101
|
Abstract
Sleep is expressed as a circadian rhythm and the two phenomena exist in a poorly understood relationship. Light affects each, simultaneously influencing rhythm phase and rapidly inducing sleep. Light has long been known to modulate sleep, but recent discoveries support its use as an effective nocturnal stimulus for eliciting sleep in certain rodents. “Photosomnolence” is mediated by classical and ganglion cell photoreceptors and occurs despite the ongoing high levels of locomotion at the time of stimulus onset. Brief photic stimuli trigger rapid locomotor suppression, sleep, and a large drop in core body temperature (Tc; Phase 1), followed by a relatively fixed duration interval of sleep (Phase 2) and recovery (Phase 3) to pre-sleep activity levels. Additional light can lengthen Phase 2. Potential retinal pathways through which the sleep system might be light-activated are described and the potential roles of orexin (hypocretin) and melanin-concentrating hormone are discussed. The visual input route is a practical avenue to follow in pursuit of the neural circuitry and mechanisms governing sleep and arousal in small nocturnal mammals and the organizational principles may be similar in diurnal humans. Photosomnolence studies are likely to be particularly advantageous because the timing of sleep is largely under experimenter control. Sleep can now be effectively studied using uncomplicated, nonintrusive methods with behavior evaluation software tools; surgery for EEG electrode placement is avoidable. The research protocol for light-induced sleep is easily implemented and useful for assessing the effects of experimental manipulations on the sleep induction pathway. Moreover, the experimental designs and associated results benefit from a substantial amount of existing neuroanatomical and pharmacological literature that provides a solid framework guiding the conduct and interpretation of future investigations.
Collapse
|
102
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
103
|
Cameron EG, Robinson PR. β-Arrestin-dependent deactivation of mouse melanopsin. PLoS One 2014; 9:e113138. [PMID: 25401926 PMCID: PMC4234672 DOI: 10.1371/journal.pone.0113138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022] Open
Abstract
In mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indicative of an adaptational response. The molecular mechanisms underlying deactivation and adaptation in ipRGCs however, have yet to be fully elucidated. The role of melanopsin phosphorylation and β-arrestin binding in this adaptive process is suggested by the phosphorylation-dependent reduction of melanopsin signaling in vitro and the ubiquitous expression of β-arrestin in the retina. These observations, along with the conspicuous absence of visual arrestin in ipRGCs, suggest that a β-arrestin terminates melanopsin signaling. Here, we describe a light- and phosphorylation- dependent reduction in melanopsin signaling mediated by both β-arrestin 1 and β-arrestin 2. Using an in vitro calcium imaging assay, we demonstrate that increasing the cellular concentration of β-arrestin 1 and β-arrestin 2 significantly increases the rate of deactivation of light-activated melanopsin in HEK293 cells. Furthermore, we show that this response is dependent on melanopsin carboxyl-tail phosphorylation. Crosslinking and co-immunoprecipitation experiments confirm β-arrestin 1 and β-arrestin 2 bind to melanopsin in a light- and phosphorylation- dependent manner. These data are further supported by proximity ligation assays (PLA), which demonstrate a melanopsin/β-arrestin interaction in HEK293 cells and ipRGCs. Together, these results suggest that melanopsin signaling is terminated in a light- and phosphorylation-dependent manner through the binding of a β-arrestin within the retina.
Collapse
Affiliation(s)
- Evan G. Cameron
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
104
|
Cui Q, Ren C, Sollars PJ, Pickard GE, So KF. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2014; 284:845-853. [PMID: 25446359 PMCID: PMC4637166 DOI: 10.1016/j.neuroscience.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions.
Collapse
Affiliation(s)
- Q Cui
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - C Ren
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - P J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - G E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-F So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China; Department of Ophthalmology, University of Hong Kong, Hong Kong.
| |
Collapse
|
105
|
Fahrenkrug J, Falktoft B, Georg B, Hannibal J, Kristiansen SB, Klausen TK. Phosphorylation of rat melanopsin at Ser-381 and Ser-398 by light/dark and its importance for intrinsically photosensitive ganglion cells (ipRGCs) cellular Ca2+ signaling. J Biol Chem 2014; 289:35482-93. [PMID: 25378407 PMCID: PMC4271233 DOI: 10.1074/jbc.m114.586529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The G protein-coupled light-sensitive receptor melanopsin is involved in non-image-forming light responses including circadian timing. The predicted secondary structure of melanopsin indicates a long cytoplasmic tail with many potential phosphorylation sites. Using bioinformatics, we identified a number of amino acids with a high probability of being phosphorylated. We generated antibodies against melanopsin phosphorylated at Ser-381 and Ser-398, respectively. The antibody specificity was verified by immunoblotting and immunohistochemical staining of HEK-293 cells expressing rat melanopsin mutated in Ser-381 or Ser-398. Using the antibody recognizing phospho-Ser-381 melanopsin, we demonstrated by immunoblotting and immunohistochemical staining in HEK-293 cells expressing rat melanopsin that the receptor is phosphorylated in this position during the dark and dephosphorylated when light is turned on. On the contrary, we found that melanopsin at Ser-398 was unphosphorylated in the dark and became phosphorylated after light stimulation. The light-induced changes in phosphorylation at both Ser-381 and Ser-398 were rapid and lasted throughout the 4-h experimental period. Furthermore, phosphorylation at Ser-381 and Ser-398 was independent of each other. The changes in phosphorylation were confirmed in vivo by immunohistochemical staining of rat retinas during light and dark. We further demonstrated that mutation of Ser-381 and Ser-398 in melanopsin-expressing HEK-293 cells affected the light-induced Ca2+ response, which was significantly reduced as compared with wild type. Examining the light-evoked Ca2+ response in a melanopsin Ser-381 plus Ser-398 double mutant provided evidence that the phosphorylation events were independent.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Birgitte Falktoft
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Birgitte Georg
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Jens Hannibal
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Sarah B Kristiansen
- From the Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark and
| | - Thomas K Klausen
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
106
|
Fisher SP, Vyazovskiy VV. Local sleep taking care of high-maintenance cortical circuits under sleep restriction. Sleep 2014; 37:1727-30. [PMID: 25364066 DOI: 10.5665/sleep.4156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
107
|
Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behav 2014; 138:75-86. [PMID: 25447482 DOI: 10.1016/j.physbeh.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as "masking". The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1h pulse of light presented 2h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.
Collapse
|
108
|
Daytime light exposure: effects on biomarkers, measures of alertness, and performance. Behav Brain Res 2014; 274:176-85. [PMID: 25131505 DOI: 10.1016/j.bbr.2014.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 12/25/2022]
Abstract
Light can elicit an alerting response in humans, independent from acute melatonin suppression. Recent studies have shown that red light significantly increases daytime and nighttime alertness. The main goal of the present study was to further investigate the effects of daytime light exposure on performance, biomarkers and measures of alertness. It was hypothesized that, compared to remaining in dim light, daytime exposure to narrowband long-wavelength (red) light or polychromatic (2568K) light would induce greater alertness and shorter response times. Thirteen subjects experienced three lighting conditions: dim light (<5lux), red light (λmax=631nm, 213lux, 1.1W/m(2)), and white light (2568K, 361lux, 1.1W/m(2)). The presentation order of the lighting conditions was counterbalanced across the participants and each participant saw a different lighting condition each week. Our results demonstrate, for the first time, that red light can increase short-term performance as shown by the significant (p<0.05) reduced response time and higher throughput in performance tests during the daytime. There was a significant decrease (p<0.05) in alpha power and alpha-theta power after exposure to the white light, but this alerting effect did not translate to better performance. Alpha power was significantly reduced after red light exposure in the middle of the afternoon. There was no significant effect of light on cortisol and alpha amylase. The present results suggest that red light can be used to increase daytime performance.
Collapse
|
109
|
Muindi F, Zeitzer JM, Heller HC. Retino-hypothalamic regulation of light-induced murine sleep. Front Syst Neurosci 2014; 8:135. [PMID: 25140132 PMCID: PMC4121530 DOI: 10.3389/fnsys.2014.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/10/2014] [Indexed: 11/15/2022] Open
Abstract
The temporal organization of sleep is regulated by an interaction between the circadian clock and homeostatic processes. Light indirectly modulates sleep through its ability to phase shift and entrain the circadian clock. Light can also exert a direct, circadian-independent effect on sleep. For example, acute exposure to light promotes sleep in nocturnal animals and wake in diurnal animals. The mechanisms whereby light directly influences sleep and arousal are not well understood. In this review, we discuss the direct effect of light on sleep at the level of the retina and hypothalamus in rodents. We review murine data from recent publications showing the roles of rod-, cone- and melanopsin-based photoreception on the initiation and maintenance of light-induced sleep. We also present hypotheses about hypothalamic mechanisms that have been advanced to explain the acute control of sleep by light. Specifically, we review recent studies assessing the roles of the ventrolateral preoptic area (VLPO) and the suprachiasmatic nucleus (SCN). We also discuss how light might differentially promote sleep and arousal in nocturnal and diurnal animals respectively. Lastly, we suggest new avenues for research on this topic which is still in its early stages.
Collapse
Affiliation(s)
- Fanuel Muindi
- Department of Biology, Stanford University Stanford, CA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University Stanford, CA, USA ; Mental Illness Research, Education and Clinical Center, VA Palo Alto Health Care System Palo Alto, CA, USA
| | | |
Collapse
|
110
|
Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O. Clock genes and behavioral responses to light are altered in a mouse model of diabetic retinopathy. PLoS One 2014; 9:e101584. [PMID: 25006976 PMCID: PMC4089924 DOI: 10.1371/journal.pone.0101584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022] Open
Abstract
There is increasing evidence that melanopsin-expressing ganglion cells (ipRGCs) are altered in retinal pathologies. Using a streptozotocin-induced (STZ) model of diabetes, we investigated the impact of diabetic retinopathy on non-visual functions by analyzing ipRGCs morphology and light-induced c-Fos and Period 1–2 clock genes in the central clock (SCN). The ability of STZ-diabetic mice to entrain to light was challenged by exposure animals to 1) successive light/dark (LD) cycle of decreasing or increasing light intensities during the light phase and 2) 6-h advance of the LD cycle. Our results show that diabetes induces morphological changes of ipRGCs, including soma swelling and dendritic varicosities, with no reduction in their total number, associated with decreased c-Fos and clock genes induction by light in the SCN at 12 weeks post-onset of diabetes. In addition, STZ-diabetic mice exhibited a reduction of overall locomotor activity, a decrease of circadian sensitivity to light at low intensities, and a delay in the time to re-entrain after a phase advance of the LD cycle. These novel findings demonstrate that diabetes alters clock genes and behavioral responses of the circadian timing system to light and suggest that diabetic patients may show an increased propensity for circadian disturbances, in particular when they are exposed to chronobiological challenges.
Collapse
Affiliation(s)
- Hasna Lahouaoui
- INSERM U846, Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France
- University of Lyon, Lyon 1, UMR-S 846, Lyon, France
- Laboratory of Pharmacology, Neurobiology and Behavior, URAC-37, University Cadi Ayyad, Marrakech, Morocco
| | - Christine Coutanson
- INSERM U846, Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France
- University of Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Howard M. Cooper
- INSERM U846, Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France
- University of Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, URAC-37, University Cadi Ayyad, Marrakech, Morocco
| | - Ouria Dkhissi-Benyahya
- INSERM U846, Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France
- University of Lyon, Lyon 1, UMR-S 846, Lyon, France
- * E-mail:
| |
Collapse
|
111
|
Gaggioni G, Maquet P, Schmidt C, Dijk DJ, Vandewalle G. Neuroimaging, cognition, light and circadian rhythms. Front Syst Neurosci 2014; 8:126. [PMID: 25071478 PMCID: PMC4086398 DOI: 10.3389/fnsys.2014.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 01/27/2023] Open
Abstract
In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.
Collapse
Affiliation(s)
- Giulia Gaggioni
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Pierre Maquet
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Christina Schmidt
- Cyclotron Research Centre, University of LiègeLiège, Belgium
- Centre for Chronobiology, Psychiatric Hospital of the University of BaselBasel, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of SurreyGuildford, UK
| | | |
Collapse
|
112
|
Abstract
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Collapse
|
113
|
Chellappa SL, Viola AU, Schmidt C, Bachmann V, Gabel V, Maire M, Reichert CF, Valomon A, Landolt HP, Cajochen C. Light modulation of human sleep depends on a polymorphism in the clock gene Period3. Behav Brain Res 2014; 271:23-9. [PMID: 24893318 DOI: 10.1016/j.bbr.2014.05.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/19/2014] [Accepted: 05/24/2014] [Indexed: 12/13/2022]
Abstract
Non-image-forming (NIF) responses to light powerfully modulate human physiology. However, it remains scarcely understood how NIF responses to light modulate human sleep and its EEG hallmarks, and if there are differences across individuals. Here we investigated NIF responses to light on sleep in individuals genotyped for the PERIOD3 (PER3) variable-number tandem-repeat (VNTR) polymorphism. Eighteen healthy young men (20-28 years; mean ± SEM: 25.9 ± 1.2) homozygous for the PER3 polymorphism were matched by age, body-mass index, and ethnicity. The study protocol comprised a balanced cross-over design during the winter, during which participants were exposed to either light of 40 lx at 6,500 K (blue-enriched) or light at 2,500 K (non-blue enriched), during 2h in the evening. Compared to light at 2,500 K, light at 6,500 K induced a significant increase in all-night NREM sleep slow-wave activity (SWA: 1.0-4.5 Hz) in the occipital cortex for PER3(5/5) individuals, but not for PER3(4/4) volunteers. Dynamics of SWA across sleep cycles revealed increased occipital NREM sleep SWA for virtually all sleep episode only for PER3(5/5) individuals. Furthermore, they experienced light at 6,500 K as significantly brighter. Intriguingly, this subjective perception of brightness significantly predicted their increased occipital SWA throughout the sleep episode. Our data indicate that humans homozygous for the PER3(5/5) allele are more sensitive to NIF light effects, as indexed by specific changes in sleep EEG activity. Ultimately, individual differences in NIF light responses on sleep may depend on a clock gene polymorphism involved in sleep-wake regulation.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liège, Liège, Belgium
| | - Antoine U Viola
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Valérie Bachmann
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Micheline Maire
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Amandine Valomon
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
| |
Collapse
|
114
|
Lee SI, Hida A, Kitamura S, Mishima K, Higuchi S. Association between the melanopsin gene polymorphism OPN4*Ile394Thr and sleep/wake timing in Japanese university students. J Physiol Anthropol 2014; 33:9. [PMID: 24887407 PMCID: PMC4048048 DOI: 10.1186/1880-6805-33-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/25/2014] [Indexed: 12/01/2022] Open
Abstract
Background In our previous studies, we found that the Ile394Thr SNP in the melanopsin gene (OPN4) was functionally associated with the pupillary light reflex. This indicates the possibility that OPN4*Ile394Thr is associated with other non-image forming responses. The aim of this study was therefore to determine whether OPN4*Ile394Thr is associated with sleep/wake timing. Methods A total of 348 healthy Japanese university students participated in this study. Scalp hair was used to genotype the Ile394Thr SNP of OPN4. Sleep habits, including bedtime, wake time and sleep duration, were assessed separately for weekdays and weekends. A total of 328 samples, including 223 samples with TT genotype, 91 with TC genotype and 14 with CC genotype, were used for statistical analysis. No significant difference in age or male/female distribution was found among the three genotype groups. Results There was no significant difference in circadian preference among the genotype groups. During weekdays, bedtime, wake time and midpoint of sleep for CC subjects were significantly later than those for TT and TC subjects. However, there was no difference between TT and TC subjects in any of their sleep habits. During weekends, bedtime of CC subjects was significantly later than those of TT and TC subjects, and the midpoint of sleep of CC subjects was significantly later than that of TC subjects. Conclusions Our findings demonstrated that OPN4*Ile394Thr is associated with sleep/wake timing. We also found that the sleep/wake timing of subjects with the CC genotype was later than that of subjects with the TT or TC genotype.
Collapse
Affiliation(s)
| | | | | | | | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
| |
Collapse
|
115
|
Blasic JR, Matos-Cruz V, Ujla D, Cameron EG, Hattar S, Halpern ME, Robinson PR. Identification of critical phosphorylation sites on the carboxy tail of melanopsin. Biochemistry 2014; 53:2644-9. [PMID: 24678795 PMCID: PMC4010260 DOI: 10.1021/bi401724r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Light-activated
opsins undergo carboxy-terminal phosphorylation,
which contributes to the deactivation of their photoresponse. The
photopigment melanopsin possesses an unusually long carboxy tail containing
37 serine and threonine sites that are potential sites for phosphorylation
by a G-protein dependent kinase (GRK). Here, we show that a small
cluster of six to seven sites is sufficient for deactivation of light-activated
mouse melanopsin. Surprisingly, these sites are distinct from those
that regulate deactivation of rhodopsin. In zebrafish, there are five
different melanopsin genes that encode proteins with distinct carboxy-terminal
domains. Naturally occurring changes in the same cluster of phosphorylatable
amino acids provides diversity in the deactivation kinetics of the
zebrafish proteins. These results suggest that variation in phosphorylation
sites provides flexibility in the duration and kinetics of melanopsin-mediated
light responses.
Collapse
Affiliation(s)
- Joseph R Blasic
- Department of Biological Sciences, University of Maryland, Baltimore County , Baltimore, Maryland 21250, United States
| | | | | | | | | | | | | |
Collapse
|
116
|
Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014; 20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The overall function of sleep is hypothesized to provide "recovery" after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non-rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance ("recovery process"). In turn, periodic excursions into an activated brain state-REM sleep-appear to be ideally placed to perform "selection" of brain networks, which have benefited from the process of "recovery," based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
Collapse
Affiliation(s)
| | - Alessio Delogu
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
117
|
Differential effects of retinal degeneration on sleep and wakefulness responses to short light-dark cycles in albino mice. Neuroscience 2013; 248:459-68. [PMID: 23811394 DOI: 10.1016/j.neuroscience.2013.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
This study characterizes the different response patterns of sleep and wakefulness (W) to short light-dark (LD) cycles in albino mice and examines whether retinal degeneration resulting from prolonged bright light treatment and/or rd/rd mutation alters such response patterns. Eight young male Institute for Cancer Research (ICR) mice with normal eyes, seven young male rd/rd Friend Virus B type (FVB) mice, six young ICR and five young rd/rd FVB mice receiving 48-h bright light treatment, and five older rd/rd FVB mice were implanted with skull and muscle electrodes to record sleep and W. All the mice were maintained in 12-h-12-h LD cycles at baseline and received 2 days of short LD cycle treatment, which included 5-min-5-min LD cycles for a total of 24 cycles presented 4h after lights-on and again 4h after lights-off. All the five mouse groups maintained photo-entrainment of sleep and W rhythms at the baseline and showed a preference for paradoxical sleep (PS) occurrence in the 5-min dark period and non-rapid eye movement sleep (NREMS) in the 5-min light period and a brief alerting effect of light onset on experimental days. Retinal degeneration rising from bright light treatment and/or genetic mutation failed to eliminate or reduce the response of PS and NREMS to short LD cycles, although it enhanced the LD contrast of W, i.e., bright light treatment prolonged the alerting effect of light and the rd mutation increased the suppressing effect of the dark on W. These results suggest that sleep responses to short LD cycles and the brief alerting effect of light were independent of the photoreceptors in the outer retina. Furthermore, the residual photoreceptors in the outer retina and/or the photosensitive cells in the inner retina may actively modulate the effect of light and dark signals on W.
Collapse
|
118
|
Karnas D, Mordel J, Bonnet D, Pévet P, Hicks D, Meissl H. Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping. J Comp Neurol 2013; 521:912-32. [PMID: 22886938 DOI: 10.1002/cne.23210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 11/11/2022]
Abstract
Intrinsically photosensitive retinal ganglion cell (ipRGC) types can be distinguished by their dendritic tree stratification and intensity of melanopsin staining. We identified heavily stained melanopsin-positive M1 cells branching in the outermost part of the inner plexiform layer (IPL) and weakly melanopsin-positive M2 cells branching in the innermost layer of the IPL. A third type can be distinguished by the displacement of the soma to the inner nuclear layer and has morphological similarities with either M1 cells or M2 cells, and is termed here displaced or M-d cells. The aim of the present study was to examine the phenotypic traits of ipRGC types. Using whole retinae from adult mice, we performed immunohistochemistry using melanopsin immunostaining and a number of antibodies directed against proteins typically expressed in retinal ganglion cells. The majority of M1 and M2 ipRGCs expressed Isl-1, microtubule associated protein-2 (MAP2), γ-synuclein, and NeuN, whereas Brn3 transcription factor and the different neurofilaments (NF68, NF160, NF200) were able to discriminate between ipRGC subtypes. Brn3 was expressed preferentially in M2 cells and in a small subpopulation of weakly melanopsin-positive M-d cells with similarities to M2 cells. All three neurofilaments were primarily expressed in large M2 cells with similarities to the recently described alpha-like M4 cells, but not in M1 cells. Expression of NF68 and NF160 was also observed in a few large M-d ipRGCs. These findings show that ipRGCs are not a phenotypically homogenous population and that specific neuronal markers (Brn3 and neurofilament) can partly distinguish between different ipRGC subtypes.
Collapse
Affiliation(s)
- Diana Karnas
- Department of Neuroanatomy, Max Planck Institute for Brain Research, 60528 Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Collapse
Affiliation(s)
- Elemer Szabadi
- Division of Psychiatry, University of Nottingham, Nottingham, UK.
| |
Collapse
|
120
|
Gabel V, Maire M, Reichert CF, Chellappa SL, Schmidt C, Hommes V, Viola AU, Cajochen C. Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels. Chronobiol Int 2013; 30:988-97. [PMID: 23841684 DOI: 10.3109/07420528.2013.793196] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2 wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100 lux at 470 nm for 20 min) starting 2 h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30 min before and ending 20 min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250 lux), and a dim light (DL) condition for 2 h beginning upon scheduled wake time (<8 lux). Cognitive tasks were performed every 2 h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction.
Collapse
Affiliation(s)
- Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Weng S, Estevez ME, Berson DM. Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 2013; 8:e66480. [PMID: 23762490 PMCID: PMC3676382 DOI: 10.1371/journal.pone.0066480] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (iprgcs) are depolarized by light by two mechanisms: directly, through activation of their photopigment melanopsin; and indirectly through synaptic circuits driven by rods and cones. To learn more about the rod and cone circuits driving ipRGCs, we made multielectrode array (MEA) and patch-clamp recordings in wildtype and genetically modified mice. Rod-driven ON inputs to ipRGCs proved to be as sensitive as any reaching the conventional ganglion cells. These signals presumably pass in part through the primary rod pathway, involving rod bipolar cells and AII amacrine cells coupled to ON cone bipolar cells through gap junctions. Consistent with this interpretation, the sensitive rod ON input to ipRGCs was eliminated by pharmacological or genetic disruption of gap junctions, as previously reported for conventional ganglion cells. A presumptive cone input was also detectable as a brisk, synaptically mediated ON response that persisted after disruption of rod ON pathways. This was roughly three log units less sensitive than the rod input. Spectral analysis revealed that both types of cones, the M- and S-cones, contribute to this response and that both cone types drive ON responses. This contrasts with the blue-OFF, yellow-ON chromatic opponency reported in primate ipRGCs. The cone-mediated response was surprisingly persistent during steady illumination, echoing the tonic nature of both the rod input to ipRGCs and their intrinsic, melanopsin-based phototransduction. These synaptic inputs greatly expand the dynamic range and spectral bandpass of the non-image-forming visual functions for which ipRGCs provide the principal retinal input.
Collapse
Affiliation(s)
- Shijun Weng
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, P.R. China
| | - Maureen E. Estevez
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
122
|
Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina. Mol Vis 2013; 19:1060-73. [PMID: 23734075 PMCID: PMC3668684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/18/2013] [Indexed: 10/29/2022] Open
Abstract
PURPOSE Prolonged periods of constant lighting are known to perturb circadian clock function at the molecular, physiological, and behavioral levels. However, the effects of ambient lighting regimes on clock gene expression and clock outputs in retinal photoreceptors--rods, cones and intrinsically photosensitive retinal ganglion cells--are only poorly understood. METHODS Cone-rich diurnal rodents (Muridae: Arvicanthis ansorgei) were maintained under and entrained to a 12 h:12 h light-dark cycle (LD; light: ~300 lux). Three groups were then examined: control (continued maintenance on LD); animals exposed to a 36 h dark period before sampling over an additional 24 h period of darkness (DD); and animals exposed to a 36 h light period before sampling over an additional 24 h period of light (~300 lux, LL). Animals were killed every 3 or 4 h over 24 h, their retinas dissected, and RNA extracted. Oligonucleotide primers were designed for the Arvicanthis clock genes Per1, Per2, Cry1, Cry2, and Bmal1, and for transcripts specific for rods (rhodopsin), cones (short- and mid-wavelength sensitive cone opsin, cone arrestin, arylalkylamine N-acetyltransferase) and intrinsically photosensitive retinal ganglion cells (melanopsin). Gene expression was analyzed by real-time PCR. RESULTS In LD, expression of all genes except cone arrestin was rhythmic and coordinated, with acrophases of most genes at or shortly following the time of lights on (defined as zeitgeber time 0). Arylalkylamine N-acetyltransferase showed maximal expression at zeitgeber time 20. In DD conditions the respective profiles showed similar phase profiles, but were mostly attenuated in amplitude, or in the case of melanopsin, did not retain rhythmic expression. In LL, however, the expression profiles of all clock genes and most putative output genes were greatly altered, with either abolition of daily variation (mid-wavelength cone opsin) or peak expression shifted by 4-10 h. CONCLUSIONS These data are the first to provide detailed measures of retinal clock gene and putative clock output gene expression in a diurnal mammal, and show the highly disruptive effects of inappropriate (nocturnal) lighting on circadian and photoreceptor gene regulation.
Collapse
|
123
|
Non-circadian direct effects of light on sleep and alertness: lessons from transgenic mouse models. Sleep Med Rev 2013; 17:445-52. [PMID: 23602126 DOI: 10.1016/j.smrv.2012.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/27/2012] [Accepted: 12/29/2012] [Indexed: 01/16/2023]
Abstract
Light exerts a strong non-visual influence on human physiology and behavior. Additionally light is known to affect sleep indirectly through the phase shifting of circadian rhythms, and directly, promoting alertness in humans and sleep in nocturnal species. Little attention has been paid to the direct non-image-forming influence of light until recently with the discovery and emerging knowledge on melanopsin, a photopigment which is maximally sensitive to the blue spectrum of light and expressed in a subset of intrinsically photosensitive retinal ganglion cells. Indeed, the development of transgenic mouse models targeting different phototransduction pathways has allowed researchers to decipher the mechanisms by which mammals adapt sleep to their light environment. This review summarizes the novel concepts and discrepancies from recent publications relating to the non-circadian effects of light on sleep and waking. Specifically, we discuss whether darkness, in addition to light, affects their quality. Furthermore, we seek to understand whether longer sustained periods of light exposure can influence sleep, if the direct photic regulation depends on time of day, and whether this affects the homeostatic sleep process. Moreover, the neural pathways by which light exerts a direct influence on sleep will be discussed including the respective role of rods/cones and melanopsin. Finally, we suggest that light weighs on the components of the flip-flop switch model to induce respectively sleep or waking, in nocturnal and diurnal animals. Taking these data into account we therefore propose a novel model of sleep regulation based on three processes; the direct photic regulation interacting with the circadian and homeostatic drives to determine the timing and quality of sleep and waking. An outlook of promising clinical and non-clinical applications of these findings will be considered as well as directions for future animal and human research.
Collapse
|
124
|
Higuchi S, Hida A, Tsujimura SI, Mishima K, Yasukouchi A, Lee SI, Kinjyo Y, Miyahira M. Melanopsin gene polymorphism I394T is associated with pupillary light responses in a dose-dependent manner. PLoS One 2013; 8:e60310. [PMID: 23555953 PMCID: PMC3610661 DOI: 10.1371/journal.pone.0060310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) play an important role in non-image forming responses to light, such as circadian photoentrainment, light-induced melatonin suppression, and pupillary light response. Although it is known that there are some single nucleotide polymorphisms (SNPs) in the melanopsin (OPN4) gene in humans, the associations of the SNPs with non-image forming responses to light remains unclear. In the present study, we examined the associations of melanopsin gene polymorphisms with pupillary light response. METHODS Japanese university students (mean age: 21.0 ± 1.7 years) with the genotypes of TT (n = 38), TC (n = 28) and CC (n = 7) at rs1079610 (I394T) located in the coding region participated in the present study. They were matched by age and sex ratio. Dark-adapted pupil size (<1 lx) was first measured. Then steady-state pupil size was measured during exposure to five lighting conditions (10 lx, 100 lx, 1000 lx, 3000 lx, 6000 lx in the vertical direction at eye level). RESULTS Significant interaction between the genotype of I394T (TT versus TC+CC) and luminance levels was found in pupil size. Under high illuminance levels (1000 lx, 3000 lx and 6000 lx), pupil sizes in subjects with the C allele were significantly smaller than those in subjects with the TT genotype. On the other hand, pupil size in subjects with the C allele under low illuminance (<1 lx) was significantly larger than that in subjects with the TT genotype. Percentages of pupil constriction under high illuminance levels were significantly greater in subjects with the C allele than in subjects with the TT genotype. CONCLUSIONS Human melanopsin gene polymorphism I394T interacted with irradiance in association with pupil size. This is the first evidence suggesting a functional connection between melanopsin gene polymorphism and pupillary light response as an index of non-image forming response to light.
Collapse
Affiliation(s)
- Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
- * E-mail:
| | - Akiko Hida
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Sei-ichi Tsujimura
- Department of Information Science and Biomedical Engineering, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kazuo Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akira Yasukouchi
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| | - Sang-il Lee
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| | - Youhei Kinjyo
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| | - Manabu Miyahira
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| |
Collapse
|
125
|
Chellappa SL, Steiner R, Oelhafen P, Lang D, Götz T, Krebs J, Cajochen C. Acute exposure to evening blue-enriched light impacts on human sleep. J Sleep Res 2013; 22:573-80. [PMID: 23509952 DOI: 10.1111/jsr.12050] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
Light in the short wavelength range (blue light: 446-483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non-image-forming photoreceptors. However, the impact of blue-enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20-31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non-rapid eye movement non-rapid eye movement - rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All-night non-rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non-rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non-rapid eye movement electroencephalographic slow wave activity (2.0-4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue-enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non-rapid eye movement episode.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Cyclotron Research Center, University of Liège, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
126
|
Muindi F, Zeitzer JM, Colas D, Heller HC. The acute effects of light on murine sleep during the dark phase: importance of melanopsin for maintenance of light-induced sleep. Eur J Neurosci 2013; 37:1727-36. [PMID: 23510299 DOI: 10.1111/ejn.12189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 01/03/2023]
Abstract
Light exerts a direct effect on sleep and wakefulness in nocturnal and diurnal animals, with a light pulse during the dark phase suppressing locomotor activity and promoting sleep in the former. In the present study, we investigated this direct effect of light on various sleep parameters by exposing mice to a broad range of illuminances (0.2-200 μW/cm(2) ; equivalent to 1-1000 lux) for 1 h during the dark phase (zeitgeber time 13-14). Fitting the data with a three-parameter log model indicated that ~0.1 μW/cm(2) can generate half the sleep response observed at 200 μW/cm(2). We observed decreases in total sleep time during the 1 h following the end of the light pulse. Light reduced the latency to sleep from ~30 min in darkness (baseline) to ~10 min at the highest intensity, although this effect was invariant across the light intensities used. We then assessed the role of melanopsin during the rapid transition from wakefulness to sleep at the onset of a light pulse and the maintenance of sleep with a 6-h 20 μW/cm(2) light pulse. Even though the melanopsin knockout mice had robust induction of sleep (~35 min) during the first hour of the pulse, it was not maintained. Total sleep decreased by almost 65% by the third hour in comparison with the first hour of the pulse in mice lacking melanopsin, whereas only an 8% decrease was observed in wild-type mice. Collectively, our findings highlight the selective effects of light on murine sleep, and suggest that melanopsin-based photoreception is primarily involved in sustaining light-induced sleep.
Collapse
Affiliation(s)
- Fanuel Muindi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
127
|
Perganta G, Barnard AR, Katti C, Vachtsevanos A, Douglas RH, MacLaren RE, Votruba M, Sekaran S. Non-image-forming light driven functions are preserved in a mouse model of autosomal dominant optic atrophy. PLoS One 2013; 8:e56350. [PMID: 23409176 PMCID: PMC3569441 DOI: 10.1371/journal.pone.0056350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/08/2013] [Indexed: 12/19/2022] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a slowly progressive optic neuropathy that has been associated with mutations of the OPA1 gene. In patients, the disease primarily affects the retinal ganglion cells (RGCs) and causes optic nerve atrophy and visual loss. A subset of RGCs are intrinsically photosensitive, express the photopigment melanopsin and drive non-image-forming (NIF) visual functions including light driven circadian and sleep behaviours and the pupil light reflex. Given the RGC pathology in ADOA, disruption of NIF functions might be predicted. Interestingly in ADOA patients the pupil light reflex was preserved, although NIF behavioural outputs were not examined. The B6; C3-Opa1(Q285STOP) mouse model of ADOA displays optic nerve abnormalities, RGC dendropathy and functional visual disruption. We performed a comprehensive assessment of light driven NIF functions in this mouse model using wheel running activity monitoring, videotracking and pupillometry. Opa1 mutant mice entrained their activity rhythm to the external light/dark cycle, suppressed their activity in response to acute light exposure at night, generated circadian phase shift responses to 480 nm and 525 nm pulses, demonstrated immobility-defined sleep induction following exposure to a brief light pulse at night and exhibited an intensity dependent pupil light reflex. There were no significant differences in any parameter tested relative to wildtype littermate controls. Furthermore, there was no significant difference in the number of melanopsin-expressing RGCs, cell morphology or melanopsin transcript levels between genotypes. Taken together, these findings suggest the preservation of NIF functions in Opa1 mutants. The results provide support to growing evidence that the melanopsin-expressing RGCs are protected in mitochondrial optic neuropathies.
Collapse
Affiliation(s)
- Georgia Perganta
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Alun R. Barnard
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Christiana Katti
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Athanasios Vachtsevanos
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Ron H. Douglas
- Optometry and Visual Science, City University London, London, United Kingdom
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust and NIHR Biomedical Research Centre, London, United Kingdom
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Sumathi Sekaran
- Nuffield Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
128
|
|
129
|
|
130
|
Brown TM, Allen AE, al-Enezi J, Wynne J, Schlangen L, Hommes V, Lucas RJ. The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions. PLoS One 2013; 8:e53583. [PMID: 23301090 PMCID: PMC3536742 DOI: 10.1371/journal.pone.0053583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/03/2012] [Indexed: 12/19/2022] Open
Abstract
In addition to rods and cones, photoreception in mammals extends to a third retinal cell type expressing the photopigment melanopsin. The influences of this novel opsin are widespread, ranging from pupillary and circadian responses to brightness perception, yet established approaches to quantifying the biological effects of light do not adequately account for melanopsin sensitivity. We have recently proposed a novel metric, the melanopic sensitivity function (V(Z)λ), to address this deficiency. Here, we further validate this new measure with a variety of tests based on potential barriers to its applicability identified in the literature or relating to obvious practical benefits. Using electrophysiogical approaches and pupillometry, initially in rodless+coneless mice, our data demonstrate that under a very wide range of different conditions (including switching between stimuli with highly divergent spectral content) the V(Z)λ function provides an accurate prediction of the sensitivity of melanopsin-dependent responses. We further show that V(Z)λ provides the best available description of the spectral sensitivity of at least one aspect of the visual response in mice with functional rods and cones: tonic firing activity in the lateral geniculate nuclei. Together, these data establish V(Z)λ as an important new approach for light measurement with widespread practical utility.
Collapse
Affiliation(s)
- Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jazi al-Enezi
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jonathan Wynne
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Vanja Hommes
- Philips Consumer Lifestyle, Drachten, The Netherlands
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
131
|
Abstract
The sleep/wake cycle is arguably the most familiar output of the circadian system, however, sleep is a complex biological process that arises from multiple brain regions and neurotransmitters, which is regulated by numerous physiological and environmental factors. These include a circadian drive for wakefulness as well as an increase in the requirement for sleep with prolonged waking (the sleep homeostat). In this chapter, we describe the regulation of sleep, with a particular emphasis on the contribution of the circadian system. Since their identification, the role of clock genes in the regulation of sleep has attracted considerable interest, and here, we provide an overview of the interplay between specific elements of the molecular clock with the sleep regulatory system. Finally, we summarise the role of the light environment, melatonin and social cues in the modulation of sleep, with a focus on the role of melanopsin ganglion cells.
Collapse
Affiliation(s)
- Simon P Fisher
- Biosciences Division, SRI International, Centre for Neuroscience, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | | | | |
Collapse
|
132
|
Circadian Clocks, Food Intake, and Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:105-35. [DOI: 10.1016/b978-0-12-396971-2.00005-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
133
|
Roecklein KA, Wong PM, Miller MA, Donofry SD, Kamarck ML, Brainard GC. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder. Neurosci Biobehav Rev 2012; 37:229-39. [PMID: 23286902 DOI: 10.1016/j.neubiorev.2012.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/05/2012] [Accepted: 12/21/2012] [Indexed: 02/05/2023]
Abstract
In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.
Collapse
Affiliation(s)
- Kathryn A Roecklein
- Department of Psychology, University of Pittsburgh, 3500 Sennott Square, 210 South Bouquet St., Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Shuboni DD, Cramm S, Yan L, Nunez AA, Smale L. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus. J Biol Rhythms 2012; 27:299-307. [PMID: 22855574 DOI: 10.1177/0748730412449723] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.
Collapse
Affiliation(s)
- D D Shuboni
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
135
|
Szabadi E. Modulation of physiological reflexes by pain: role of the locus coeruleus. Front Integr Neurosci 2012; 6:94. [PMID: 23087627 PMCID: PMC3474280 DOI: 10.3389/fnint.2012.00094] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/27/2012] [Indexed: 11/13/2022] Open
Abstract
The locus coeruleus (LC) is activated by noxious stimuli, and this activation leads to inhibition of perceived pain. As two physiological reflexes, the acoustic startle reflex and the pupillary light reflex, are sensitive to noxious stimuli, this review considers evidence that this sensitivity, at least to some extent, is mediated by the LC. The acoustic startle reflex, contraction of a large body of skeletal muscles in response to a sudden loud acoustic stimulus, can be enhanced by both directly ("sensitization") and indirectly ("fear conditioning") applied noxious stimuli. Fear-conditioning involves the association of a noxious (unconditioned) stimulus with a neutral (conditioned) stimulus (e.g., light), leading to the ability of the conditioned stimulus to evoke the "pain response". The enhancement of the startle response by conditioned fear ("fear-potentiated startle") involves the activation of the amygdala. The LC may also be involved in both sensitization and fear potentiation: pain signals activate the LC both directly and indirectly via the amygdala, which results in enhanced motoneurone activity, leading to an enhanced muscular response. Pupil diameter is under dual sympathetic/parasympathetic control, the sympathetic (noradrenergic) output dilating, and the parasympathetic (cholinergic) output constricting the pupil. The light reflex (constriction of the pupil in response to a light stimulus) operates via the parasympathetic output. The LC exerts a dual influence on pupillary control: it contributes to the sympathetic outflow and attenuates the parasympathetic output by inhibiting the Edinger-Westphal nucleus, the preganglionic cholinergic nucleus in the light reflex pathway. Noxious stimulation results in pupil dilation ("reflex dilation"), without any change in the light reflex response, consistent with sympathetic activation via the LC. Conditioned fear, on the other hand, results in the attenuation of the light reflex response ("fear-inhibited light reflex"), consistent with the inhibition of the parasympathetic light reflex via the LC. It is suggested that directly applied pain and fear-conditioning may affect different populations of autonomic neurones in the LC, directly applied pain activating sympathetic and fear-conditioning parasympathetic premotor neurones.
Collapse
Affiliation(s)
- Elemer Szabadi
- Psychopharmacology Section, Division of Psychiatry, University of NottinghamNottingham, UK
| |
Collapse
|
136
|
Roecklein KA, Wong PM, Franzen PL, Hasler BP, Wood-Vasey WM, Nimgaonkar VL, Miller MA, Kepreos KM, Ferrell RE, Manuck SB. Melanopsin gene variations interact with season to predict sleep onset and chronotype. Chronobiol Int 2012; 29:1036-47. [PMID: 22881342 DOI: 10.3109/07420528.2012.706766] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are associated with differences in sleep-wake behavior among those not suffering from a mood disorder, the authors tested associations between melanopsin gene polymorphisms and self-reported sleep timing (sleep onset and wake time) in a community sample (N = 234) of non-Hispanic Caucasian participants (age 30-54 yrs) with no history of psychological, neurological, or sleep disorders. The authors also tested the effect of melanopsin variations on differences in preferred sleep and activity timing (i.e., chronotype), which may reflect differences in circadian phase, sleep homeostasis, or both. Daylength on the day of assessment was measured and included in analyses. DNA samples were genotyped for melanopsin gene polymorphisms using fluorescence polarization. P10L genotype interacted with daylength to predict self-reported sleep onset (interaction p < .05). Specifically, sleep onset among those with the TT genotype was later in the day when individuals were assessed on longer days and earlier in the day on shorter days, whereas individuals in the other genotype groups (i.e., CC and CT) did not show this interaction effect. P10L genotype also interacted in an analogous way with daylength to predict self-reported morningness (interaction p < .05). These results suggest that the P10L TT genotype interacts with daylength to predispose individuals to vary in sleep onset and chronotype as a function of daylength, whereas other genotypes at P10L do not seem to have effects that vary by daylength. A better understanding of how melanopsin confers heightened responsivity to daylength may improve our understanding of a broad range of behavioral responses to light (i.e., circadian, sleep, mood) as well as the etiology of disorders with seasonal patterns of recurrence or exacerbation.
Collapse
Affiliation(s)
- Kathryn A Roecklein
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Santhi N, Thorne HC, van der Veen DR, Johnsen S, Mills SL, Hommes V, Schlangen LJM, Archer SN, Dijk DJ. The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans. J Pineal Res 2012; 53:47-59. [PMID: 22017511 DOI: 10.1111/j.1600-079x.2011.00970.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of light on circadian rhythms and sleep is mediated by a multi-component photoreceptive system of rods, cones and melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The intensity and spectral sensitivity characteristics of this system are to be fully determined. Whether the intensity and spectral composition of light exposure at home in the evening is such that it delays circadian rhythms and sleep also remains to be established. We monitored light exposure at home during 6-8wk and assessed light effects on sleep and circadian rhythms in the laboratory. Twenty-two women and men (23.1±4.7yr) participated in a six-way, cross-over design using polychromatic light conditions relevant to the light exposure at home, but with reduced, intermediate or enhanced efficacy with respect to the photopic and melanopsin systems. The evening rise of melatonin, sleepiness and EEG-assessed sleep onset varied significantly (P<0.01) across the light conditions, and these effects appeared to be largely mediated by the melanopsin, rather than the photopic system. Moreover, there were individual differences in the sensitivity to the disruptive effect of light on melatonin, which were robust against experimental manipulations (intra-class correlation=0.44). The data show that light at home in the evening affects circadian physiology and imply that the spectral composition of artificial light can be modified to minimize this disruptive effect on sleep and circadian rhythms. These findings have implications for our understanding of the contribution of artificial light exposure to sleep and circadian rhythm disorders such as delayed sleep phase disorder.
Collapse
Affiliation(s)
- Nayantara Santhi
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ultraviolet light provides a major input to non-image-forming light detection in mice. Curr Biol 2012; 22:1397-402. [PMID: 22771039 PMCID: PMC3414846 DOI: 10.1016/j.cub.2012.05.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 11/28/2011] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
The change in irradiance at dawn and dusk provides the primary cue for the entrainment of the mammalian circadian pacemaker. Irradiance detection has been ascribed largely to melanopsin-based phototransduction [1–5]. Here we examine the role of ultraviolet-sensitive (UVS) cones in the modulation of circadian behavior, sleep, and suprachiasmatic nucleus (SCN) electrical activity. UV light exposure leads to phase-shifting responses comparable to those of white light. Moreover, UV light exposure induces sleep in wild-type and melanopsin-deficient (Opn4−/−) mice with equal efficacy. Electrical recordings from the SCN of wild-type mice show that UV light elicits irradiance-dependent sustained responses that are similar to those induced by white light, with characteristic fast transient components occurring at the light transitions. These responses are retained in Opn4−/− mice and preserved under saturating photopic conditions. The sensitivity of phase-shifting responses to UV light is unaffected by the loss of rods but is severely attenuated by the additional loss of cones. Our data show that UVS cones play an important role in circadian and sleep regulation in mice.
Collapse
|
139
|
Papamichael C, Skene DJ, Revell VL. Human Nonvisual Responses to Simultaneous Presentation of Blue and Red Monochromatic Light. J Biol Rhythms 2012; 27:70-8. [DOI: 10.1177/0748730411431447] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Blue light sensitivity of melatonin suppression and subjective mood and alertness responses in humans is recognized as being melanopsin based. Observations that long-wavelength (red) light can potentiate responses to subsequent short-wavelength (blue) light have been attributed to the bistable nature of melanopsin whereby it forms stable associations with both 11-cis and all-trans isoforms of retinaldehyde and uses light to transition between these states. The current study examined the effect of concurrent administration of blue and red monochromatic light, as would occur in real-world white light, on acute melatonin suppression and subjective mood and alertness responses in humans. Young healthy men (18-35 years; n = 21) were studied in highly controlled laboratory sessions that included an individually timed 30-min light stimulus of blue (λmax 479 nm) or red (λmax 627 nm) monochromatic light at varying intensities (1013-1014 photons/cm2/sec) presented, either alone or in combination, in a within-subject randomized design. Plasma melatonin levels and subjective mood and alertness were assessed at regular intervals relative to the light stimulus. Subjective alertness levels were elevated after light onset irrespective of light wavelength or irradiance. For melatonin suppression, a significant irradiance response was observed with blue light. Co-administration of red light, at any of the irradiances tested, did not significantly alter the response to blue light alone. Under the current experimental conditions, the primary determinant of the melatonin suppression response was the irradiance of blue 479 nm light, and this was unaffected by simultaneous red light administration.
Collapse
Affiliation(s)
- Christiana Papamichael
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Victoria L. Revell
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
140
|
Stephenson KM, Schroder CM, Bertschy G, Bourgin P. Complex interaction of circadian and non-circadian effects of light on mood: shedding new light on an old story. Sleep Med Rev 2012; 16:445-54. [PMID: 22244990 DOI: 10.1016/j.smrv.2011.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/01/2023]
Abstract
In addition to its role in vision, light exerts strong effects on behavior. Its powerful role in the modulation of mood is well established, yet remains poorly understood. Much research has focused on the effects of light on circadian rhythms and subsequent interaction with alertness and depression. The recent discovery of a third photoreceptor, melanopsin, expressed in a subset of retinal ganglion cells, allows major improvement of our understanding of how photic information is processed. Light affects behavior in two ways, either indirectly through the circadian timing system, or directly through mechanisms that are independent of the circadian system. These latter effects have barely been studied in regard to mood, but recent investigations on the direct effects of light on sleep and alertness suggest additional pathways through which light could influence mood. Based on our recent findings, we suggest that light, via melanopsin, may exert its antidepressant effect through a modulation of the homeostatic process of sleep. Further research is needed to understand how these mechanisms interplay and how they contribute to the photic regulation of mood. Such research could improve therapeutic management of affective disorders and influence the management of societal lighting conditions.
Collapse
Affiliation(s)
- Kathryn M Stephenson
- Department of Biological Rhythms, Institut des Neurosciences Cellulaires et Intégratives, CNRS-UPR 3212, Strasbourg, France.
| | | | | | | |
Collapse
|
141
|
Abstract
In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light, slow on- and off-latencies, and relatively low light sensitivity. All ipRGCs use melanopsin (Opn4) as their photopigment. Melanopsin resembles invertebrate rhabdomeric photopigments more than vertebrate ciliary pigments and uses a G(q) signaling pathway, in contrast to the G(t) pathway used by rods and cones. ipRGCs can recycle chromophore in the absence of the retinal pigment epithelium and are highly resistant to vitamin A depletion. This suggests that melanopsin employs a bistable sequential photon absorption mechanism typical of rhabdomeric opsins.
Collapse
Affiliation(s)
| | - Ethan Buhr
- From the Departments of Ophthalmology and
| | - Russell N. Van Gelder
- From the Departments of Ophthalmology and
- Biological Structure, University of Washington School of Medicine, Seattle, Washington 98104
| |
Collapse
|
142
|
Schmidt TM, Do MTH, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 2011; 31:16094-101. [PMID: 22072661 PMCID: PMC3267581 DOI: 10.1523/jneurosci.4132-11.2011] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022] Open
Abstract
Melanopsin imparts an intrinsic photosensitivity to a subclass of retinal ganglion cells (ipRGCs). Generally thought of as irradiance detectors, ipRGCs target numerous brain regions involved in non-image-forming vision. ipRGCs integrate their intrinsic, melanopsin-mediated light information with rod/cone signals relayed via synaptic connections to influence light-dependent behaviors. Early observations indicated diversity among these cells and recently several specific subtypes have been identified. These subtypes differ in morphological and physiological form, controlling separate functions that range from biological rhythm via circadian photoentrainment, to protective behavioral responses including pupil constriction and light avoidance, and even image-forming vision. In this Mini-Symposium review, we will discuss some recent findings that highlight the diversity in both form and function of these recently discovered atypical photoreceptors.
Collapse
Affiliation(s)
- Tiffany M. Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Tri H. Do
- F. M. Kirby Neurobiology Center Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Dennis Dacey
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Robert Lucas
- Department of Neurobiology, The University of Manchester, Manchester, United Kingdom M13 9PT
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, and
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
143
|
Morin LP, Studholme KM. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence. Neuroscience 2011; 199:213-24. [PMID: 21985934 DOI: 10.1016/j.neuroscience.2011.09.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
Abstract
Four studies were performed to further clarify the contribution of rod/cone and intrinsically photoreceptive retinal ganglion cells to measures of entrainment, dark preference, light-induced locomotor suppression and photosomnolence. Wild type (WT), retinally degenerate (rd/rd), and melanopsin-less (OPN4⁻/⁻) mouse strains were compared. In Experiment 1, mice were exposed to a graded photoperiod in which approximately 0.26 μW/cm² irradiance diminished to dark over a 6-h interval. This method enabled "phase angle titration," with individual animals assuming activity onsets according to their sensitivity to light. WT and OPN4⁻/⁻ animals entrained with identical phase angles (effective irradiance=0.078 μW/cm²), but rd/rd mice required a more intense irradiance (0.161 μW/cm²) and entrainment occurred about 2.5 h earlier. In Experiment 2, all three strains preferred the dark side of a divided light-dark chamber until the irradiance dropped to 0.5 μW/cm² at which point, rd/rd mice no longer showed a preference. Experiments 3 and 4 determined that WT and rd/rd mice showed equivalent light-induced locomotor suppression, but the response was greatly impaired in OPN4⁻/⁻ mice. Closer examination of open field locomotion using infrared video-based methods and Any-maze(tm) software revealed two opposing effects of light. Locomotor suppression was equivalent in WT and rd/rd mice. Responses by OPN4⁻/⁻ mice varied from being absent (n=17) to normal (similar to WT and rd/rd mice; n=8). Light onset was associated with a significant, but brief, locomotion increase in WT and OPN4⁻/⁻ mice, but not in rd/rd mice. Any-maze(tm) analysis supports the view that light-induced locomotor quiescence is followed by behavioral sleep (photosomnolence), a fact that was visually validated from the raw video files. The data show that (a) classical photoreceptors, most likely rods, allow mice to prefer and entrain to very dim light such as found in natural twilight; (b) the presence of melanopsin photopigment enables light-induced locomotor suppression and photosomnolence; (c) light-induced locomotor suppression/photosomnolence is rod/cone mediated in 36% of mice lacking melanopsin, but not in 64% of the same OPN4⁻/⁻ strain; and (d) light-induced locomotor suppression encompasses an interval of behavioral sleep.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY, USA.
| | | |
Collapse
|
144
|
Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 2011; 34:572-80. [PMID: 21816493 DOI: 10.1016/j.tins.2011.07.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/29/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
Abstract
For decades, rods and cones were thought to be the only photoreceptors in the mammalian retina. However, a population of atypical photoreceptive retinal ganglion cells (RGCs) expresses the photopigment melanopsin and is intrinsically photosensitive (ipRGCs). These ipRGCs are crucial for relaying light information from the retina to the brain to control circadian photoentrainment, pupillary light reflex, and sleep. ipRGCs were initially described as a uniform population involved solely in signaling irradiance for non-image forming functions. Recent work, however, has uncovered that ipRGCs are unexpectedly diverse at the molecular, cellular and functional levels, and could even be involved in image formation. This review summarizes our current understanding of the diversity of ipRGCs and their various roles in modulating behavior.
Collapse
Affiliation(s)
- Tiffany M Schmidt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
145
|
Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A, Dijk DJ, Maquet P. Effects of Light on Cognitive Brain Responses Depend on Circadian Phase and Sleep Homeostasis. J Biol Rhythms 2011; 26:249-59. [DOI: 10.1177/0748730411401736] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Light is a powerful modulator of cognition through its long-term effects on circadian rhythmicity and direct effects on brain function as identified by neuroimaging. How the direct impact of light on brain function varies with wavelength of light, circadian phase, and sleep homeostasis, and how this differs between individuals, is a largely unexplored area. Using functional MRI, we compared the effects of 1 minute of low-intensity blue (473 nm) and green light (527 nm) exposures on brain responses to an auditory working memory task while varying circadian phase and status of the sleep homeostat. Data were collected in 27 subjects genotyped for the PER3 VNTR (12 PER35/5 and 15 PER34/4) in whom it was previously shown that the brain responses to this task, when conducted in darkness, depend on circadian phase, sleep homeostasis, and genotype. In the morning after sleep, blue light, relative to green light, increased brain responses primarily in the ventrolateral and dorsolateral prefrontal cortex and in the intraparietal sulcus, but only in PER34/4 individuals. By contrast, in the morning after sleep loss, blue light increased brain responses in a left thalamofrontoparietal circuit to a larger extent than green light, and only so in PER35/5 individuals. In the evening wake maintenance zone following a normal waking day, no differential effect of 1 minute of blue versus green light was observed in either genotype. Comparison of the current results with the findings observed in darkness indicates that light acts as an activating agent particularly under those circumstances in which and in those individuals in whom brain function is jeopardized by an adverse circadian phase and high homeostatic sleep pressure.
Collapse
Affiliation(s)
- Gilles Vandewalle
- Cyclotron Research Centre, University of Liège-Sart Tilman, Liège, Belgium,
| | - Simon N. Archer
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | | | - Evelyne Balteau
- Cyclotron Research Centre, University of Liège-Sart Tilman, Liège, Belgium
| | | | - André Luxen
- Cyclotron Research Centre, University of Liège-Sart Tilman, Liège, Belgium
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège-Sart Tilman, Liège, Belgium,
| |
Collapse
|
146
|
Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 2011; 30:239-57. [PMID: 21600300 DOI: 10.1016/j.preteyeres.2011.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 12/11/2022]
Abstract
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Collapse
Affiliation(s)
- F Behar-Cohen
- Inserm UMRS 872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
The effect of narrowband 500nm light on daytime sleep in humans. Physiol Behav 2011; 103:197-202. [DOI: 10.1016/j.physbeh.2011.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/05/2011] [Accepted: 01/24/2011] [Indexed: 11/19/2022]
|
148
|
Brown TM, Wynne J, Piggins HD, Lucas RJ. Multiple hypothalamic cell populations encoding distinct visual information. J Physiol 2011; 589:1173-94. [PMID: 21224225 DOI: 10.1113/jphysiol.2010.199877] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental illumination profoundly influences mammalian physiology and behaviour through actions on a master circadian oscillator in the suprachiasmatic nuclei (SCN) and other hypothalamic nuclei. The retinal and central mechanisms that shape daily patterns of light-evoked and spontaneous activity in this network of hypothalamic cells are still largely unclear. Similarly, the exact nature of the sensory information conveyed by such cells is unresolved. Here we set out to address these issues, through multielectrode recordings from the hypothalamus of red cone knockin mice (Opn1mwR). With this powerful mouse model, the photoreceptive origins of any response can be readily identified on the basis of their relative sensitivity to short and long wavelength light. Our experiments revealed that the firing pattern of many hypothalamic cells was influenced by changes in light levels and/or according to the steady state level of illumination. These ‘contrast' and ‘irradiance' responses were driven primarily by cone and melanopsin photoreceptors respectively, with rods exhibiting a much more subtle influence. Individual hypothalamic neurons differentially sampled from these information streams, giving rise to four distinct response types. The most common response phenotype in the SCN itself was sustained activation. Cells with this behaviour responded to all three photoreceptor classes in a manner consistent with their distinct contributions to circadian photoentrainment. These ‘sustained' cells were also unique in our sample in expressing circadian firing patterns with highest activity during the mid projected day. Surprisingly, we also found a minority of SCN neurons that lacked the melanopsin-derived irradiance signal and responded only to light transitions, allowing for the possibility that rod–cone contrast signals may be routed to SCN output targets without influencing neighbouring circadian oscillators. Finally, an array of cells extending throughout the periventricular hypothalamus and ventral thalamus were excited or inhibited solely according to the activity of melanopsin. These cells appeared to convey a filtered version of the visual signal, suitable for modulating physiology/behaviour purely according to environmental irradiance. In summary, these findings reveal unexpectedly widespread hypothalamic cell populations encoding distinct qualities of visual information.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, AV Hill Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
149
|
Chellappa SL, Gordijn MC, Cajochen C. Can light make us bright? Effects of light on cognition and sleep. PROGRESS IN BRAIN RESEARCH 2011; 190:119-33. [DOI: 10.1016/b978-0-444-53817-8.00007-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
150
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light in the absence of all rod and cone photoreceptor input. The existence of these ganglion cell photoreceptors, although predicted from observations scattered over many decades, was not established until it was shown that a novel photopigment, melanopsin, was expressed in retinal ganglion cells of rodents and primates. Phototransduction in mammalian ipRGCs more closely resembles that of invertebrate than vertebrate photoreceptors and appears to be mediated by transient receptor potential channels. In the retina, ipRGCs provide excitatory drive to dopaminergic amacrine cells and ipRGCs are coupled to GABAergic amacrine cells via gap junctions. Several subtypes of ipRGC have been identified in rodents based on their morphology, physiology and expression of molecular markers. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions including photoentrainment of the biological clock located in the hypothalamus, the pupillary light reflex, sleep and perhaps some aspects of vision. In addition, ipRGCs may also contribute irradiance signals that interface directly with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. Here we review the early work that provided the motivation for searching for a new mammalian photoreceptor, the ground-breaking discoveries, current progress that continues to reveal the unusual properties of these neuron photoreceptors, and directions for future investigation.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | |
Collapse
|