101
|
Donnelly BF, Yang B, Grimme AL, Vieux KF, Liu CY, Zhou L, McJunkin K. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep 2022; 40:111154. [PMID: 35947946 PMCID: PMC9413084 DOI: 10.1016/j.celrep.2022.111154] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/04/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here, we show that the mir-35 miRNA family undergoes selective decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and largely sufficient for this regulation. Sequences outside the seed (3' end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3' end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3' end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed-sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family's target repertoire.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Karl-Frédéric Vieux
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Chen-Yu Liu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
102
|
Gao Z, Li J, Li L, Yang Y, Li J, Fu C, Zhu D, He H, Cai H, Li L. Structural and Functional Analyses of Hub MicroRNAs in An Integrated Gene Regulatory Network of Arabidopsis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:747-764. [PMID: 33662619 PMCID: PMC9880815 DOI: 10.1016/j.gpb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/04/2019] [Accepted: 06/14/2020] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) are trans-acting small regulatory RNAs that work coordinately with transcription factors (TFs) to shape the repertoire of cellular mRNAs available for translation. Despite our growing knowledge of individual plant miRNAs, their global roles in gene regulatory networks remain mostly unassessed. Based on interactions obtained from public databases and curated from the literature, we reconstructed an integrated miRNA network in Arabidopsis that includes 66 core TFs, 318 miRNAs, and 1712 downstream genes. We found that miRNAs occupy distinct niches and enrich miRNA-containing feed-forward loops (FFLs), particularly those with miRNAs as intermediate nodes. Further analyses revealed that miRNA-containing FFLs coordinate TFs located in different hierarchical layers and that intertwined miRNA-containing FFLs are associated with party and date miRNA hubs. Using the date hub MIR858A as an example, we performed detailed molecular and genetic analyses of three interconnected miRNA-containing FFLs. These analyses revealed individual functions of the selected miRNA-containing FFLs and elucidated how the date hub miRNA fulfills multiple regulatory roles. Collectively, our findings highlight the prevalence and importance of miRNA-containing FFLs, and provide new insights into the design principles and control logics of miRNA regulatory networks governing gene expression programs in plants.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jun Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Corresponding author.
| |
Collapse
|
103
|
Cao Y, Fang T, Du Y, Li R, Fan M, Ma F, Jin P. miR-2013 negatively regulates phylogenetically conserved PIP5K involved in TLR4 mediated immune responses of amphioxus (Branchiostoma belcheri Tsingtaunese). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104430. [PMID: 35500869 DOI: 10.1016/j.dci.2022.104430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a catalytic kinase that performs multiple functions in organisms. Recent studies have shown that PIP5Kα in mammals can directly participate in the TLR-mediated innate immune regulation by controlling the production of PIP2. However, the PIP5K homologous gene has not been identified in Cephalochordata to date. In this study, we firstly identify and characterize a new PIP5K family member (designed as AmphiPIP5K) from Cephalochordata amphioxus (Branchiostoma belcheri tsingtaunese), particularly AmphiPIP5K is orthologous with vertebrate PIP5Kα and paralogous with PIP5Kβ and PIP5Kγ. Secondly, we find that the AmphiPIP5K is involved in amphioxus innate immune response to LPS stimulation. Thirdly, our results demonstrate that miR-2013 can inhibit AmphiPIP5K expression by binding to the CDS and 3' UTR regions of AmphiPIP5K. Collectively, our work not only demonstrates the evolutionary pattern of amphioxus PIP5K, but also reveals that miR-2013 negatively regulate PIP5K expression to involve in amphioxus innate immune response.
Collapse
Affiliation(s)
- Yunpeng Cao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Tao Fang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Yongxin Du
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ranting Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Mingli Fan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
104
|
The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: a therapeutic approach in colorectal cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04123-w. [PMID: 35876950 DOI: 10.1007/s00432-022-04123-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most prevalent cancer and the second significant cause of cancer-associated death worldwide. The microRNA-30 is a substantial member of the miRNA family and plays a vital role in expanding several cancers. This microRNA potentially targets interleukin 6 as an inflammatory cytokine in CRC. MATERIALS AND METHODS MSCs were isolated and identified from mice bone marrow and then transduced with lentiviruses containing miR-30C. Transfected MSCs were collected to evaluate IL-6 levels, CT-26 cells were also co-cultured with MSCs, and the effect of apoptosis and IL-6 on the supernatant was assessed. RESULTS Our result showed the expression of IL-6 mRNA and the level of protein were decreased in the supernatant of miR-30-transduced MSC cells compared to the control group. In addition, the rate of apoptosis was assessed, and the obtained data revealed the induction of apoptosis in CT-26 cells when they are in the vicinity of miR-30c-transduced MSCs. DISCUSSION AND CONCLUSION We demonstrated that downregulation of miR-30c was significantly correlated with CRC progression and survival. So, the present study elucidated the anticancer effects of miR-30c in CRC and presented a novel target for CRC therapy.
Collapse
|
105
|
Martínez-Peña AA, Lee K, Pereira M, Ayyash A, Petrik JJ, Hardy DB, Holloway AC. Prenatal Exposure to Delta-9-tetrahydrocannabinol (THC) Alters the Expression of miR-122-5p and Its Target Igf1r in the Adult Rat Ovary. Int J Mol Sci 2022; 23:ijms23148000. [PMID: 35887347 PMCID: PMC9323798 DOI: 10.3390/ijms23148000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
As cannabis use during pregnancy increases, it is important to understand its effects on the developing fetus. Particularly, the long-term effects of its psychoactive component, delta-9-tetrahydrocannabinol (THC), on the offspring’s reproductive health are not fully understood. This study examined the impact of gestational THC exposure on the miRNA profile in adult rat ovaries and the possible consequences on ovarian health. Prenatal THC exposure resulted in the differential expression of 12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-122-5p, which is highly conserved among species, was the only upregulated target and had the greatest fold change. The upregulation of miR-122-5p and the downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-positive follicular cells and increased follicular apoptosis. Furthermore, THC decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As decreased IGF-1R has been associated with diminished ovarian health and fertility, we propose that these THC-induced changes may partially explain the altered ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our data suggests that prenatal THC exposure may impact key pathways in the developing ovary, which could lead to subfertility or premature reproductive senescence.
Collapse
Affiliation(s)
- Annia A. Martínez-Peña
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.A.M.-P.); (A.A.)
| | - Kendrick Lee
- The Children’s Health Research Institute, The Lawson Health Research Institute, Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada; (K.L.); (D.B.H.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.P.); (J.J.P.)
| | - Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.A.M.-P.); (A.A.)
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.P.); (J.J.P.)
| | - Daniel B. Hardy
- The Children’s Health Research Institute, The Lawson Health Research Institute, Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada; (K.L.); (D.B.H.)
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.A.M.-P.); (A.A.)
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 22130)
| |
Collapse
|
106
|
Kabir MH, Guindo ML, Chen R, Sanaeifar A, Liu F. Application of Laser-Induced Breakdown Spectroscopy and Chemometrics for the Quality Evaluation of Foods with Medicinal Properties: A Review. Foods 2022; 11:2051. [PMID: 35885291 PMCID: PMC9321926 DOI: 10.3390/foods11142051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Laser-induced Breakdown Spectroscopy (LIBS) is becoming an increasingly popular analytical technique for characterizing and identifying various products; its multi-element analysis, fast response, remote sensing, and sample preparation is minimal or nonexistent, and low running costs can significantly accelerate the analysis of foods with medicinal properties (FMPs). A comprehensive overview of recent advances in LIBS is presented, along with its future trends, viewpoints, and challenges. Besides reviewing its applications in both FMPs, it is intended to provide a concise description of the use of LIBS and chemometrics for the detection of FMPs, rather than a detailed description of the fundamentals of the technique, which others have already discussed. Finally, LIBS, like conventional approaches, has some limitations. However, it is a promising technique that may be employed as a routine analysis technique for FMPs when utilized effectively.
Collapse
Affiliation(s)
- Muhammad Hilal Kabir
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
- Department of Agricultural and Bio-Resource Engineering, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Mahamed Lamine Guindo
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
| | - Alireza Sanaeifar
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
107
|
Yi C, Yu AM. MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Front Mol Biosci 2022; 9:893846. [PMID: 35755805 PMCID: PMC9220936 DOI: 10.3389/fmolb.2022.893846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Altered metabolism, such as aerobic glycolysis or the Warburg effect, has been recognized as characteristics of tumor cells for almost a century. Since then, there is accumulating evidence to demonstrate the metabolic reprogramming of tumor cells, addiction to excessive uptake and metabolism of key nutrients, to support rapid proliferation and invasion under tumor microenvironment. The solute carrier (SLC) superfamily transporters are responsible for influx or efflux of a wide variety of xenobiotic and metabolites that are needed for the cells to function, as well as some medications. To meet the increased demand for nutrients and energy, SLC transporters are frequently dysregulated in cancer cells. The SLCs responsible for the transport of key nutrients for cancer metabolism and energetics, such as glucose and amino acids, are of particular interest for their roles in tumor progression and metastasis. Meanwhile, rewired metabolism is accompanied by the dysregulation of microRNAs (miRNAs or miRs) that are small, noncoding RNAs governing posttranscriptional gene regulation. Studies have shown that many miRNAs directly regulate the expression of specific SLC transporters in normal or diseased cells. Changes of SLC transporter expression and function can subsequently alter the uptake of nutrients or therapeutics. Given the important role for miRNAs in regulating disease progression, there is growing interest in developing miRNA-based therapies, beyond serving as potential diagnostic or prognostic biomarkers. In this article, we discuss how miRNAs regulate the expression of SLC transporters and highlight potential influence on the supply of essential nutrients for cell metabolism and drug exposure toward desired efficacy.
Collapse
Affiliation(s)
- Colleen Yi
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
108
|
Recent Deep Learning Methodology Development for RNA–RNA Interaction Prediction. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetic regulation of organisms involves complicated RNA–RNA interactions (RRIs) among messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). Detecting RRIs is beneficial for discovering biological mechanisms as well as designing new drugs. In recent years, with more and more experimentally verified RNA–RNA interactions being deposited into databases, statistical machine learning, especially recent deep-learning-based automatic algorithms, have been widely applied to RRI prediction with remarkable success. This paper first gives a brief introduction to the traditional machine learning methods applied on RRI prediction and benchmark databases for training the models, and then provides a recent methodology overview of deep learning models in the prediction of microRNA (miRNA)–mRNA interactions and long non-coding RNA (lncRNA)–miRNA interactions.
Collapse
|
109
|
The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022; 14:cancers14133086. [PMID: 35804857 PMCID: PMC9264817 DOI: 10.3390/cancers14133086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma arises from a malignant transformation of the melanocytes in the skin. It is the deadliest form of skin cancer owing to its potential to metastasize. While recent advances in immuno-oncology have been successful in melanoma treatment, not all the patients respond to the treatment equally, thus individual pre-screening and personalized combination therapies are essential to stratify and monitor patients. Extracellular vesicles (EVs) have emerged as promising biomarker candidates to tackle these challenges. EVs are ~50-1000-nm-sized, lipid bilayer-enclosed spheres, which are secreted by almost all cell types, including cancer cells. Their cargo, such as nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred to target cells. Thanks to these properties, EVs can both provide a multiplexed molecular fingerprint of the cell of origin and thus serve as potential biomarkers, or reveal pathways important for cancer progression that can be targeted pharmaceutically. In this review we give a general overview of EVs and focus on their impact on melanoma progression. In particular, we shed light on the role of EVs in shaping the tumor-stroma interactions that facilitate metastasis and summarize the latest findings on molecular profiling of EV-derived miRNAs and proteins that can serve as potential biomarkers for melanoma progression.
Collapse
|
110
|
hnRNPC induces isoform shifts in miR-21-5p leading to cancer development. Exp Mol Med 2022; 54:812-824. [PMID: 35729324 PMCID: PMC9256715 DOI: 10.1038/s12276-022-00792-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA) processing is a critical step in mature miRNA production. Its dysregulation leads to an increase in miRNA isoforms with heterogenous 5'-ends (isomiRs), which can recognize distinct target sites because of their shifted seed sequence. Although some miRNA genes display productive expression of their 5'-isomiRs in cancers, how their production is controlled and how 5'-isomiRs affect tumor progression have yet to be explored. In this study, based on integrative analyses of high-throughput sequencing data produced by our group and publicly available data, we demonstrate that primary miR-21 (pri-miR-21) is processed into the cancer-specific isomiR isomiR-21-5p | ±1, which suppresses growth hormone receptor (GHR) in liver cancer. Treatment with antagomirs against isomiR-21-5p | ±1 inhibited the in vitro tumorigenesis of liver cancer cells and allowed the recovery of GHR, whereas the introduction of isomiR-21-5p | ±1 mimics attenuated these effects. These effects were validated in a mouse model of spontaneous liver cancer. Heterogeneous nuclear ribonucleoprotein C and U2 small nuclear RNA auxiliary factor 2 were predicted to bind upstream of pre-miR-21 via a poly-(U) motif and influence Drosha processing to induce the production of isomiR-21-5p | ±1. Our findings suggest an oncogenic function for the non-canonical isomiR-21-5p | ±1 in liver cancer, and its production was shown to be regulated by hnRNPC.
Collapse
|
111
|
Kabiraj L, Kundu A. Potential role of microRNAs in pancreatic cancer manifestation: a review. J Egypt Natl Canc Inst 2022; 34:26. [PMID: 35718815 DOI: 10.1186/s43046-022-00127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer cells are different from normal cells in regard to phenotypic and functional expression. Cancer is the outcome of aberrant gene expression affecting various cellular signaling pathways. MicroRNAs (MiRs) are small, non-coding RNAs regulating the expression of various protein-coding genes post-transcriptionally and are known to play critical roles in the complicated cellular pathways leading to cell growth, proliferation, development, and apoptosis. MiRs are involved in various cancer-related pathways and function both as tumor suppressor and cancer-causing genes. There is a need for significant biomarkers, and better prognostication of response to a particular treatment and liquid biopsy could be useful to appraise such potential biomarkers. This review has focused on the involvement of anomalous expression of miRs in human pancreatic cancer and the investigation of miR-based biomarkers for disease diagnosis and better therapeutic selection.
Collapse
Affiliation(s)
- Lisa Kabiraj
- Department of Microbiology, Techno India University, EM-4, Sector-V, Salt Lake City, Kolkata, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Salt Lake City, Kolkata, 700091, India.
| |
Collapse
|
112
|
Clausen AR, Durand S, Petersen RL, Staunstrup NH, Qvist P. Circulating miRNAs as Potential Biomarkers for Patient Stratification in Bipolar Disorder: A Combined Review and Data Mining Approach. Genes (Basel) 2022; 13:1038. [PMID: 35741801 PMCID: PMC9222282 DOI: 10.3390/genes13061038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bipolar disorder is a debilitating psychiatric condition that is shaped in a concerted interplay between hereditary and triggering risk factors. Profound depression and mania define the disorder, but high clinical heterogeneity among patients complicates diagnosis as well as pharmacological intervention. Identification of peripheral biomarkers that capture the genomic response to the exposome may thus progress the development of personalized treatment. MicroRNAs (miRNAs) play a prominent role in of post-transcriptional gene regulation in the context of brain development and mental health. They are coordinately modulated by multifarious effectors, and alteration in their expression profile has been reported in a variety of psychiatric conditions. Intriguingly, miRNAs can be released from CNS cells and enter circulatory bio-fluids where they remain remarkably stable. Hence, peripheral circulatory miRNAs may act as bio-indicators for the combination of genetic risk, environmental exposure, and/or treatment response. Here we provide a comprehensive literature search and data mining approach that summarize current experimental evidence supporting the applicability of miRNAs for patient stratification in bipolar disorder.
Collapse
Affiliation(s)
- Alexandra R. Clausen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Simon Durand
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Rasmus L. Petersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Nicklas H. Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Blood Bank and Immunology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg, Denmark
| |
Collapse
|
113
|
Zhao Z, Lin S, Wu W, Zhang Z, Wu P, Shen M, Qian H, Guo X. A cypovirus encoded microRNA negatively regulates the NF-κB pathway to enhance viral multiplication in Silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104382. [PMID: 35245604 DOI: 10.1016/j.dci.2022.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as novel gene expression regulators at the post-transcriptional level. Not with standing that the biogenesis and function of miRNAs are well-understood in eukaryotes, little is known about RNA virus-encoded miRNAs. Bombyx mori cypovirus (BmCPV) is a double-stranded RNA virus with a segmented genome that causes cytoplasmic polyhedrosis disease in silkworm larvae. To date, the interaction between BmCPV and silkworm remains largely unclear. 22 candidate BmCPV-encoded miRNAs were identified in this study through small RNA sequencing, stem-loop RT-PCR and qRT-PCR. Then, generation and function analyses were conducted on one of the candidate miRNAs, BmCPV-miR-1, in the BmN cells and the silkworm larvae by RNA interference, quantitative PCR, dual-luciferase assay. Our results revealed that BmCPV-miR-1 was encoded by BmCPV genome RNA rather than the degraded fragments of the viral genome. Its generation depended on Dicer-1 and might also be correlated with Dicer-2, Argonaute-1 and Argonaute-2. Moreover, BmCPV-miR-1 could suppress the expression of the target gene, B. mori inhibitor of nuclear factor kappa-B kinase subunit beta (BmIKKβ), via binding to the target mRNA 3'-untranslated region, which fine-tuned the host NF-κB signaling pathway and consequently enhanced viral replication. Our results provide new evidence supporting the hypothesis that RNA viruses could generate miRNAs to modulate antiviral host defense.
Collapse
Affiliation(s)
- Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China.
| |
Collapse
|
114
|
Duan Y, Veksler-Lublinsky I, Ambros V. Critical contribution of 3' non-seed base pairing to the in vivo function of the evolutionarily conserved let-7a microRNA. Cell Rep 2022; 39:110745. [PMID: 35476978 PMCID: PMC9161110 DOI: 10.1016/j.celrep.2022.110745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/21/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Base pairing of the seed region (g2–g8) is essential for microRNA targeting; however, the in vivo function of the 3′ non-seed region (g9–g22) is less well understood. Here, we report a systematic investigation of the in vivo roles of 3′ non-seed nucleotides in microRNA let-7a, whose entire g9–g22 region is conserved among bilaterians. We find that the 3′ non-seed sequence functionally distinguishes let-7a from its family paralogs. The complete pairing of g11–g16 is essential for let-7a to fully repress multiple key targets, including evolutionarily conserved lin-41, daf-12, and hbl-1. Nucleotides at g17–g22 are less critical but may compensate for mismatches in the g11–g16 region. Interestingly, a certain minimal complementarity to let-7a 3′ non-seed sequence can be required even for sites with perfect seed pairing. These results provide evidence that the specific configurations of both seed and 3′ non-seed base pairing can critically influence microRNA-mediated gene regulation in vivo. Duan et al. find that microRNA-target pairing at g11–g16 is critical for the function of evolutionarily conserved microRNA let-7a; 3′ pairing is required for both perfect and imperfect seed in regulating multiple targets. These findings provide evidence that base pairing of specific microRNA non-seed nucleotides can critically contribute to target regulation.
Collapse
Affiliation(s)
- Ye Duan
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
115
|
Oshinubi K, Fougère C, Demongeot J. A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak. Infect Dis Rep 2022; 14:321-340. [PMID: 35645217 PMCID: PMC9150002 DOI: 10.3390/idr14030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022] Open
Abstract
The end of the acute phase of the COVID-19 pandemic is near in some countries as declared by World Health Organization (WHO) in January 2022 based on some studies in Europe and South Africa despite unequal distribution of vaccines to combat the disease spread globally. The heterogeneity in individual age and the reaction to biological and environmental changes that has been observed in COVID-19 dynamics in terms of different reaction to vaccination by age group, severity of infection per age group, hospitalization and Intensive Care Unit (ICU) records show different patterns, and hence, it is important to improve mathematical models for COVID-19 pandemic prediction to account for different proportions of ages in the population, which is a major factor in epidemic history. We aim in this paper to estimate, using the Usher model, the lifespan loss due to viral infection and ageing which could result in pathological events such as infectious diseases. Exploiting epidemiology and demographic data firstly from Cameroon and then from some other countries, we described the ageing in the COVID-19 outbreak in human populations and performed a graphical representation of the proportion of sensitivity of some of the model parameters which we varied. The result shows a coherence between the orders of magnitude of the calculated and observed incidence numbers during the epidemic wave, which constitutes a semi-quantitative validation of the mathematical modelling approach at the population level. To conclude, the age heterogeneity of the populations involved in the COVID-19 outbreak needs the consideration of models in age groups with specific susceptibilities to infection.
Collapse
|
116
|
Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23094493. [PMID: 35562884 PMCID: PMC9104172 DOI: 10.3390/ijms23094493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy.
Collapse
|
117
|
Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics' Toolbox. Biomedicines 2022; 10:915. [PMID: 35453665 PMCID: PMC9029477 DOI: 10.3390/biomedicines10040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-RNA (miRNAs) are short non-coding RNAs of about 18-20 nucleotides in length and are implicated in many cellular processes including proliferation, development, differentiation, apoptosis and cell signaling. Furthermore, it is well known that miRNA expression is frequently dysregulated in many cancers. Therefore, this review will highlight the various mechanisms by which microRNAs are dysregulated in cancer. Further highlights include the abundance of molecular genetics tools that are currently available to study miRNA function as well as their advantages and disadvantages with a special focus on various CRISPR/Cas systems This review provides general workflows and some practical considerations when studying miRNA function thus enabling researchers to make informed decisions in regards to the appropriate molecular genetics tool to be utilized for their experiments.
Collapse
Affiliation(s)
- Adam Azlan
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Khor Kang Zi
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Aliaa Arina Rosli
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mot Yee Yik
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Prinses Máxima Centrum Voor Kinderoncologie Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Emmanuel Jairaj Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
118
|
Elevated Expression of miR-200c/141 in MDA-MB-231 Cells Suppresses MXRA8 Levels and Impairs Breast Cancer Growth and Metastasis In Vivo. Genes (Basel) 2022; 13:genes13040691. [PMID: 35456497 PMCID: PMC9032019 DOI: 10.3390/genes13040691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cells with mesenchymal characteristics, particularly the claudin-low subtype, express extremely low levels of miR-200s. Therefore, this study examined the functional impact of restoring miR-200 expression in a human claudin-low breast cancer cell line MDA-MB-231. MDA-MB-231 cells were stably transfected with a control vector (MDA-231EV) or the miR-200c/141 cluster (MDA-231c141). Injection of MDA-231c141 cells into the 4th mammary gland of NCG mice produced tumors that developed significantly slower than tumors produced by MDA-231EV cells. Spontaneous metastasis to the lungs was also significantly reduced in MDA-231c141 cells compared to MDA-231EV cells. RNA sequencing of MDA-231EV and MDA-231c141 tumors identified genes including MXRA8 as being downregulated in the MDA-231c141 tumors. MXRA8 was further investigated as elevated levels of MXRA8 were associated with reduced distant metastasis free survival in breast cancer patients. Quantitative RT-PCR and Western blotting confirmed that MXRA8 expression was significantly higher in mammary tumors induced by MDA-231EV cells compared to those induced by MDA-231c141 cells. In addition, MXRA8 protein was present at high levels in metastatic tumor cells found in the lungs. This is the first study to implicate MXRA8 in human breast cancer, and our data suggests that miR-200s inhibit growth and metastasis of claudin-low mammary tumor cells in vivo through downregulating MXRA8 expression.
Collapse
|
119
|
Wang LJ, Qiu BQ, Yuan MM, Zou HX, Gong CW, Huang H, Lai SQ, Liu JC. Identification and Validation of Dilated Cardiomyopathy-Related Genes via Bioinformatics Analysis. Int J Gen Med 2022; 15:3663-3676. [PMID: 35411175 PMCID: PMC8994656 DOI: 10.2147/ijgm.s350954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Dilated cardiomyopathy (DCM) is a type of cardiomyopathy that can easily cause heart failure and has a high mortality rate. Therefore, there is an urgent need to study the underlying mechanism of action of dilated cardiomyopathy. In the present study, we aimed to explore potential miRNA–mRNA pairs and drugs related to DCM. Methods The Microarray data were collected from the Gene Expression Omnibus (GEO) database. Bioinformatics analysis differentially expressed miRNAs and mRNAs in each microarray were obtained. The target genes of miRNAs were obtained from the miRWalk 2.0 database, and the intersection of these two gene sets (miRNA target genes and differentially expressed mRNAs in the microarray) was obtained. Pathway and Gene Ontology (GO) enrichment analyses were performed in the KOBAS database. Cytoscape software was used to construct the miRNA–mRNA network, and the final hub genes were obtained. Furthermore, we predicted several candidate drugs related to hub genes using DSigDB database. To confirm the abnormal expression of hub genes, qRT-PCR was performed. Results In total, eight differentially expressed miRNAs and 92 differentially expressed mRNAs were identified. In addition, 47 differentially expressed miRNA target genes were identified. According to the analysis results of the miRNA-mRNA network, we identified hsa-miR-551b-3p, hsa-miR-770-5p, hsa-miR-363-3p, PIK3R1, DDIT4, and CXCR4 as hub genes in DCM. Several candidate drugs, which are related to the hug genes, were identified. Conclusion In conclusion, in our study, we identified several hub genes that may be involved in the pathogenesis of DCM. Several drugs related to these hub genes may be used as clinical therapeutic candidates.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Cheng-Wu Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Song-Qing Lai, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13699562160, Email
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Ji-Chun Liu, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13907913502, Email
| |
Collapse
|
120
|
Dai W, Su X, Zhang B, Wu K, Zhao P, Yan Z. An Alternative Class of Targets for microRNAs Containing CG Dinucleotide. BIOLOGY 2022; 11:biology11030478. [PMID: 35336851 PMCID: PMC8945436 DOI: 10.3390/biology11030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary MicroRNAs are ~23 nt, highly conserved non-coding RNA molecules involved in the regulation of target gene expression. Most of the microRNA-target prediction algorithms rely heavily on seed rules and evolutionary conservation. However, such strategies suffer from missing the non-canonical target sites. The aim of this study is to identify the general features of non-canonical targets and their interactions with microRNAs. We found that the bulge-targets were preferentially associated with the microRNAs containing CG dinucleotides in their seed region. This finding indicates that non-canonical targets could be rich due to high mutation frequency of CG within the target mRNAs. Multi-step validation, which included evolutionary, overexpression, correlation, and CLASH data analysis, supports the interactome between the microRNAs with CG dinucleotides in the seed region and their bugle targets. Thus, a major novelty of this work is the identification of a sequence motif, CG dinucleotides, in the seed region of microRNAs, is strongly correlated to bulge targeting patterns. Abstract MicroRNAs (miRNAs) are endogenous ~23 nt RNAs which regulate message RNA (mRNA) targets mainly through perfect pairing with their seed region (positions 2–7). Several instances of UTR sequence with an additional nucleotide that might form a bulge within the pairing region, can also be recognized by miRNA as their target (bugle-target). But the prevalence of such imperfect base pairings in human and their roles in the evolution are incompletely understood. We found that human miRNAs with the CG dinucleotides (CG dimer) in their seed region have a significant low mutation rate than their putative binding sites in mRNA targets. Interspecific comparation shows that these miRNAs had very few conservative targets with the perfect seed-pairing, while potentially having a subclass of bulge-targets. Compared with the canonical target (perfect seed-pairing), these bulge-targets had a lower negative correlation with the miRNA expression, and either were down-regulated in the miRNA overexpression experiment or up-regulated in the miRNA knock-down experiment. Our results show that the bulge-targets are widespread in the miRNAs with CG dinucleotide within their seed regions, which could in part explain the rare conserved targets of these miRNAs based on seed rule. Incorporating these bulge-targets, together with conservation information, could more accurately predict the entire targets of these miRNAs.
Collapse
Affiliation(s)
- Wennan Dai
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
| | - Xin Su
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
| | - Bin Zhang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Kejing Wu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (P.Z.); (Z.Y.)
| | - Zheng Yan
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China; (W.D.); (X.S.)
- Correspondence: (P.Z.); (Z.Y.)
| |
Collapse
|
121
|
Ober-Reynolds B, Becker WR, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. High-throughput biochemical profiling reveals functional adaptation of a bacterial Argonaute. Mol Cell 2022; 82:1329-1342.e8. [PMID: 35298909 PMCID: PMC9158488 DOI: 10.1016/j.molcel.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/10/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022]
Abstract
Argonautes are nucleic acid-guided proteins that perform numerous cellular functions across all domains of life. Little is known about how distinct evolutionary pressures have shaped each Argonaute's biophysical properties. We applied high-throughput biochemistry to characterize how Thermus thermophilus Argonaute (TtAgo), a DNA-guided DNA endonuclease, finds, binds, and cleaves its targets. We found that TtAgo uses biophysical adaptations similar to those of eukaryotic Argonautes for rapid association but requires more extensive complementarity to achieve high-affinity target binding. Using these data, we constructed models for TtAgo association rates and equilibrium binding affinities that estimate the nucleic acid- and protein-mediated components of the target interaction energies. Finally, we showed that TtAgo cleavage rates vary widely based on the DNA guide, suggesting that only a subset of guides cleaves targets on physiologically relevant timescales.
Collapse
Affiliation(s)
| | - Winston R Becker
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Karina Jouravleva
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Samson M Jolly
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
122
|
Zhuang H, Fan X, Ji D, Wang Y, Fan J, Li M, Ni D, Lu S, Li X, Chai Z. Elucidation of the conformational dynamics and assembly of Argonaute-RNA complexes by distinct yet coordinated actions of the supplementary microRNA. Comput Struct Biotechnol J 2022; 20:1352-1365. [PMID: 35356544 PMCID: PMC8933676 DOI: 10.1016/j.csbj.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Argonaute (AGO) proteins, the core of RNA-induced silencing complex, are guided by microRNAs (miRNAs) to recognize target RNA for repression. The miRNA-target RNA recognition forms initially through pairing at the seed region while the additional supplementary pairing can enhance target recognition and compensate for seed mismatch. The extension of miRNA lengths can strengthen the target affinity when pairing both in the seed and supplementary regions. However, the mechanism underlying the effect of the supplementary pairing on the conformational dynamics and the assembly of AGO-RNA complex remains poorly understood. To address this, we performed large-scale molecular dynamics simulations of AGO-RNA complexes with different pairing patterns and miRNA lengths. The results reveal that the additional supplementary pairing can not only strengthen the interaction between miRNA and target RNA, but also induce the increased plasticity of the PAZ domain and enhance the domain connectivity among the PAZ, PIWI, N domains of the AGO protein. The strong community network between these domains tightens the mouth of the supplementary chamber of AGO protein, which prevents the escape of target RNA from the complex and shields it from solvent water attack. Importantly, the inner stronger matching pairs between the miRNA and target RNA can compensate for weaker mismatches at the edge of supplementary region. These findings provide guidance for the design of miRNA mimics and anti-miRNAs for both clinical and experimental use and open the way for further engineering of AGO proteins as a new tool in the field of gene regulation.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaohua Fan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yuanhao Wang
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai 201104, China
| |
Collapse
|
123
|
Hong YM, Min SY, Kim D, Kim S, Seo D, Lee KH, Han SH. Human MicroRNAs Attenuate the Expression of Immediate Early Proteins and HCMV Replication during Lytic and Latent Infection in Connection with Enhancement of Phosphorylated RelA/p65 (Serine 536) That Binds to MIEP. Int J Mol Sci 2022; 23:ijms23052769. [PMID: 35269913 PMCID: PMC8911160 DOI: 10.3390/ijms23052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3′-untranslated region (3′-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3′-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3′-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p—together with p-Ser536 RelA/p65—can prevent lytic HCMV replication during acute and latent infection
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Seo Yeon Min
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Dayeong Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Subin Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Daekwan Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
- Correspondence: ; Tel.: +82-2-2019-3319; Fax: +82-2-3463-3882
| |
Collapse
|
124
|
Wang N, Liu X, Tang Z, Wei X, Dong H, Liu Y, Wu H, Wu Z, Li X, Ma X, Guo Z. Increased BMSC exosomal miR-140-3p alleviates bone degradation and promotes bone restoration by targeting Plxnb1 in diabetic rats. J Nanobiotechnology 2022; 20:97. [PMID: 35236339 PMCID: PMC8889728 DOI: 10.1186/s12951-022-01267-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diabetes mellitus (DM) is considered to be an important factor for bone degeneration disorders such as bone defect nonunion, which is characterized by physical disability and tremendous economy cost to families and society. Exosomal miRNAs of BMSCs have been reported to participate in osteoblastogenesis and modulating bone formation. However, their impacts on the development of bone degeneration in DM are not yet known. The role of miRNAs in BMSCs exosomes on regulating hyperglycemia bone degeneration was investigated in the present study. Results The osteogenic potential in bone defect repair of exosomes derived from diabetes mellitus BMSCs derived exosomes (DM-Exos) were revealed to be lower than that in normal BMSCs derived exosomes (N-Exos) in vitro and in vivo. Here, we demonstrate that miR-140-3p level was significantly altered in exosomes derived from BMSCs, ADSCs and serum from DM rats. In in vitro experiments, upregulated miR-140-3p exosomes promoted DM BMSCs differentiation into osteoblasts. The effects were exerted by miR-140-3p targeting plxnb1, plexin B1 is the receptor of semaphoring 4D(Sema4D) that inhibited osteocytes differentiation, thereby promoting bone formation. In DM rats with bone defect, miR-140-3p upregulated exosomes were transplanted into injured bone and accelerated bone regeneration. Besides, miR-140-3p in the exosomes was transferred into BMSCs and osteoblasts and promoted bone regeneration by targeting the plexin B1/RohA/ROCK signaling pathway. Conclusions Normal-Exos and miR-140-3p overexpressed-Exos accelerated diabetic wound healing by promoting the osteoblastogenesis function of BMSCs through inhibition plexin B1 expression which is the receptor of Sema4D and the plexin B1/RhoA/ROCK pathway compared with diabetes mellitus-Exos. This offers a new insight and a new therapy for treating diabetic bone unhealing. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01267-2.
Collapse
Affiliation(s)
- Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xuanchen Liu
- Department of Nutrition, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xinghui Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hui Dong
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yichao Liu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhigang Wu
- Department of Orthopedics, The 63750 Hospital of People's Liberation Army, Xi'an, 710043, Shaanxi, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
125
|
McGeary SE, Bisaria N, Pham TM, Wang PY, Bartel DP. MicroRNA 3'-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. eLife 2022; 11:e69803. [PMID: 35191832 PMCID: PMC8940178 DOI: 10.7554/elife.69803] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs), in association with Argonaute (AGO) proteins, direct repression by pairing to sites within mRNAs. Compared to pairing preferences of the miRNA seed region (nucleotides 2-8), preferences of the miRNA 3' region are poorly understood, due to the sparsity of measured affinities for the many pairing possibilities. We used RNA bind-n-seq with purified AGO2-miRNA complexes to measure relative affinities of >1000 3'-pairing architectures for each miRNA. In some cases, optimal 3' pairing increased affinity by >500 fold. Some miRNAs had two high-affinity 3'-pairing modes-one of which included additional nucleotides bridging seed and 3' pairing to enable high-affinity pairing to miRNA nucleotide 11. The affinity of binding and the position of optimal pairing both tracked with the occurrence of G or oligo(G/C) nucleotides within the miRNA. These and other results advance understanding of miRNA targeting, providing insight into how optimal 3' pairing is determined for each miRNA.
Collapse
Affiliation(s)
- Sean E McGeary
- Howard Hughes Medical InstituteCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Namita Bisaria
- Howard Hughes Medical InstituteCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Thy M Pham
- Howard Hughes Medical InstituteCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Peter Y Wang
- Howard Hughes Medical InstituteCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - David P Bartel
- Howard Hughes Medical InstituteCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
126
|
Abbas A, Shah AN, Tanveer M, Ahmed W, Shah AA, Fiaz S, Waqas MM, Ullah S. MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools. Mol Biol Rep 2022; 49:5437-5450. [PMID: 35182321 DOI: 10.1007/s11033-022-07231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
MiRNAs modulate target genes expression at post-transcriptional levels, by reducing spatial abundance of mRNAs. MiRNAs regulats plant metabolism, and emerged as regulators of plant stress responses. Which make miRNAs promising candidates for fine tuning to affectively alter crop stress tolerance and other important traits. With recent advancements in the computational biology and biotechnology miRNAs structure and target prediction is possible resulting in pin point editing; miRNA modulation can be done by up or down regulating miRNAs using recently available biotechnological tools (CRISPR Cas9, TALENS and RNAi). In this review we have focused on miRNA biogenesis, miRNA roles in plant development, plant stress responses and roles in signaling pathways. Additionally we have discussed latest computational prediction models for miRNA to target gene interaction and biotechnological systems used recently for miRNA modulation. We have also highlighted setbacks and limitations in the way of miRNA modulation; providing entirely a new direction for improvement in plant genomics primarily focusing miRNAs.
Collapse
Affiliation(s)
- Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan.
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Waseem Ahmed
- Department of Horticulture, The University of Haripur, Hatatr Road, Haripur, 22620, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
127
|
A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation. Sci Rep 2022; 12:2834. [PMID: 35181712 PMCID: PMC8857176 DOI: 10.1038/s41598-022-06876-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which play a critical role in the regulation of gene expression in cells. It is known that miRNAs are often expressed as multiple isoforms, called isomiRs, which may have alternative regulatory functions. Despite the recent development of several single cell small RNA sequencing protocols, these methods have not been leveraged to investigate isomiR expression and regulation to better understand their role on a single cell level. Here we integrate sequencing data from three independent studies and find substantial differences in isomiR composition that suggest that cell autonomous mechanisms may drive isomiR processing. We also find evidence of altered regulatory functions of different classes of isomiRs, when compared to their respective wild-type miRNA, which supports a biological role for many of the isomiRs that are expressed.
Collapse
|
128
|
Kataruka S, Kinterova V, Horvat F, Kulmann MIR, Kanka J, Svoboda P. Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant. EMBO Rep 2022; 23:e53514. [PMID: 34866300 PMCID: PMC8811628 DOI: 10.15252/embr.202153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.
Collapse
Affiliation(s)
- Shubhangini Kataruka
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
- Bioinformatics GroupFaculty of ScienceUniversity of ZagrebZagrebCroatia
| | | | - Jiri Kanka
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of SciencesPrague 4Czech Republic
| |
Collapse
|
129
|
Czarnek M, Stalińska K, Sarad K, Bereta J. shRNAs targeting mouse Adam10 diminish cell response to proinflammatory stimuli independently of Adam10 silencing. Biol Open 2022; 11:274200. [PMID: 35107128 PMCID: PMC8905717 DOI: 10.1242/bio.059092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference is one of the common methods of studying protein functions. In recent years critical reports have emerged indicating that off-target effects may have a much greater impact on RNAi-based analysis than previously assumed. We studied the influence of Adam10 and Adam17 silencing on MC38CEA cell response to proinflammatory stimuli. Eight lentiviral vector-encoded shRNAs that reduced ADAM10 expression, including two that are specific towards ADAM17, caused inhibition of cytokine-induced Nos2 expression presumably via off-target effects. ADAM10 silencing was not responsible for this effect because: (i) CRISPR/Cas9 knockdown of ADAM10 did not affect Nos2 levels; (ii) ADAM10 inhibitor increased rather than decreased Nos2 expression; (iii) overexpression of ADAM10 in the cells with shRNA-silenced Adam10 did not reverse the effect induced by shRNA; (iv) shRNA targeting ADAM10 resulted in decrease of Nos2 expression even in ADAM10-deficient cells. The studied shRNAs influenced transcription of Nos2 rather than stability of Nos2 mRNA. They also affected stimulation of Ccl2 and Ccl7 expression. Additionally, we used vectors with doxycycline-inducible expression of chosen shRNAs and observed reduced activation of NF-κB and, to a lesser extent, AP-1 transcription factors. We discuss the requirements of strict controls and verification of results with complementary methods for reliable conclusions of shRNA-based experiments. Summary: Use of several specific shRNAs is not enough to escape a pitfall of their off-target activity: the case of Adam10 and Adam17 silencing.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
130
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
131
|
Sobrero M, Montecucco F, Carbone F. Circulating MicroRNAs for Diagnosis of Acute Pulmonary Embolism: Still a Long Way to Go. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4180215. [PMID: 35047634 PMCID: PMC8763471 DOI: 10.1155/2022/4180215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Venous thromboembolism (VTE) represents the third most frequent cause of acute cardiovascular syndrome. Among VTE, acute pulmonary embolism (APE) is the most life-threatening complication. Due to the low specificity of symptoms clinical diagnosis of APE may be sometimes very difficult. Accordingly, the latest European guidelines only suggest clinical prediction tests for diagnosis of APE, eventually associated with D-dimer, a biomarker burdened by a very low specificity. A growing body of evidence is highlighting the role of miRNAs in hemostasis and thrombosis. Due to their partial inheritance and susceptibility to the environmental factors, miRNAs are increasingly described as active modifiers of the classical Virchow's triad. Clinical evidence on deep venous thrombosis reported specific miRNA signatures associated to thrombosis development, organization, recanalization, and resolution. Conversely, data of miRNA profiling as a predictor/diagnostic marker of APE are still preliminary. Here, we have summarized clinical evidence on the potential role of miRNA in diagnosis of APE. Despite some intriguing insight, miRNA assay is still far from any potential clinical application. Especially, the small sample size of cohorts likely represents the major limitation of published studies, so that extensive analysis of miRNA profiles with a machine learning approach are warranted in the next future. In addition, the cost-benefit ratio of miRNA assay still has a negative impact on their clinical application and routinely test.
Collapse
Affiliation(s)
- Matteo Sobrero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| |
Collapse
|
132
|
Abstract
Tiny single-stranded noncoding RNAs with size 19-27 nucleotides serve as microRNAs (miRNAs), which have emerged as key gene regulators in the last two decades. miRNAs serve as one of the hallmarks in regulatory pathways with critical roles in human diseases. Ever since the discovery of miRNAs, researchers have focused on how mature miRNAs are produced from precursor mRNAs. Experimental methods are faced with notorious challenges in terms of experimental design, since it is time consuming and not cost-effective. Hence, different computational methods have been employed for the identification of miRNA sequences where most of them labeled as miRNA predictors are in fact pre-miRNA predictors and provide no information about the putative miRNA location within the pre-miRNA. This chapter provides an update and the current state of the art in this area covering various methods and 15 software suites used for prediction of mature miRNA.
Collapse
Affiliation(s)
- Malik Yousef
- Department of Information System, Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
| | - Alisha Parveen
- Rudolf‑Zenker Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Abhishek Kumar
- Institute of Bioinformatics, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| |
Collapse
|
133
|
Abstract
MicroRNAs (miRNAs) are small noncoding elements that play essential roles in the posttranscriptional regulation of biochemical processes. miRNAs recognize and target multiple mRNAs; therefore, investigating miRNA dysregulation is an indispensable strategy to understand pathological conditions and to design innovative drugs. Targeting miRNAs in diseases improve outcomes of several therapeutic strategies thus, this present study highlights miRNA targeting methods through experimental assays and bioinformatics tools. The first part of this review focuses on experimental miRNA targeting approaches for elucidating key biochemical pathways. A growing body of evidence about the miRNA world reveals the fact that it is not possible to uncover these molecules' structural and functional characteristics related to the biological processes with a deterministic approach. Instead, a systemic point of view is needed to truly understand the facts behind the natural complexity of interactions and regulations that miRNA regulations present. This task heavily depends both on computational and experimental capabilities. Fortunately, several miRNA bioinformatics tools catering to nonexperts are available as complementary wet-lab approaches. For this purpose, this work provides recent research and information about computational tools for miRNA targeting research.
Collapse
Affiliation(s)
- Hossein Ghanbarian
- Biotechnology Department & Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehmet Taha Yıldız
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy & Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, Turkey.
| |
Collapse
|
134
|
Dweep H, Showe LC, Kossenkov AV. Functional Annotation of MicroRNAs Using Existing Resources. Methods Mol Biol 2022; 2257:57-77. [PMID: 34432273 DOI: 10.1007/978-1-0716-1170-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs that are involved in most biological signaling pathways, including the cell cycle, apoptosis, proliferation, immune response, metabolism as well as in biological processes including organ development and in human diseases like cancers. During the past two decades, high-throughput transcriptomic profiling using next generation sequencing and microarrays have been extensively utilized to identify differentially expressed miRNAs across different conditions and diseases. A natural extension of miRNA identification is to the process of functionally annotating known or predicted gene targets of those miRNAs and, by inference, revealing their potential influences on diverse biological pathways and functions. In this chapter, we provide a stepwise guideline on how to perform functional enrichment analyses on miRNAs of interest using publicly available resources such as miRWalk2.0.
Collapse
Affiliation(s)
- Harsh Dweep
- The Wistar Institute, Philadelphia, PA, USA.
| | | | | |
Collapse
|
135
|
Czarnek M, Sarad K, Karaś A, Kochan J, Bereta J. Non-targeting control for MISSION shRNA library silences SNRPD3 leading to cell death or permanent growth arrest. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:711-731. [PMID: 34703654 PMCID: PMC8517100 DOI: 10.1016/j.omtn.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
In parallel with the expansion of RNA interference (RNAi) techniques, accumulating evidence indicates that RNAi analyses might be seriously biased due to the off-target effects of gene-specific short hairpin RNAs (shRNAs). Our findings indicated that off-target effects of non-targeting shRNA comprise another source of misinterpreted shRNA-based data. We found that SHC016, which is one of two non-targeting shRNA controls for the MISSION (commercialized TRC) library, exerts deleterious effects that lead to elimination of the shRNA-coding cassette from the genomes of cultured murine and human cells. Here, we used a lentiviral vector with inducible SHC016 expression to confirm that this shRNA induces apoptosis in murine cells and senescence or mitotic catastrophe depending on the p53 status in human tumor cells. We identified the core spliceosomal protein, small nuclear ribonucleoprotein Sm D3 (SNRPD3), as a major SHC016 target in several cell lines and confirmed that CRISPRi knockdown of SNRPD3 mimics the effects of SHC016 expression in A549 and U251 cells. The overexpression of SNRPD3 rescued U251 cells from SHC016-induced mitotic catastrophe. Our findings disqualified non-targeting SHC016 shRNA and added a new premise to the discussion about the sources of uncertainty in RNAi results.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Sarad
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka Karaś
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
136
|
Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer's disease. Pharmacol Res 2021; 175:106018. [PMID: 34863823 DOI: 10.1016/j.phrs.2021.106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/Nrf2) is a pivotal facilitator of cytoprotective responses against the oxidative/electrophilic insults. Upon activation, Nrf2 induces transcription of a wide range of cytoprotective genes having antioxidant response element (ARE) in their promoter region. Dysfunction in Nrf2 signaling has been linked to the pathogenesis of AD and several studies have suggested that boosting Nrf2 expression/activity by genetic or pharmacological approaches is beneficial in AD. Among the diverse mechanisms that regulate the Nrf2 signaling, miRNAs-mediated regulation of Nrf2 has gained much attention in recent years. Several miRNAs have been reported to directly repress the post-transcriptional expression of Nrf2 and thereby negatively regulate the Nrf2-dependent cellular cytoprotective response in AD. Moreover, several Nrf2 targeting miRNAs are misregulated in AD brains. This review is focused on the role of misregulated miRNAs that directly target Nrf2, in AD pathophysiology. Here, alongside a general description of functional interactions between miRNAs and Nrf2, we have reviewed the evidence indicating the possible role of these miRNAs in AD pathogenesis.
Collapse
|
137
|
Cai Y, Zhang Y, Chen H, Sun XH, Zhang P, Zhang L, Liao MY, Zhang F, Xia ZY, Man RYK, Feinberg MW, Leung SWS. MicroRNA-17-3p suppresses NF-κB-mediated endothelial inflammation by targeting NIK and IKKβ binding protein. Acta Pharmacol Sin 2021; 42:2046-2057. [PMID: 33623121 PMCID: PMC8633290 DOI: 10.1038/s41401-021-00611-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/03/2021] [Indexed: 01/31/2023]
Abstract
Nuclear factor kappa B (NF-κB) activation contributes to many vascular inflammatory diseases. The present study tested the hypothesis that microRNA-17-3p (miR-17-3p) suppresses the pro-inflammatory responses via NF-κB signaling in vascular endothelium. Human umbilical vein endothelial cells (HUVECs), transfected with or without miR-17-3p agomir/antagomir, were exposed to lipopolysaccharide (LPS), and the inflammatory responses were determined. The cellular target of miR-17-3p was examined with dual-luciferase reporter assay. Mice were treated with miR-17-3p agomir and the degree of LPS-induced inflammation was determined. In HUVECs, LPS caused upregulation of miR-17-3p. Overexpression of miR-17-3p in HUVECs inhibited NIK and IKKβ binding protein (NIBP) protein expression and suppressed LPS-induced phosphorylation of inhibitor of kappa Bα (IκBα) and NF-κB-p65. The reduced NF-κB activity was paralleled by decreased protein levels of NF-κB-target gene products including pro-inflammatory cytokine [interleukin 6], chemokines [interleukin 8 and monocyte chemoattractant protein-1] and adhesion molecules [vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and E-selectin]. Immunostaining revealed that overexpression of miR-17-3p reduced monocyte adhesion to LPS-stimulated endothelial cells. Inhibition of miR-17-3p with antagomir has the opposite effect on LPS-induced inflammatory responses in HUVECs. The anti-inflammatory effect of miR-17-3p was mimicked by NIBP knockdown. In mice treated with LPS, miR-17-3p expression was significantly increased. Systemic administration of miR-17-3p for 3 days suppressed LPS-induced NF-κB activation and monocyte adhesion to endothelium in lung tissues of the mice. In conclusion, miR-17-3p inhibits LPS-induced NF-κB activation in HUVECs by targeting NIBP. The findings therefore suggest that miR-17-3p is a potential therapeutic target/agent in the management of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yin Cai
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Hui Chen
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xing-Hui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peng Zhang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Lu Zhang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Meng-Yang Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Zhang
- Department of Pharmacology, Medical College of Qingdao University, Qingdao, 266021, China
| | - Zheng-Yuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Ricky Ying-Keung Man
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Wai-Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
138
|
Sebestyén E, Nagy Á, Marosvári D, Rajnai H, Kajtár B, Deák B, Matolcsy A, Brandner S, Storhoff J, Chen N, Bagó AG, Bödör C, Reiniger L. Distinct miRNA Expression Signatures of Primary and Secondary Central Nervous System Lymphomas. J Mol Diagn 2021; 24:224-240. [DOI: 10.1016/j.jmoldx.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
|
139
|
Li R, Hu Z, Wang Z, Zhu T, Wang G, Gao B, Wang J, Deng X. miR-125a-5p promotes gastric cancer growth and invasion by regulating the Hippo pathway. J Clin Lab Anal 2021; 35:e24078. [PMID: 34708891 PMCID: PMC8649339 DOI: 10.1002/jcla.24078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study was carried out to explore the potential involvement of miR-125a-5p in the oncogenic effects of EphA2, TAZ, and TEAD2 and the activity of the Hippo signaling pathway in gastric cancer progression. METHODS In vitro transfection of miR-125a-5p mimics or inhibitors, qRT-PCR, colony formation assays, and cell invasion assays were used to assess the effect of miR-125a-5p on the growth and invasion in gastric cancer (GC). Male nude mice bearing tumors derived from human GC cells were used for evaluating the effects of miR-125a-5p on tumor growth. Luciferase reporter assay, immunofluorescence, immunohistochemistry, qRT-PCR, and immunoblotting were performed to explore the role of miR-125a-5p in the epithelial-mesenchymal transition (EMT) and association among miR-125a-5p, EphA2, TAZ, and TEAD2 in GC cells. RESULTS MiR-125a-5p enhanced GC cell viability and invasion in vitro, whereas inhibition of miR-125a-5p using a specific inhibitor and antagomir suppressed cancer cell invasion and tumor growth. Moreover, inhibition of miR-125a-5p reversed EMT in vitro. miR-125a-5p upregulated the expression of EphA2, TAZ, and TEAD2, promoted TAZ nuclear translocation, and induced changes in the activity of the Hippo pathway by enhancing the expression of TAZ target genes. Finally, miR-125a-5p was overexpressed in late-stage GCs, and positive correlations were observed with its targets EphA2, TAZ, and TEAD2. CONCLUSION miR-125a-5p can promote GC growth and invasion by upregulating the expression of EphA2, TAZ, and TEAD2.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhihao Hu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhuoyin Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tianyu Zhu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guojun Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bulang Gao
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jingtao Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiumei Deng
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
140
|
Quillet A, Anouar Y, Lecroq T, Dubessy C. Prediction methods for microRNA targets in bilaterian animals: Toward a better understanding by biologists. Comput Struct Biotechnol J 2021; 19:5811-5825. [PMID: 34765096 PMCID: PMC8567327 DOI: 10.1016/j.csbj.2021.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Because of their wide network of interactions, miRNAs have become the focus of many studies over the past decade, particularly in animal species. To streamline the number of potential wet lab experiments, the use of miRNA target prediction tools is currently the first step undertaken. However, the predictions made may vary considerably depending on the tool used, which is mostly due to the complex and still not fully understood mechanism of action of miRNAs. The discrepancies complicate the choice of the tool for miRNA target prediction. To provide a comprehensive view of this issue, we highlight in this review the main characteristics of miRNA-target interactions in bilaterian animals, describe the prediction models currently used, and provide some insights for the evaluation of predictor performance.
Collapse
Affiliation(s)
- Aurélien Quillet
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France
| | - Youssef Anouar
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France
| | - Thierry Lecroq
- Normandie Université, UNIROUEN, UNIHAVRE, INSA Rouen, Laboratoire d'Informatique du Traitement de l'Information et des Systèmes, 76000 Rouen, France
| | - Christophe Dubessy
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France.,Normandie Université, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| |
Collapse
|
141
|
Kopylov AT, Papysheva O, Gribova I, Kaysheva AL, Kotaysch G, Kharitonova L, Mayatskaya T, Nurbekov MK, Schipkova E, Terekhina O, Morozov SG. Severe types of fetopathy are associated with changes in the serological proteome of diabetic mothers. Medicine (Baltimore) 2021; 100:e27829. [PMID: 34766598 PMCID: PMC8589259 DOI: 10.1097/md.0000000000027829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Pregestational or gestational diabetes are the main risk factors for diabetic fetopathy. There are no generalized signs of fetopathy before the late gestational age due to insufficient sensitivity of currently employed instrumental methods. In this cross-sectional observational study, we investigated several types of severe diabetic fetopathy (cardiomyopathy, central nervous system defects, and hepatomegaly) established in type 2 diabetic mothers during 30 to 35 gestational weeks and confirmed upon delivery. We examined peripheral blood plasma and determined a small proportion of proteins strongly associated with a specific type of fetopathy or anatomical malfunction. Most of the examined markers participate in critical processes at different stages of embryogenesis and regulate various phases of morphogenesis. Alterations in CDCL5 had a significant impact on mRNA splicing and DNA repair. Patients with central nervous system defects were characterized by the greatest depletion (ca. 7% of the basal level) of DFP3, a neurotrophic factor needed for the proper specialization of oligodendrocytes. Dysregulation of noncanonical wingless-related integration site signaling pathway (Wnt) signaling guided by pigment epithelium-derived factor (PEDF) and disheveled-associated activator of morphogenesis 2 (DAAM2) was also profound. In addition, deficiency in retinoic acid and thyroxine transport was exhibited by the dramatic increase of transthyretin (TTHY). The molecular interplay between the identified serological markers leads to pathologies in fetal development on the background of a diabetic condition. These warning serological markers can be quantitatively examined, and their profile may reflect different severe types of diabetic fetopathy, producing a beneficial effect on the current standard care for pregnant women and infants.
Collapse
Affiliation(s)
- Arthur T. Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., Moscow, Russia
| | | | - Malik K. Nurbekov
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Ekaterina Schipkova
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Olga Terekhina
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Sergey G. Morozov
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| |
Collapse
|
142
|
Ari Yuka S, Yilmaz A. Effect of SARS-CoV-2 infection on host competing endogenous RNA and miRNA network. PeerJ 2021; 9:e12370. [PMID: 34722003 PMCID: PMC8541317 DOI: 10.7717/peerj.12370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Competing endogenous RNAs (ceRNA) play a crucial role in cell functions. Computational methods that provide large-scale analysis of the interactions between miRNAs and their competitive targets can contribute to the understanding of ceRNA regulations and critical regulatory functions. Recent reports showed that viral RNAs can compete with host RNAs against host miRNAs. Regarding SARS-CoV-2 RNA, no comprehensive study had been reported about its competition with cellular ceRNAs. In this study, for the first time, we used the ceRNAnetsim package to assess ceRNA network effects per individual cell and competitive behavior of SARS-CoV-2 RNA in the infected cells using single-cell sequencing data. Our computations identified 195 genes and 29 miRNAs which vary in competitive behavior specifically in presence of SARS-CoV-2 RNA. We also investigated 18 genes that are affected by genes that lost perturbation ability in presence of SARS-CoV-2 RNA in the human miRNA:ceRNA network. These transcripts have associations with COVID-19-related symptoms as well as many dysfunctions such as metabolic diseases, carcinomas, heart failure. Our results showed that the effects of the SARS-CoV-2 genome on host ceRNA interactions and consequent dysfunctions can be explained by competition among various miRNA targets. Our perturbation ability perspective has the potential to reveal yet to be discovered SARS-CoV-2 induced effects invisible to conventional approaches.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
143
|
Baig MS, Krishnan A. A bioinformatics approach to investigate serum and hematopoietic cell-specific therapeutic microRNAs targeting the 3' UTRs of all four Dengue virus serotypes. Pathog Dis 2021; 79:6381691. [PMID: 34610125 DOI: 10.1093/femspd/ftab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
Hyperendemic circulation of all four Dengue virus (DENV) serotypes is a severe global public health problem, so any vaccine or therapeutics should be able to target all four of them. Cells of hemopoietic origin are believed to be primary sites of DENV replication. This study aimed to identify potential host miRNAs that target 3' UTR of all four DENV serotypes, thereby directly regulating viral gene expression or indirectly modulating the host system at different virus infection steps. We used four prediction algorithms viz. miRanda, RNA22, RNAhybrid and StarMir for predicting miRNA, targeting 3'UTR of all four DENV serotypes. Statistically, the most significant miRNA targets were screened based on their Log10 P-value (> 0.0001) of Gene Ontology (GO) term and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analysis. The intersection test of at least three prediction tools identified a total of 30 miRNAs, which could bind to 3'UTR of all four DENV serotypes. Of the 30, eight miRNAs were of hematopoietic cell origin. GO term enrichment and KEGG analysis showed four hemopoietic origin miRNAs target genes of the biological processes mainly involved in the innate immune response, mRNA 3'-end processing, antigen processing and presentation and nuclear-transcribed mRNA catabolic process.
Collapse
Affiliation(s)
- Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| |
Collapse
|
144
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:1021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut-brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA; (R.S.); (H.Z.)
| |
Collapse
|
145
|
Shen H, Gonskikh Y, Stoute J, Liu KF. Human DIMT1 generates N 26,6A-dimethylation-containing small RNAs. J Biol Chem 2021; 297:101146. [PMID: 34473991 PMCID: PMC8463865 DOI: 10.1016/j.jbc.2021.101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dimethyladenosine transferase 1 (DIMT1) is an evolutionarily conserved RNA N6,6-dimethyladenosine (m26,6A) methyltransferase. DIMT1 plays an important role in ribosome biogenesis, and the catalytic activity of DIMT1 is indispensable for cell viability and protein synthesis. A few RNA-modifying enzymes can install the same modification in multiple RNA species. However, whether DIMT1 can work on RNA species other than 18S rRNA is unclear. Here, we describe that DIMT1 generates m26,6A not only in 18S rRNA but also in small RNAs. In addition, m26,6A in small RNAs were significantly decreased in cells expressing catalytically inactive DIMT1 variants (E85A or NLPY variants) compared with cells expressing wildtype DIMT1. Both E85A and NLPY DIMT1 variant cells present decreased protein synthesis and cell viability. Furthermore, we observed that DIMT1 is highly expressed in human cancers, including acute myeloid leukemia. Our data suggest that downregulation of DIMT1 in acute myeloid leukemia cells leads to a decreased m26,6A level in small RNAs. Together, these data suggest that DIMT1 not only installs m26,6A in 18S rRNA but also generates m26,6A-containing small RNAs, both of which potentially contribute to the impact of DIMT1 on cell viability and gene expression.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulia Gonskikh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
146
|
Powell NR, Zhao H, Ipe J, Liu Y, Skaar TC. Mapping the miRNA-mRNA Interactome in Human Hepatocytes and Identification of Functional mirSNPs in Pharmacogenes. Clin Pharmacol Ther 2021; 110:1106-1118. [PMID: 34314509 PMCID: PMC9007393 DOI: 10.1002/cpt.2379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
MiRNAs regulate the expression of hepatic genes involved in pharmacokinetics and pharmacodynamics. Genetic variants affecting miRNA binding (mirSNPs) have been associated with altered drug response, but previously used methods to identify miRNA binding sites and functional mirSNPs in pharmacogenes are indirect and limited by low throughput. We utilized the high-throughput chimeric-eCLIP assay to directly map thousands of miRNA-mRNA interactions and define the miRNA binding sites in primary hepatocytes. We then used the high-throughput PASSPORT-seq assay to functionally test 262 potential mirSNPs with coordinates overlapping the identified miRNA binding sites. Using chimeric-eCLIP, we identified a network of 448 miRNAs that collectively target 11,263 unique genes in primary hepatocytes pooled from 100 donors. Our data provide an extensive map of miRNA binding of each gene, including pharmacogenes, expressed in primary hepatocytes. For example, we identified the hsa-mir-27b-DPYD interaction at a previously validated binding site. A second example is our identification of 19 unique miRNAs that bind to CYP2B6 across 20 putative binding sites on the transcript. Using PASSPORT-seq, we then identified 24 mirSNPs that functionally impacted reporter mRNA levels. To our knowledge, this is the most comprehensive identification of miRNA binding sites in pharmacogenes. Combining chimeric-eCLIP with PASSPORT-seq successfully identified functional mirSNPs in pharmacogenes that may affect transcript levels through altered miRNA binding. These results provide additional insights into potential mechanisms contributing to interindividual variability in drug response.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| | - Harrison Zhao
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana, USA
| | - Todd C. Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, Indiana, USA
| |
Collapse
|
147
|
Ma Y, Shen N, Wicha MS, Luo M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021; 10:cells10092415. [PMID: 34572067 PMCID: PMC8469079 DOI: 10.3390/cells10092415] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer has long been viewed as a disease of normal development gone awry. Cancer stem-like cells (CSCs), also termed as tumor-initiating cells (TICs), are increasingly recognized as a critical tumor cell population that drives not only tumorigenesis but also cancer progression, treatment resistance and metastatic relapse. The let-7 family of microRNAs (miRNAs), first identified in C. elegans but functionally conserved from worms to human, constitutes an important class of regulators for diverse cellular functions ranging from cell proliferation, differentiation and pluripotency to cancer development and progression. Here, we review the current state of knowledge regarding the roles of let-7 miRNAs in regulating cancer stemness. We outline several key RNA-binding proteins, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) involved in the regulation of let-7 biogenesis, maturation and function. We then highlight key gene targets and signaling pathways that are regulated or mutually regulated by the let-7 family of miRNAs to modulate CSC characteristics in various types of cancer. We also summarize the existing evidence indicating distinct metabolic pathways regulated by the let-7 miRNAs to impact CSC self-renewal, differentiation and treatment resistance. Lastly, we review current preclinical studies and discuss the clinical implications for developing let-7-based replacement strategies as potential cancer therapeutics that can be delivered through different platforms to target CSCs and reduce/overcome treatment resistance when applied alone or in combination with current chemo/radiation or molecularly targeted therapies. By specifically targeting CSCs, these strategies have the potential to significantly improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Max S. Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| |
Collapse
|
148
|
Almutairy BK, Alshetaili A, Anwer MK, Ali N. In silico identification of MicroRNAs targeting the key nucleator of stress granules, G3BP: Promising therapeutics for SARS-CoV-2 infection. Saudi J Biol Sci 2021; 28:7499-7504. [PMID: 34456603 PMCID: PMC8381622 DOI: 10.1016/j.sjbs.2021.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/05/2022] Open
Abstract
Stress granules (SGs) are non-membrane ribonucleoprotein condensates formed in response to environmental stress conditions via liquid–liquid phase separation (LLPS). SGs are involved in the pathogenesis of aging and aging-associated diseases, cancers, viral infection, and several other diseases. GTPase-activating protein (SH3 domain)-binding protein 1 and 2 (G3BP1/2) is a key component and commonly used marker of SGs. Recent studies have shown that SARS-CoV-2 nucleocapsid protein via sequestration of G3BPs inhibits SGs formation in the host cells. In this study, we have identified putative miRNAs targeting G3BP in search of modulators of the G3BP expression. These miRNAs could be considered as new therapeutic targets against COVID-19 infection via the regulation of SG assembly and dynamics.
Collapse
Affiliation(s)
- Bjad K Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
149
|
Bhatnagar B, Garzon R. Clinical Applications of MicroRNAs in Acute Myeloid Leukemia: A Mini-Review. Front Oncol 2021; 11:679022. [PMID: 34458136 PMCID: PMC8385666 DOI: 10.3389/fonc.2021.679022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/13/2021] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRs) are short non-coding RNAs, typically 18-25 nucleotides in length, that are critically important, through their direct effects on target mRNAs, in a variety of cellular processes including cell differentiation, proliferation and survival. Dysregulated miR expression has been identified in numerous cancer types including acute myeloid leukemia (AML). From a clinical standpoint, several miRs have been shown to associate with prognosis in AML patients. Furthermore, they also carry the potential to be used as biomarkers and to inform medical decision making. In addition, several preclinical studies have provided strong rationale to develop novel therapeutic strategies to target miRs in AML. This review will focus on potential clinical applications of miRs in adult AML and will discuss unique miR signatures in specific AML subtypes, their role in prognostication and response to therapy, as well as miRs that are promising therapeutic targets and ongoing clinical trials directed towards targeting clinically relevant miRs in AML that could allow for improvements in current treatment strategies.
Collapse
Affiliation(s)
- Bhavana Bhatnagar
- Division of Hematology and Medical Oncology, West Virginia University Cancer Institute, Schiffler Cancer Center, Wheeling, WV, United States
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
150
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|