inducible factor (HIF)-1 in miRNA effects was studied. Quantitative real-time PCR, Western blot, cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA) were used. Using specific algorithms, three miRNAs (miR-17, miR-18b, and miR-361) were predicted to bind angiogenesis-associated factors including STAT3, HIF-1α, and vascular endothelial growth factor (VEGF). Hypoxia downregulates miR-17 and miR-361 without affecting miR-18b. SRIF restored decreased levels of miR-361 acting at the SRIF receptor sst(1). Downregulated miR-361 was also restored by HIF-1α inhibition with YC-1. Combined application of SRIF did not influence YC-1-induced miR-361 downregulation, suggesting that YC-1 and SRIF modulate miR-361 through a common mechanism involving HIF-1α. This possibility was confirmed by the result that HIF-1α activation in normoxia-downregulated miR-361 and that this downregulation was prevented by SRIF. miR-361 overexpression reduced hypoxia-induced cell proliferation and VEGF release indicating miR-361 involvement in the acquisition of an angiogenic phenotype by HUVEC. miR-361 effects on VEGF were enhanced by the coadministration of SRIF. Our results suggest that (1) SRIF regulates miR-361 expression through a control on HIF-1, (2) miR-361 affects HUVEC angiogenic phenotype, and (3) SRIF and miR-361 act cooperatively in limiting hypoxia-induced VEGF release.
Collapse
|
111
|
MicroRNA profiling methods applied to recent studies of fetal mouse submandibular gland development. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
112
|
MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neurooncol 2012; 111:71-81. [PMID: 23104517 DOI: 10.1007/s11060-012-0992-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/10/2012] [Indexed: 01/08/2023]
Abstract
High-grade gliomas are some of the most lethal forms of human cancer, and new clinical biomarkers and therapeutic targets are highly needed. MicroRNAs (miRNAs), a group of short noncoding RNAs, hold great potential as new biomarkers and targets as they are commonly deregulated in a variety of diseases including gliomas. MicroRNA-21 (miR-21) is the most consistently overexpressed miRNA in several cancers including gliomas and is therefore very promising as a useful clinical biomarker and therapeutic target. To better understand the role of miR-21 in gliomas, paraffin-embedded glioma tissue samples from 193 patients with grade I, II, III, and IV tumors were analyzed by in situ hybridization (ISH) using LNA-DNA chimeric probes. We found miR-21 expression in tumor cells and tumor-associated blood vessels, whereas no expression was seen in adjacent normal brain parenchyma. Using advanced image analysis we obtained quantitative estimates reflecting the miR-21 expression levels in each of these compartments. The miR-21 levels correlated significantly with grade [p = 0.027, r (s) = 0.161, 95 % confidence interval (CI), 0.015-0.301] with the highest levels measured in glioblastomas. Only tumor cell miR-21 was associated with poor prognosis when adjusting for known clinical parameters (age, grade, and sex) in a multivariate analysis [p = 0.049, hazard ratio (HR) = 1.545, 95 % CI, 1.002-2.381]. In conclusion, we have shown that miR-21 is located in both tumor cells and tumor blood vessels and that its level in the tumor cell compartment holds unfavorable prognostic value in gliomas.
Collapse
|
113
|
De Lella Ezcurra AL, Bertolin AP, Melani M, Wappner P. Robustness of the hypoxic response: Another job for miRNAs? Dev Dyn 2012; 241:1842-8. [DOI: 10.1002/dvdy.23865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
|
114
|
Fasanaro P, Romani S, Voellenkle C, Maimone B, Capogrossi MC, Martelli F. ROD1 is a seedless target gene of hypoxia-induced miR-210. PLoS One 2012; 7:e44651. [PMID: 23024754 PMCID: PMC3443109 DOI: 10.1371/journal.pone.0044651] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/06/2012] [Indexed: 12/03/2022] Open
Abstract
Most metazoan microRNA (miRNA) target sites have perfect pairing to the “seed” sequence, a highly conserved region centering on miRNA nucleotides 2–7. Thus, complementarity to this region is a necessary requirement for target prediction algorithms. However, also non-canonical miRNA binding can confer target regulation. Here, we identified a seedless target of miR-210, a master miRNA of the hypoxic response. We analyzed 20 genes that were inversely correlated to miR-210 expression and did not display any complementarity with miR-210 seed sequence. We validated ROD1 (Regulator of Differentiation 1, also named PTBP3, Polypyrimidine Tract Binding protein 3) as a miR-210 seedless transcript enriched in miR-210-containing RNA-induced silencing complexes. ROD1 was not indirectly targeted by a miR-210-induced miRNA. Conversely, we identified a “centered” miR-210 binding site in ROD1 involving 10 consecutive bases in the central portion of miR-210. Reporter assays showed that miR-210 inhibited ROD1 by the direct binding to this sequence, demonstrating that ROD1 is a bona fide seedless target of miR-210. As expected, both ROD1 mRNA and protein were down-modulated upon hypoxia in a miR-210 dependent manner. ROD1 targeting by miR-210 was biologically significant: the rescue of ROD1 inhibition significantly increased hypoxia-induced cell death. These data highlight the importance of ROD1 regulation by miR-210 for cell homeostasis.
Collapse
Affiliation(s)
| | - Sveva Romani
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | | | |
Collapse
|
115
|
Abstract
The term angiogenesis describes the growth of endothelial sprouts from preexisting postcapillary venules. More recently, this term has been used to generally indicate the growth and remodeling process of the primitive vascular network into a complex network during development. In adulthood, angiogenesis is activated as a reparative process during wound healing and following ischemia, and it plays a key role in tumor growth and metastasis as well as in inflammatory diseases and diabetic retinopathy. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that negatively control gene expression of target mRNAs. In this paper, we aim at describing the role of miRNAs in postischemic angiogenesis. First, we will describe the regulation and the expression of miRNAs in endothelial cells. Then, we will analyze the role of miRNAs in postischemic vascular repair. Finally, we will discuss the role of circulating miRNAs as potential biomarkers in ischemic diseases.
Collapse
|