101
|
Micheal S, Hogewind BF, Khan MI, Siddiqui SN, Zafar SN, Akhtar F, Qamar R, Hoyng CB, den Hollander AI. Variants in the PRPF8 Gene are Associated with Glaucoma. Mol Neurobiol 2017; 55:4504-4510. [PMID: 28707069 PMCID: PMC5884903 DOI: 10.1007/s12035-017-0673-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/25/2017] [Indexed: 01/05/2023]
Abstract
Glaucoma is the cause of irreversible blindness worldwide. Mutations in six genes have been associated with juvenile- and adult-onset familial primary open angle glaucoma (POAG) prior to this report but they explain only a small proportion of the genetic load. The aim of the study is to identify the novel genetic cause of the POAG in the families with adult-onset glaucoma. Whole exome sequencing (WES) was performed on DNA of two affected individuals, and predicted pathogenic variants were evaluated for segregation in four affected and three unaffected Dutch family members by Sanger sequencing. We identified a pathogenic variant (p.Val956Gly) in the PRPF8 gene, which segregates with the disease in Dutch family. Targeted Sanger sequencing of PRPF8 in a panel of 40 POAG families (18 Pakistani and 22 Dutch) revealed two additional nonsynonymous variants (p.Pro13Leu and p.Met25Thr), which segregate with the disease in two other Pakistani families. Both variants were then analyzed in a case-control cohort consisting of Pakistani 320 POAG cases and 250 matched controls. The p.Pro13Leu and p.Met25Thr variants were identified in 14 and 20 cases, respectively, while they were not detected in controls (p values 0.0004 and 0.0001, respectively). Previously, PRPF8 mutations have been associated with autosomal dominant retinitis pigmentosa (RP). The PRPF8 variants associated with POAG are located at the N-terminus, while all RP-associated mutations cluster at the C-terminus, dictating a clear genotype-phenotype correlation.
Collapse
Affiliation(s)
- Shazia Micheal
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Clinical Genetics, Academic Medical Centre, Amsterdam, the Netherlands
| | - Barend F Hogewind
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sorath Noorani Siddiqui
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Saemah Nuzhat Zafar
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Farah Akhtar
- Department of Pediatric Ophthalmology, Al-Shifa Eye Trust Hospital, Jhelum Road, Rawalpindi, Pakistan
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Department of Biochemistry, Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
102
|
Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency. Proc Natl Acad Sci U S A 2017; 114:4739-4744. [PMID: 28416677 DOI: 10.1073/pnas.1701462114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is an essential step of eukaryotic gene expression that requires both high efficiency and high fidelity. Prp8 has long been considered the "master regulator" of the spliceosome, the molecular machine that executes pre-mRNA splicing. Cross-linking and structural studies place the RNaseH domain (RH) of Prp8 near the spliceosome's catalytic core and demonstrate that prp8 alleles that map to a 17-aa extension in RH stabilize it in one of two mutually exclusive structures, the biological relevance of which are unknown. We performed an extensive characterization of prp8 alleles that map to this extension and, using in vitro and in vivo reporter assays, show they fall into two functional classes associated with the two structures: those that promote error-prone/efficient splicing and those that promote hyperaccurate/inefficient splicing. Identification of global locations of endogenous splice-site activation by lariat sequencing confirms the fidelity effects seen in our reporter assays. Furthermore, we show that error-prone/efficient RH alleles suppress a prp2 mutant deficient at promoting the first catalytic step of splicing, whereas hyperaccurate/inefficient RH alleles exhibit synthetic sickness. Together our data indicate that prp8 RH alleles link splicing fidelity with catalytic efficiency by biasing the relative stabilities of distinct spliceosome conformations. We hypothesize that the spliceosome "toggles" between such error-prone/efficient and hyperaccurate/inefficient conformations during the splicing cycle to regulate splicing fidelity.
Collapse
|
103
|
Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig 2017; 4:6. [PMID: 28217708 PMCID: PMC5313292 DOI: 10.21037/sci.2017.01.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore 119228, Singapore
| |
Collapse
|
104
|
Mayerle M, Guthrie C. Genetics and biochemistry remain essential in the structural era of the spliceosome. Methods 2017; 125:3-9. [PMID: 28132896 DOI: 10.1016/j.ymeth.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
The spliceosome is not a single macromolecular machine. Rather it is a collection of dynamic heterogeneous subcomplexes that rapidly interconvert throughout the course of a typical splicing cycle. Because of this, for many years the only high resolution structures of the spliceosome available were of smaller, isolated protein or RNA components. Consequently much of our current understanding of the spliceosome derives from biochemical and genetic techniques. Now with the publication of multiple, high resolution structures of the spliceosome, some question the relevance of traditional biochemical and genetic techniques to the splicing field. We argue such techniques are not only relevant, but vital for an in depth mechanistic understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
105
|
Yang CH, Li HC, Shiu YL, Ku TS, Wang CW, Tu YS, Chen HL, Wu CH, Lo SY. Influenza A virus upregulates PRPF8 gene expression to increase virus production. Arch Virol 2017; 162:1223-1235. [PMID: 28110426 DOI: 10.1007/s00705-016-3210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
A ddRT-PCR analysis was performed to detect cellular genes that are differentially expressed after influenza A virus (H1N1) infection of A549 cells. After ddRT-PCR, eight DNA fragments were identified. PRPF8, one of the cellular genes that were upregulated after virus infection, was further analyzed since it has previously been identified as a cellular factor required for influenza virus replication. The upregulation of PRPF8 gene expression after viral infection was confirmed using real-time RT-PCR for mRNA detection and Western blot analysis for protein detection. Influenza A virus also upregulated the PRPF8 promoter in a reporter assay. In addition to H1N1, influenza A virus H3N2 and influenza B virus could also activate PRPF8 expression. Therefore, upregulation of PRPF8 expression might be important for the replication of different influenza viruses. Indeed, overexpression of PRPF8 gene enhanced virus production, while knockdown of expression of this gene reduced viral production significantly. To determine which viral protein could enhance PRPF8 gene expression, individual viral genes were cloned and expressed. Among the different viral proteins, expression of either the viral NS1 or PB1 gene could upregulate the PRPF8 expression. Our results from this study indicate that influenza A virus upregulates cellular PRPF8 gene expression through viral NS1 and PB1 proteins to increase virus production.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
| | - Yu-Ling Shiu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Tzu-Shan Ku
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chia-Wen Wang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Yi-Shuan Tu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hung-Ling Chen
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Hao Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan. .,Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan. .,Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
106
|
Sridhara SC, Carvalho S, Grosso AR, Gallego-Paez LM, Carmo-Fonseca M, de Almeida SF. Transcription Dynamics Prevent RNA-Mediated Genomic Instability through SRPK2-Dependent DDX23 Phosphorylation. Cell Rep 2017; 18:334-343. [DOI: 10.1016/j.celrep.2016.12.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/13/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
|
107
|
Bahramali G, Goliaei B, Minuchehr Z, Marashi SA. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology. Amino Acids 2016; 49:303-315. [DOI: 10.1007/s00726-016-2361-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/05/2016] [Indexed: 12/20/2022]
|
108
|
Absmeier E, Santos KF, Wahl MC. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 2016; 15:3362-3377. [PMID: 27792457 DOI: 10.1080/15384101.2016.1249549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
109
|
Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in Brassica napus. THE PLANT CELL 2016; 28:2060-2078. [PMID: 27559024 PMCID: PMC5059798 DOI: 10.1105/tpc.16.00281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/24/2016] [Indexed: 05/04/2023]
Abstract
Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.
Collapse
Affiliation(s)
- Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
110
|
Rauhut R, Fabrizio P, Dybkov O, Hartmuth K, Pena V, Chari A, Kumar V, Lee CT, Urlaub H, Kastner B, Stark H, Lührmann R. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 2016; 353:1399-1405. [PMID: 27562955 DOI: 10.1126/science.aag1906] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022]
Abstract
The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5' splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile-the branchsite adenosine-is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5'ss. Our structure suggests that Prp2 adenosine triphosphatase-mediated remodeling leads to conformational changes in Hsh155's HEAT domain that liberate the first-step reactants for catalysis.
Collapse
Affiliation(s)
- Reinhard Rauhut
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Vladimir Pena
- Research Group Macromolecular Crystallography, MPI for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ashwin Chari
- 3D Electron Cryomicroscopy Group, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Vinay Kumar
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | - Holger Stark
- 3D Electron Cryomicroscopy Group, MPI for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany. Department of 3D Electron Cryomicroscopy, Georg-August Universität, Göttingen, Justus von-Liebig-Weg 11, D-37077 Germany.
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute (MPI) for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
111
|
Pellagatti A, Boultwood J. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Adv Biol Regul 2016; 63:59-70. [PMID: 27639445 DOI: 10.1016/j.jbior.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
Abstract
Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; NIHR Biomedical Research Centre, Oxford, UK.
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
112
|
Garcia EL, Wen Y, Praveen K, Matera AG. Transcriptomic comparison of Drosophila snRNP biogenesis mutants reveals mutant-specific changes in pre-mRNA processing: implications for spinal muscular atrophy. RNA (NEW YORK, N.Y.) 2016; 22:1215-1227. [PMID: 27268418 PMCID: PMC4931114 DOI: 10.1261/rna.057208.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Survival motor neuron (SMN) functions in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) that catalyze pre-mRNA splicing. Here, we used disruptions in Smn and two additional snRNP biogenesis genes, Phax and Ars2, to classify RNA processing differences as snRNP-dependent or gene-specific in Drosophila Phax and Smn mutants exhibited comparable reductions in snRNAs, and comparison of their transcriptomes uncovered shared sets of RNA processing changes. In contrast, Ars2 mutants displayed only small decreases in snRNA levels, and RNA processing changes in these mutants were generally distinct from those identified in Phax and Smn animals. Instead, RNA processing changes in Ars2 mutants support the known interaction of Ars2 protein with the cap-binding complex, as splicing changes showed a clear bias toward the first intron. Bypassing disruptions in snRNP biogenesis, direct knockdown of spliceosomal proteins caused similar changes in the splicing of snRNP-dependent events. However, these snRNP-dependent events were largely unaltered in three Smn mutants expressing missense mutations that were originally identified in human spinal muscular atrophy (SMA) patients. Hence, findings here clarify the contributions of Phax, Smn, and Ars2 to snRNP biogenesis in Drosophila, and loss-of-function mutants for these proteins reveal differences that help disentangle cause and effect in SMA model flies.
Collapse
Affiliation(s)
- Eric L Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ying Wen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kavita Praveen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
113
|
Wan R, Yan C, Bai R, Huang G, Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 2016; 353:895-904. [PMID: 27445308 DOI: 10.1126/science.aag2235] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of pre-messenger RNA splicing, carried out by the spliceosome, comprises two sequential transesterification reactions, which result in the removal of an intron and the joining of two exons. Here we report an atomic structure of a catalytic step I spliceosome (known as the C complex) from Saccharomyces cerevisiae, as determined by cryo-electron microscopy at an average resolution of 3.4 angstroms. In the structure, the 2'-OH of the invariant adenine nucleotide in the branch point sequence (BPS) is covalently joined to the phosphate at the 5' end of the 5' splice site (5'SS), forming an intron lariat. The freed 5' exon remains anchored to loop I of U5 small nuclear RNA (snRNA), and the 5'SS and BPS of the intron form duplexes with conserved U6 and U2 snRNA sequences, respectively. Specific placement of these RNA elements at the catalytic cavity of Prp8 is stabilized by 15 protein components, including Snu114 and the splicing factors Cwc21, Cwc22, Cwc25, and Yju2. These features, representing the conformation of the spliceosome after the first-step reaction, predict structural changes that are needed for the execution of the second-step transesterification reaction.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
114
|
Mayerle M, Guthrie C. Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. RNA (NEW YORK, N.Y.) 2016; 22:793-809. [PMID: 26968627 PMCID: PMC4836653 DOI: 10.1261/rna.055459.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing must occur with high fidelity and efficiency for proper gene expression. The spliceosome uses DExD/H box helicases to promote on-pathway interactions while simultaneously minimizing errors. Prp8 and Snu114, an EF2-like GTPase, regulate the activity of the Brr2 helicase, promoting RNA unwinding by Brr2 at appropriate points in the splicing cycle and repressing it at others. Mutations linked to retinitis pigmentosa (RP), a disease that causes blindness in humans, map to the Brr2 regulatory region of Prp8. Previous in vitro studies of homologous mutations in Saccharomyces cerevisiaes how that Prp8-RP mutants cause defects in spliceosome activation. Here we show that a subset of RP mutations in Prp8 also causes defects in the transition between the first and second catalytic steps of splicing. Though Prp8-RP mutants do not cause defects in splicing fidelity, they result in an overall decrease in splicing efficiency. Furthermore, genetic analyses link Snu114 GTP/GDP occupancy to Prp8-dependent regulation of Brr2. Our results implicate the transition between the first and second catalytic steps as a critical place in the splicing cycle where Prp8-RP mutants influence splicing efficiency. The location of the Prp8-RP mutants, at the "hinge" that links the Prp8 Jab1-MPN regulatory "tail" to the globular portion of the domain, suggests that these Prp8-RP mutants inhibit regulated movement of the Prp8 Jab1/MPN domain into the Brr2 RNA binding channel to transiently inhibit Brr2. Therefore, in Prp8-linked RP, disease likely results not only from defects in spliceosome assembly and activation, but also because of defects in splicing catalysis.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
115
|
Recruitment of the NineTeen Complex to the activated spliceosome requires AtPRMT5. Proc Natl Acad Sci U S A 2016; 113:5447-52. [PMID: 27114555 DOI: 10.1073/pnas.1522458113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is involved in a multitude of biological processes in eukaryotes. Symmetric arginine dimethylation mediated by PRMT5 modulates constitutive and alternative pre-mRNA splicing of diverse genes to regulate normal growth and development in multiple species; however, the underlying molecular mechanism remains largely unknown. A genetic screen for suppressors of an Arabidopsis symmetric arginine dimethyltransferase mutant, atprmt5, identified two gain-of-function alleles of pre-mRNA processing factor 8 gene (prp8-8 and prp8-9), the highly conserved core component of the U5 small nuclear ribonucleoprotein (snRNP) and the spliceosome. These two atprmt5 prp8 double mutants showed suppression of the developmental and splicing alterations of atprmt5 mutants. In atprmt5 mutants, the NineTeen complex failed to be assembled into the U5 snRNP to form an activated spliceosome; this phenotype was restored in the atprmt5 prp8-8 double mutants. We also found that loss of symmetric arginine dimethylation of Sm proteins prevents recruitment of the NineTeen complex and initiation of spliceosome activation. Together, our findings demonstrate that symmetric arginine dimethylation has important functions in spliceosome assembly and activation, and uncover a key molecular mechanism for arginine methylation in pre-mRNA splicing that impacts diverse developmental processes.
Collapse
|
116
|
Ledoux S, Guthrie C. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. J Biol Chem 2016; 291:11954-65. [PMID: 27072132 DOI: 10.1074/jbc.m115.710848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices.
Collapse
Affiliation(s)
- Sarah Ledoux
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Christine Guthrie
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
117
|
Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, Blue SM, Nguyen TB, Surka C, Elkins K, Stanton R, Rigo F, Guttman M, Yeo GW. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 2016; 13:508-14. [PMID: 27018577 PMCID: PMC4887338 DOI: 10.1038/nmeth.3810] [Citation(s) in RCA: 941] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
Abstract
As RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs, binding site identification by UV-crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is critical to understanding RBP function. However, current CLIP protocols are technically demanding and yield low complexity libraries with high experimental failure rates. We have developed an enhanced CLIP (eCLIP) protocol that decreases requisite amplification by ~1,000-fold, decreasing discarded PCR duplicate reads by ~60% while maintaining single-nucleotide binding resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP improves specificity in discovery of authentic binding sites. We generated 102 eCLIP experiments for 73 diverse RBPs in HepG2 and K562 cells (available at https://www.encodeproject.org), demonstrating that eCLIP enables large-scale and robust profiling, with amplification and sample requirements similar to ChIP-seq. eCLIP enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP and RNA-centric perspectives of RBP activity.
Collapse
Affiliation(s)
- Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA.,Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Chelsea Gelboin-Burkhart
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Mark Y Fang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Balaji Sundararaman
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Keri Elkins
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Rebecca Stanton
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA.,Stem Cell Program, University of California at San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA.,Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, California, USA.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Molecular Engineering Laboratory, A*STAR, Singapore
| |
Collapse
|
118
|
Agafonov DE, Kastner B, Dybkov O, Hofele RV, Liu WT, Urlaub H, Lührmann R, Stark H. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 2016; 351:1416-20. [PMID: 26912367 DOI: 10.1126/science.aad2085] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
The U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) is a major spliceosome building block. We obtained a three-dimensional structure of the 1.8-megadalton human tri-snRNP at a resolution of 7 angstroms using single-particle cryo-electron microscopy (cryo-EM). We fit all known high-resolution structures of tri-snRNP components into the EM density map and validated them by protein cross-linking. Our model reveals how the spatial organization of Brr2 RNA helicase prevents premature U4/U6 RNA unwinding in isolated human tri-snRNPs and how the ubiquitin C-terminal hydrolase-like protein Sad1 likely tethers the helicase Brr2 to its preactivation position. Comparison of our model with cryo-EM three-dimensional structures of the Saccharomyces cerevisiae tri-snRNP and Schizosaccharomyces pombe spliceosome indicates that Brr2 undergoes a marked conformational change during spliceosome activation, and that the scaffolding protein Prp8 is also rearranged to accommodate the spliceosome's catalytic RNA network.
Collapse
Affiliation(s)
- Dmitry E Agafonov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Romina V Hofele
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Wen-Ti Liu
- Department of 3D Electron Cryomicroscopy, Georg-August Universität Göttingen, D-37077 Göttingen, Germany. Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany.
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| | - Holger Stark
- Department of 3D Electron Cryomicroscopy, Georg-August Universität Göttingen, D-37077 Göttingen, Germany. Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
119
|
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 2016; 36:48-57. [PMID: 26803803 PMCID: PMC4830896 DOI: 10.1016/j.sbi.2015.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in cryoEM are revolutionizing our understanding of how molecular machines function. The structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP has been revealed. The structure of Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex has been revealed. These structures greatly advanced our understanding of the mechanism of pre-mRNA splicing.
The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.
Collapse
|
120
|
Detection of Protein-Protein Interaction Within an RNA-Protein Complex Via Unnatural-Amino-Acid-Mediated Photochemical Crosslinking. Methods Mol Biol 2016; 1421:175-89. [PMID: 26965266 DOI: 10.1007/978-1-4939-3591-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although DExD/H-box proteins are known to unwind RNA duplexes and modulate RNA structures in vitro, it is highly plausible that, in vivo, some may function to remodel RNA-protein complexes. Precisely how the latter is achieved remains a mystery. We investigated this critical issue by using yeast Prp28p, an evolutionarily conserved DExD/H-box splicing factor, as a model system. To probe how Prp28p interacts with spliceosome, we strategically placed p-benzoyl-phenylalanine (BPA), a photoactivatable unnatural amino acid, along the body of Prp28p in vivo. Extracts prepared from these engineered strains were then used to assemble in vitro splicing reactions for BPA-mediated protein-protein crosslinkings. This enabled us, for the first time, to "capture" Prp28p in action. This approach may be applicable to studying the roles of other DExD/H-box proteins functioning in diverse RNA-related pathways, as well as to investigating protein-protein contacts within an RNA-protein complex.
Collapse
|
121
|
A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression. Mol Cell Biol 2015; 36:886-99. [PMID: 26711270 DOI: 10.1128/mcb.00594-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function.
Collapse
|
122
|
Rubio-Peña K, Fontrodona L, Aristizábal-Corrales D, Torres S, Cornes E, García-Rodríguez FJ, Serrat X, González-Knowles D, Foissac S, Porta-De-La-Riva M, Cerón J. Modeling of autosomal-dominant retinitis pigmentosa in Caenorhabditis elegans uncovers a nexus between global impaired functioning of certain splicing factors and cell type-specific apoptosis. RNA (NEW YORK, N.Y.) 2015; 21:2119-31. [PMID: 26490224 PMCID: PMC4647465 DOI: 10.1261/rna.053397.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. Interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability.
Collapse
Affiliation(s)
- Karinna Rubio-Peña
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Silvia Torres
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Francisco J García-Rodríguez
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Xènia Serrat
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - David González-Knowles
- Integromics, Integromics SL, Parque Científico de Madrid, 28760, Tres Cantos, Madrid, Spain
| | | | - Montserrat Porta-De-La-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
123
|
Rigo N, Sun C, Fabrizio P, Kastner B, Lührmann R. Protein localisation by electron microscopy reveals the architecture of the yeast spliceosomal B complex. EMBO J 2015; 34:3059-73. [PMID: 26582754 DOI: 10.15252/embj.201592022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
The spliceosome assembles on a pre-mRNA intron by binding of five snRNPs and numerous proteins, leading to the formation of the pre-catalytic B complex. While the general morphology of the B complex is known, the spatial arrangement of proteins and snRNP subunits within it remain to be elucidated. To shed light on the architecture of the yeast B complex, we immuno-labelled selected proteins and located them by negative-stain electron microscopy. The B complex exhibited a triangular shape with main body, head and neck domains. We located the U5 snRNP components Brr2 at the top and Prp8 and Snu114 in the centre of the main body. We found several U2 SF3a (Prp9 and Prp11) and SF3b (Hsh155 and Cus1) proteins in the head domain and two U4/U6 snRNP proteins (Prp3 and Lsm4) in the neck domain that connects the main body with the head. Thus, we could assign distinct domains of the B complex to the respective snRNPs and provide the first detailed picture of the subunit architecture and protein arrangements of the B complex.
Collapse
Affiliation(s)
- Norbert Rigo
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Chengfu Sun
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
124
|
Schneider C, Agafonov DE, Schmitzová J, Hartmuth K, Fabrizio P, Lührmann R. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. PLoS Genet 2015; 11:e1005539. [PMID: 26393790 PMCID: PMC4579134 DOI: 10.1371/journal.pgen.1005539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/27/2015] [Indexed: 01/10/2023] Open
Abstract
Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act) spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act) crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.
Collapse
Affiliation(s)
- Cornelius Schneider
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Dmitry E. Agafonov
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Klaus Hartmuth
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| |
Collapse
|
125
|
Wang D, Nguyen MM, Masoodi KZ, Singh P, Jing Y, O'Malley K, Dar JA, Dhir R, Wang Z. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells. Mol Endocrinol 2015; 29:1731-42. [PMID: 26371515 DOI: 10.1210/me.2015-1112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.
Collapse
Affiliation(s)
- Dan Wang
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Minh M Nguyen
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Khalid Z Masoodi
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Prabhpreet Singh
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Yifeng Jing
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Katherine O'Malley
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Javid A Dar
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Rajiv Dhir
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Zhou Wang
- Departments of Urology (D.W., M.M.N., K.Z.M., P.S., Y.J., K.O., J.A.D., Z.W.), Pharmacology and Chemical Biology (Z.W.), and Pathology (R.D., Z.W.) and University of Pittsburgh Cancer Institute (R.D., Z.W.), University of Pittsburgh, Pittsburgh, Pennsylvania 15232; and Department of Urology (Y.J.), The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
126
|
Hang J, Wan R, Yan C, Shi Y. Structural basis of pre-mRNA splicing. Science 2015; 349:1191-8. [PMID: 26292705 DOI: 10.1126/science.aac8159] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/10/2015] [Indexed: 01/27/2023]
Abstract
Splicing of precursor messenger RNA is performed by the spliceosome. In the cryogenic electron microscopy structure of the yeast spliceosome, U5 small nuclear ribonucleoprotein acts as a central scaffold onto which U6 and U2 small nuclear RNAs (snRNAs) are intertwined to form a catalytic center next to Loop I of U5 snRNA. Magnesium ions are coordinated by conserved nucleotides in U6 snRNA. The intron lariat is held in place through base-pairing interactions with both U2 and U6 snRNAs, leaving the variable-length middle portion on the solvent-accessible surface of the catalytic center. The protein components of the spliceosome anchor both 5' and 3' ends of the U2 and U6 snRNAs away from the active site, direct the RNA sequences, and allow sufficient flexibility between the ends and the catalytic center. Thus, the spliceosome is in essence a protein-directed ribozyme, with the protein components essential for the delivery of critical RNA molecules into close proximity of one another at the right time for the splicing reaction.
Collapse
Affiliation(s)
- Jing Hang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
127
|
Yan C, Hang J, Wan R, Huang M, Wong CCL, Shi Y. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 2015; 349:1182-91. [DOI: 10.1126/science.aac7629] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
|
128
|
Hahn CN, Venugopal P, Scott HS, Hiwase DK. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy. Immunol Rev 2015; 263:257-78. [PMID: 25510282 DOI: 10.1111/imr.12241] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differential splicing contributes to the vast complexity of mRNA transcripts and protein isoforms that are necessary for cellular homeostasis and response to developmental cues and external signals. The hematopoietic system provides an exquisite example of this. Recently, discovery of mutations in components of the spliceosome in various hematopoietic malignancies (HMs) has led to an explosion in knowledge of the role of splicing and splice factors in HMs and other cancers. A better understanding of the mechanisms by which alternative splicing and aberrant splicing contributes to the leukemogenic process will enable more efficacious targeted approaches to tackle these often difficult to treat diseases. The clinical implications are only just starting to be realized with novel drug targets and therapeutic strategies open to exploitation for patient benefit.
Collapse
Affiliation(s)
- Christopher N Hahn
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; Department of Molecular Pathology, SA Pathology, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA, Australia; Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
129
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
130
|
Abstract
Present in the genomes of bacteria and eukaryotic organelles, group II introns are an ancient class of ribozymes and retroelements that are believed to have been the ancestors of nuclear pre-mRNA introns. Despite long-standing speculation, there is limited understanding about the actual pathway by which group II introns evolved into eukaryotic introns. In this review, we focus on the evolution of group II introns themselves. We describe the different forms of group II introns known to exist in nature and then address how these forms may have evolved to give rise to spliceosomal introns and other genetic elements. Finally, we summarize the structural and biochemical parallels between group II introns and the spliceosome, including recent data that strongly support their hypothesized evolutionary relationship.
Collapse
Affiliation(s)
- Steven Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
131
|
An Rtf2 Domain-Containing Protein Influences Pre-mRNA Splicing and Is Essential for Embryonic Development in Arabidopsis thaliana. Genetics 2015; 200:523-35. [PMID: 25819795 DOI: 10.1534/genetics.115.176438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/25/2015] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is prevalent in plants, but little is known about its regulation in the context of developmental and signaling pathways. We describe here a new factor that influences pre-messengerRNA (mRNA) splicing and is essential for embryonic development in Arabidopsis thaliana. This factor was retrieved in a genetic screen that identified mutants impaired in expression of an alternatively spliced GFP reporter gene. In addition to the known spliceosomal component PRP8, the screen recovered Arabidopsis RTF2 (AtRTF2), a previously uncharacterized, evolutionarily conserved protein containing a replication termination factor 2 (Rtf2) domain. A homozygous null mutation in AtRTF2 is embryo lethal, indicating that AtRTF2 is an essential protein. Quantitative RT-PCR demonstrated that impaired expression of GFP in atrtf2 and prp8 mutants is due to inefficient splicing of the GFP pre-mRNA. A genome-wide analysis using RNA sequencing indicated that 13-16% of total introns are retained to a significant degree in atrtf2 mutants. Considering these results and previous suggestions that Rtf2 represents an ubiquitin-related domain, we discuss the possible role of AtRTF2 in ubiquitin-based regulation of pre-mRNA splicing.
Collapse
|
132
|
Gautam A, Grainger RJ, Vilardell J, Barrass JD, Beggs JD. Cwc21p promotes the second step conformation of the spliceosome and modulates 3' splice site selection. Nucleic Acids Res 2015; 43:3309-17. [PMID: 25740649 PMCID: PMC4381068 DOI: 10.1093/nar/gkv159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3′ splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3′ splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Alternative Splicing
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Gene Deletion
- Genes, Fungal
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splice Sites
- RNA Splicing
- RNA Splicing Factors
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/chemistry
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Amit Gautam
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Richard J Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - J Vilardell
- Department of Molecular Genomics, Institute of Molecular Biology of Barcelona (IBMB), 08028 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - J David Barrass
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| |
Collapse
|
133
|
Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol 2015; 95:3-15. [DOI: 10.1111/ejh.12515] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Pellagatti
- Leukaemia & Lymphoma Research Molecular Haematology Unit; Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Jacqueline Boultwood
- Leukaemia & Lymphoma Research Molecular Haematology Unit; Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; Oxford UK
| |
Collapse
|
134
|
Zhang L, Li X, Hill RC, Qiu Y, Zhang W, Hansen KC, Zhao R. Brr2 plays a role in spliceosomal activation in addition to U4/U6 unwinding. Nucleic Acids Res 2015; 43:3286-97. [PMID: 25670679 PMCID: PMC4381053 DOI: 10.1093/nar/gkv062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 01/19/2015] [Indexed: 12/22/2022] Open
Abstract
Brr2 is a DExD/H-box RNA helicase that is responsible for U4/U6 unwinding, a critical step in spliceosomal activation. Brr2 is a large protein (∼250 kD) that consists of an N-terminal domain (∼500 residues) with unknown function and two Hel308-like modules that are responsible for RNA unwinding. Here we demonstrate that removal of the entire N-terminal domain is lethal to Saccharomyces cerevisiae and deletion of the N-terminal 120 residues leads to splicing defects and severely impaired growth. This N-terminal truncation does not significantly affect Brr2's helicase activity. Brr2-Δ120 can be successfully assembled into the tri-snRNP (albeit at a lower level than the WT Brr2) and the spliceosomal B complex. However, the truncation significantly impairs spliceosomal activation, leading to a dramatic reduction of U5, U6 snRNAs and accumulation of U1 snRNA in the Bact complex. The N-terminal domain of Brr2 does not seem to be directly involved in regulating U1/5'ss unwinding. Instead, the N-terminal domain seems to be critical for retaining U5 and U6 snRNPs during/after spliceosomal activation through its interaction with snRNAs and possibly other spliceosomal proteins, revealing a new role of Brr2 in spliceosomal activation in addition to U4/U6 unwinding.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yan Qiu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Wenzheng Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
135
|
Schmitz-Linneweber C, Lampe MK, Sultan LD, Ostersetzer-Biran O. Organellar maturases: A window into the evolution of the spliceosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:798-808. [PMID: 25626174 DOI: 10.1016/j.bbabio.2015.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
During the evolution of eukaryotic genomes, many genes have been interrupted by intervening sequences (introns) that must be removed post-transcriptionally from RNA precursors to form mRNAs ready for translation. The origin of nuclear introns is still under debate, but one hypothesis is that the spliceosome and the intron-exon structure of genes have evolved from bacterial-type group II introns that invaded the eukaryotic genomes. The group II introns were most likely introduced into the eukaryotic genome from an α-proteobacterial predecessor of mitochondria early during the endosymbiosis event. These self-splicing and mobile introns spread through the eukaryotic genome and later degenerated. Pieces of introns became part of the general splicing machinery we know today as the spliceosome. In addition, group II introns likely brought intron maturases with them to the nucleus. Maturases are found in most bacterial introns, where they act as highly specific splicing factors for group II introns. In the spliceosome, the core protein Prp8 shows homology to group II intron-encoded maturases. While maturases are entirely intron specific, their descendant of the spliceosomal machinery, the Prp8 protein, is an extremely versatile splicing factor with multiple interacting proteins and RNAs. How could such a general player in spliceosomal splicing evolve from the monospecific bacterial maturases? Analysis of the organellar splicing machinery in plants may give clues on the evolution of nuclear splicing. Plants encode various proteins which are closely related to bacterial maturases. The organellar genomes contain one maturase each, named MatK in chloroplasts and MatR in mitochondria. In addition, several maturase genes have been found in the nucleus as well, which are acting on mitochondrial pre-RNAs. All plant maturases show sequence deviation from their progenitor bacterial maturases, and interestingly are all acting on multiple organellar group II intron targets. Moreover, they seem to function in the splicing of group II introns together with a number of additional nuclear-encoded splicing factors, possibly acting as an organellar proto-spliceosome. Together, this makes them interesting models for the early evolution of nuclear spliceosomal splicing. In this review, we summarize recent advances in our understanding of the role of plant maturases and their accessory factors in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Marie-Kristin Lampe
- Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Laure D Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
136
|
Kondo Y, Oubridge C, van Roon AMM, Nagai K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition. eLife 2015; 4. [PMID: 25555158 PMCID: PMC4383343 DOI: 10.7554/elife.04986] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022] Open
Abstract
U1 snRNP binds to the 5′ exon-intron junction of pre-mRNA and thus plays a
crucial role at an early stage of pre-mRNA splicing. We present two crystal
structures of engineered U1 sub-structures, which together reveal at atomic
resolution an almost complete network of protein–protein and RNA-protein
interactions within U1 snRNP, and show how the 5′ splice site of pre-mRNA is
recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between
pre-mRNA and the 5′-end of U1 snRNA. The binding of the RNA duplex is
stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA
backbone around the splice junction but U1-C makes no base-specific contacts with
pre-mRNA. The structure, together with RNA binding assays, shows that the selection
of 5′-splice site nucleotides by U1 snRNP is achieved predominantly through
basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched
5′-splice sites. DOI:http://dx.doi.org/10.7554/eLife.04986.001 Genes are made up of long stretches of DNA. The regions of a gene that code for
proteins (known as exons) are interrupted by stretches of non-coding DNA called
introns. To produce proteins from a gene, the DNA is ‘transcribed’ to
form pre-mRNA molecules, from which the introns must be removed in a process called
splicing. The remaining exons are then joined together to form a mature mRNA molecule
that contains the instructions to build a protein. Errors in the splicing process can
lead to numerous diseases, such as cancer. A molecular machine known as a spliceosome is responsible for splicing the pre-mRNA
molecules. This consists of five different complexes called small nuclear
ribonucleoprotein particles (snRNPs), which are in turn made up from numerous
proteins and RNA molecules. The spliceosome assembles anew every time it splices, and
an early step in this assembly process involves the interaction of an snRNP called U1
with the start of an intron in the pre-mRNA. This interaction then stimulates the
assembly of the rest of the spliceosome. In 2009, researchers reported the structure
of the U1 snRNP, but the structure did not contain enough detail to reveal how the
snRNP recognizes the start of an intron. Kondo, Oubridge et al., including some of the researchers involved in the 2009 work,
now present the crystal structure of the human version of the U1 snRNP in more
detail. High-quality crystal structures of the complete U1 snRNP molecule could not
be obtained because the arrangement of the RNA molecules in the snRNP prevented a
regular crystal from forming. Kondo, Oubridge et al. instead engineered two
subcomponents of U1 snRNP that each crystallized well, and determined their
structures. This revealed that the interactions between the various parts of the U1
snRNP form a complex network. A protein present in the U1 snRNP, known as U1-C, had previously been reported to be
able to recognize introns on its own—without requiring the complete U1 snRNP.
Kondo, Oubridge et al. reveal that this is not the case and that U1-C does not read
the intron RNA sequence directly. Instead, U1 snRNP is able to find the start of the
intron because the U1 RNA can stably bind to this site. The U1-C protein can however
adjust the strength of this binding to ensure that the spliceosome can operate with a
variety of intron start sequences (or signals). DOI:http://dx.doi.org/10.7554/eLife.04986.002
Collapse
Affiliation(s)
- Yasushi Kondo
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Chris Oubridge
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anne-Marie M van Roon
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Kiyoshi Nagai
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
137
|
Wickramasinghe VO, Gonzàlez-Porta M, Perera D, Bartolozzi AR, Sibley CR, Hallegger M, Ule J, Marioni JC, Venkitaraman AR. Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5' splice site strength. Genome Biol 2015; 16:201. [PMID: 26392272 PMCID: PMC4578845 DOI: 10.1186/s13059-015-0749-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/27/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear. RESULTS Here, we show that alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites. iCLIP of spliceosome components reveals that PRPF8 depletion decreases RNP complex formation at most splice sites in exon-intron junctions throughout the genome. However, impaired splicing affects only a subset of human transcripts, enriched for mitotic cell cycle factors, leading to mitotic arrest. Preferentially retained introns and differentially used exons in the affected genes contain weak 5' splice sites, but are otherwise indistinguishable from adjacent spliced introns. Experimental enhancement of splice-site strength in mini-gene constructs overcomes the effects of PRPF8 depletion on the kinetics and fidelity of splicing during transcription. CONCLUSIONS Competition for PRPF8 availability alters the transcription-coupled splicing of RNAs in which weak 5' splice sites predominate, enabling diversification of human gene expression during biological processes like mitosis. Our findings exemplify the regulatory potential of changes in the core spliceosome machinery, which may be relevant to slow-onset human genetic diseases linked to PRPF8 deficiency.
Collapse
Affiliation(s)
- Vihandha O. Wickramasinghe
- The Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Mar Gonzàlez-Porta
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - David Perera
- The Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Arthur R. Bartolozzi
- The Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Christopher R. Sibley
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Martina Hallegger
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - John C. Marioni
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ashok R. Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| |
Collapse
|
138
|
Sato N, Maeda M, Sugiyama M, Ito S, Hyodo T, Masuda A, Tsunoda N, Kokuryo T, Hamaguchi M, Nagino M, Senga T. Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells. Cancer Med 2014; 4:268-77. [PMID: 25450007 PMCID: PMC4329010 DOI: 10.1002/cam4.366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various tumor cell lines. In this report, we demonstrate that depletion of SNW1, a component of the spliceosome, induces apoptosis in breast cancer cells. Proteomics and biochemical analyses revealed that SNW1 directly associates with other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 as well as two independent regions in the C-terminus of SNRNP200. Similar to SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic cells. Furthermore, we demonstrate that exogenous expression of either the SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly promoted cellular apoptosis. Our results suggest that the inhibition of SNW1 or its associating proteins may be a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
In eukaryotic organisms, nascent transcripts of protein-coding genes contain intronic sequences that are not present in mature mRNAs. Pre-mRNA splicing removes introns and joins exons to form mature mRNAs. It is catalyzed by a large RNP complex called the spliceosome. Sequences within the pre-mRNA determine intron recognition and excision. This process occurs with a high degree of accuracy to generate the functional transcriptome of a cell.
Collapse
|
140
|
Nanjo Y, Jang HY, Kim HS, Hiraga S, Woo SH, Komatsu S. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes. PHYTOCHEMISTRY 2014; 106:25-36. [PMID: 25053003 DOI: 10.1016/j.phytochem.2014.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins.
Collapse
Affiliation(s)
- Yohei Nanjo
- NARO Institute of Crop Science, Tsukuba 305-8518, Japan.
| | - Hee-Young Jang
- Chungbuk National University, Cheong-ju 361-763, Republic of Korea
| | - Hong-Sig Kim
- Chungbuk National University, Cheong-ju 361-763, Republic of Korea
| | - Susumu Hiraga
- NARO Institute of Crop Science, Tsukuba 305-8518, Japan
| | - Sun-Hee Woo
- Chungbuk National University, Cheong-ju 361-763, Republic of Korea
| | | |
Collapse
|
141
|
Tenin G, Clowes C, Wolton K, Krejci E, Wright JA, Lovell SC, Sedmera D, Hentges KE. Erbb2 is required for cardiac atrial electrical activity during development. PLoS One 2014; 9:e107041. [PMID: 25269082 PMCID: PMC4182046 DOI: 10.1371/journal.pone.0107041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023] Open
Abstract
The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.
Collapse
Affiliation(s)
- Gennadiy Tenin
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Kathryn Wolton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Eliska Krejci
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Simon C. Lovell
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kathryn E. Hentges
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
142
|
Garrey SM, Katolik A, Prekeris M, Li X, York K, Bernards S, Fields S, Zhao R, Damha MJ, Hesselberth JR. A homolog of lariat-debranching enzyme modulates turnover of branched RNA. RNA (NEW YORK, N.Y.) 2014; 20:1337-48. [PMID: 24919400 PMCID: PMC4105757 DOI: 10.1261/rna.044602.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Turnover of the branched RNA intermediates and products of pre-mRNA splicing is mediated by the lariat-debranching enzyme Dbr1. We characterized a homolog of Dbr1 from Saccharomyces cerevisiae, Drn1/Ygr093w, that has a pseudo-metallophosphodiesterase domain with primary sequence homology to Dbr1 but lacks essential active site residues found in Dbr1. Whereas loss of Dbr1 results in lariat-introns failing broadly to turnover, loss of Drn1 causes low levels of lariat-intron accumulation. Conserved residues in the Drn1 C-terminal CwfJ domains, which are not present in Dbr1, are required for efficient intron turnover. Drn1 interacts with Dbr1, components of the Nineteen Complex, U2 snRNA, branched intermediates, and products of splicing. Drn1 enhances debranching catalyzed by Dbr1 in vitro, but does so without significantly improving the affinity of Dbr1 for branched RNA. Splicing carried out in in vitro extracts in the absence of Drn1 results in an accumulation of branched splicing intermediates and products released from the spliceosome, likely due to less active debranching, as well as the promiscuous release of cleaved 5'-exon. Drn1 enhances Dbr1-mediated turnover of lariat-intermediates and lariat-intron products, indicating that branched RNA turnover is regulated at multiple steps during splicing.
Collapse
Affiliation(s)
- Stephen M Garrey
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Mantas Prekeris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Sarah Bernards
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
143
|
Korir PK, Roberts L, Ramesar R, Seoighe C. A mutation in a splicing factor that causes retinitis pigmentosa has a transcriptome-wide effect on mRNA splicing. BMC Res Notes 2014; 7:401. [PMID: 24969741 PMCID: PMC4084799 DOI: 10.1186/1756-0500-7-401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Substantial progress has been made in the identification of sequence elements that control mRNA splicing and the genetic variants in these elements that alter mRNA splicing (referred to as splicing quantitative trait loci - sQTLs). Genetic variants that affect mRNA splicing in trans are harder to identify because their effects can be more subtle and diffuse, and the variants are not co-located with their targets. We carried out a transcriptome-wide analysis of the effects of a mutation in a ubiquitous splicing factor that causes retinitis pigmentosa (RP) on mRNA splicing, using exon microarrays. RESULTS Exon microarray data was generated from whole blood samples obtained from four individuals with a mutation in the splicing factor PRPF8 and four sibling controls. Although the mutation has no known phenotype in blood, there was evidence of widespread differences in splicing between cases and controls (affecting approximately 20% of exons). Most probesets with significantly different inclusion (defined as the expression intensity of the exon divided by the expression of the corresponding transcript) between cases and controls had higher inclusion in cases and corresponded to exons that were shorter than average, AT rich, located towards the 5' end of the gene and flanked by long introns. Introns flanking affected probesets were particularly depleted for the shortest category of introns, associated with splicing via intron definition. CONCLUSIONS Our results show that a mutation in a splicing factor, with a phenotype that is restricted to retinal tissue, acts as a trans-sQTL cluster in whole blood samples. Characteristics of the affected exons suggest that they are spliced co-transcriptionally and via exon definition. However, due to the small sample size available for this study, further studies are required to confirm the widespread impact of this PRPF8 mutation on mRNA splicing outside the retina.
Collapse
Affiliation(s)
- Paul K Korir
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| | - Lisa Roberts
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| |
Collapse
|
144
|
Liu YC, Kuo RL, Lin JY, Huang PN, Huang Y, Liu H, Arnold JJ, Chen SJ, Wang RYL, Cameron CE, Shih SR. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8. PLoS Pathog 2014; 10:e1004199. [PMID: 24968230 PMCID: PMC4072778 DOI: 10.1371/journal.ppat.1004199] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/05/2014] [Indexed: 11/25/2022] Open
Abstract
The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp) is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3Dpol) also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3Dpol enters the nucleus through the nuclear localization signal (NLS) and targets the pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3Dpol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3Dpol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection. RNA-dependent RNA polymerase (RdRp) is an enzyme that catalyzes the replication from an RNA template and is encoded in the genomes of all RNA viruses. RNA viruses in general replicate in cytoplasm and interfere host cellular gene expression by utilizing proteolytic destruction of cellular targets as the primary mechanism. However, several cytoplasmic RNA viral proteins have been found in the nucleus. What do they do in the nucleus? This study utilized picornaviral polymerase to probe the function of RdRp in the nucleus. Our findings reveal a novel mechanism of viruses attacking hosts whereby picornaviral 3D polymerase (3Dpol) enters the nucleus and targets the central pre-mRNA processing factor 8 (Prp8) to block pre-mRNA splicing and mRNA synthesis. The 3Dpol inhibits the second catalytic step of the splicing process, resulting in the accumulation of the lariat-form and the reduction of the mRNA. These results provide new insights into the strategy of a cytoplasmic RNA virus attacking host cell, that differs from viral shutting off cellular transcription and translation which contributes to the viral pathogenesis. To our knowledge, this study shows for the first time that a cytoplasmic RNA virus uses its polymerase to alter cellular gene expression by hijacking the splicing machinery.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jing-Yi Lin
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi Huang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jamine J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shu-Jen Chen
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Robert Yung-Liang Wang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Biomedical Sciences and Graduate Institutes of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
145
|
Pan X, Chen X, Liu X, Gao X, Kang X, Xu Q, Chen X, Zhao K, Zhang X, Chu Q, Wang X, Zhao C. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa. Mol Vis 2014; 20:770-9. [PMID: 24940031 PMCID: PMC4043610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/30/2014] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. METHODS Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. RESULTS Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). CONCLUSIONS Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype-phenotype correlation and clinical prognosis.
Collapse
Affiliation(s)
- Xinyuan Pan
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xue Chen
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoxing Liu
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of Ophthalmology, Jiaozuo Health College, Henan, China
| | - Xiaoli Kang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Xu
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuejuan Chen
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Kanxing Zhao
- Tianjin Medical University, Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Xiumei Zhang
- Department of Ophthalmology, Jiaozuo Health College, Henan, China
| | - Qiaomei Chu
- Department of Ophthalmology, Liqun Hospital, Shanghai, China
| | - Xiuying Wang
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chen Zhao
- Department of Ophthalmology of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
146
|
Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 2014; 54:156-165. [PMID: 24725596 PMCID: PMC3988885 DOI: 10.1016/j.molcel.2014.03.026] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/22/2013] [Accepted: 03/04/2014] [Indexed: 12/20/2022]
Abstract
Antisense transcription is widespread in many genomes; however, how much is functional is hotly debated. We are investigating functionality of a set of long noncoding antisense transcripts, collectively called COOLAIR, produced at Arabidopsis FLOWERING LOCUS C (FLC). COOLAIR initiates just downstream of the major sense transcript poly(A) site and terminates either early or extends into the FLC promoter region. We now show that splicing of COOLAIR is functionally important. This was revealed through analysis of a hypomorphic mutation in the core spliceosome component PRP8. The prp8 mutation perturbs a cotranscriptional feedback mechanism linking COOLAIR processing to FLC gene body histone demethylation and reduced FLC transcription. The importance of COOLAIR splicing in this repression mechanism was confirmed by disrupting COOLAIR production and mutating the COOLAIR proximal splice acceptor site. Our findings suggest that altered splicing of a long noncoding transcript can quantitatively modulate gene expression through cotranscriptional coupling mechanisms.
Collapse
Affiliation(s)
- Sebastian Marquardt
- Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Oleg Raitskin
- Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhe Wu
- Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fuquan Liu
- Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qianwen Sun
- Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell & Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
147
|
Nancollis V, Ruckshanthi JPD, Frazer LN, O'Keefe RT. The U5 snRNA internal loop 1 is a platform for Brr2, Snu114 and Prp8 protein binding during U5 snRNP assembly. J Cell Biochem 2014; 114:2770-84. [PMID: 23857713 PMCID: PMC4065371 DOI: 10.1002/jcb.24625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
Abstract
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre-mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri-snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Verity Nancollis
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
148
|
Maita H, Tomita K, Ariga H. A split luciferase-based reporter for detection of a cellular macromolecular complex. Anal Biochem 2014; 452:1-9. [PMID: 24503441 DOI: 10.1016/j.ab.2014.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 11/16/2022]
Abstract
The spliceosome is a highly dynamic macromolecular ribonucleoprotein (RNP) machine that catalyzes pre-mRNA splicing by assembling U1, U2, U4, U5, and U6 small nuclear RNPs (snRNPs). To process large numbers of introns with a limited number of snRNPs, synthesis and recycling of snRNPs must be maintained within an appropriate range to avoid their shortage. However, the mechanism that maintains cellular snRNP levels is unknown. Molecules that modulate cellular snRNP levels may help to define this mechanism but are not available. Therefore, the goal of the current study was to develop a reporter for snRNP levels using split luciferase based on proteomic analysis of snRNPs. We constructed an expression library of a luciferase fragment fused to core components of U5 snRNP and used it to isolate pre-mRNA processing factor 6 (PRPF6) and small nuclear ribonucleoprotein 40 kDa (U5-40K) that specifically reconstitute luciferase activity in the U5 snRNP complex. Here we show that this reporter detects the effects of small molecules on the levels of the U5 snRNP reporter protein complex. Our approach provides an alternative assay to discover small molecules targeting a macromolecular complex when the structure of the complex is not precisely identified.
Collapse
Affiliation(s)
- Hiroshi Maita
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| | - Kenji Tomita
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
149
|
Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK, Nakashima M, Hsi ED, Yoshida K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Boultwood J, Makishima H, Maciejewski JP, Padgett RA. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 2014; 29:126-36. [PMID: 24781015 PMCID: PMC4214909 DOI: 10.1038/leu.2014.144] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/07/2014] [Accepted: 04/21/2014] [Indexed: 11/26/2022]
Abstract
Mutations of spliceosome components are common in myeloid neoplasms. One of the affected genes, PRPF8, encodes the most evolutionarily conserved spliceosomal protein. We identified either recurrent somatic PRPF8 mutations or hemizygous deletions in 15/447 and 24/450 cases, respectively. 50% of PRPF8 mutant and del(17p) cases were found in AML and conveyed poor prognosis. PRPF8 defects correlated with increased myeloblasts and ring sideroblasts in cases without SF3B1 mutations. Knockdown of PRPF8 in K562 and CD34+ primary bone marrow cells increased proliferative capacity. Whole RNA deep sequencing of primary cells from patients with PRPF8 abnormalities demonstrated consistent missplicing defects. In yeast models, homologous mutations introduced into Prp8 abrogated a block experimentally produced in the second step of the RNA splicing process suggesting that the mutants have defects in proof-reading functions. In sum, the exploration of clinical and functional consequences suggests that PRPF8 is a novel leukemogenic gene in myeloid neoplasms with a distinct phenotype likely manifested through aberrant splicing.
Collapse
Affiliation(s)
- A Kurtovic-Kozaric
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - B Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - J Singh
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - M J Clemente
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Z K Otrock
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Nakashima
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - E D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - K Yoshida
- Cancer Genomics Project, Graduate School of Medicine, Tokyo, Japan
| | - Y Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - K Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - H Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- 1] Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan [2] Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Ogawa
- 1] Cancer Genomics Project, Graduate School of Medicine, Tokyo, Japan [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, John Radcliffe Hospital, Oxford, UK
| | - H Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - R A Padgett
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
150
|
Valadkhan S. The role of snRNAs in spliceosomal catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:195-228. [PMID: 24156945 DOI: 10.1016/b978-0-12-381286-5.00006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The spliceosomes, large ribonucleoprotein (RNP) assemblies that remove the intervening sequences from pre-mRNAs, contain a large number of proteins and five small nuclear RNAs (snRNAs). One snRNA, U6, contains highly conserved sequences that are thought to be the functional counterparts of the RNA elements that form the active site of self-splicing group II intron ribozymes. An in vitro-assembled, protein-free complex of U6 with U2, the base-pairing partner in the spliceosomal catalytic core, can catalyze a two-step splicing reaction in the absence of all other spliceosomal factors, suggesting that the two snRNAs may form all or a large share of the spliceosomal active site. On the other hand, several spliceosomal proteins are thought to help in the formation of functionally required RNA-RNA interactions in the catalytic core. Whether they also contribute functional groups to the spliceosomal active site, and thus whether the spliceosomes are RNA or RNP enzymes remain uncertain.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|