101
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
102
|
Kandel PP, Almeida RPP, Cobine PA, De La Fuente L. Natural Competence Rates Are Variable Among Xylella fastidiosa Strains and Homologous Recombination Occurs In Vitro Between Subspecies fastidiosa and multiplex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:589-600. [PMID: 28459171 DOI: 10.1094/mpmi-02-17-0053-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xylella fastidiosa, an etiological agent of emerging crop diseases around the world, is naturally competent for the uptake of DNA from the environment that is incorporated into its genome by homologous recombination. Homologous recombination between subspecies of X. fastidiosa was inferred by in silico studies and was hypothesized to cause disease emergence. However, no experimental data are available on the degree to which X. fastidiosa strains are capable of competence and whether recombination can be experimentally demonstrated between subspecies. Here, using X. fastidiosa strains from different subspecies, natural competence in 11 of 13 strains was confirmed with plasmids containing antibiotic markers flanked by homologous regions and, in three of five strains, with dead bacterial cells used as source of donor DNA. Recombination frequency differed among strains and was correlated to growth rate and twitching motility. Moreover, intersubspecific recombination occurred readily between strains of subsp. fastidiosa and multiplex, as demonstrated by movement of antibiotic resistance and green fluorescent protein from donor to recipient cells and confirmed by DNA sequencing of the flanking arms of recombinant strains. Results demonstrate that natural competence is widespread among X. fastidiosa strains and could have an impact in pathogen adaptation and disease development.
Collapse
Affiliation(s)
- Prem P Kandel
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Rodrigo P P Almeida
- 2 Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A.; and
| | - Paul A Cobine
- 3 Department of Biological Sciences, Auburn University
| | - Leonardo De La Fuente
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| |
Collapse
|
103
|
David S, Sánchez-Busó L, Harris SR, Marttinen P, Rusniok C, Buchrieser C, Harrison TG, Parkhill J. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet 2017. [PMID: 28650958 PMCID: PMC5507463 DOI: 10.1371/journal.pgen.1006855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.
Collapse
Affiliation(s)
- Sophia David
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Leonor Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Simon R. Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Aalto, Espoo, Finland
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Timothy G. Harrison
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
104
|
Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 2017; 38:95-105. [PMID: 28600959 DOI: 10.1016/j.mib.2017.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
Efforts to identify and characterize strategies for horizontal gene transfer (HGT) in prokaryotes could have overlooked some mechanisms that do not entirely fit in with the canonical ones most often described (conjugation of plasmids, phage transduction and transformation). The difficulty in distinguishing the different HGT strategies could have contributed to underestimate their real extent. Here we review non classical HGT strategies: some that require mobile genetic elements (MGEs) and others independent of MGE. Among those strategies that require MGEs, there is a range of newly reported, hybrid and intermediate MGEs mobilizing only their own DNA, others that mobilize preferentially bacterial DNA, or both. Considering HGT strategies independent of MGE, a few are even not restricted to DNA transfer, but can also mobilize other molecules. This review considers those HGT strategies that are less commonly dealt with in the literature. The real impact of these elements could, in some conditions, be more relevant than previously thought.
Collapse
|
105
|
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol 2017; 38:22-29. [PMID: 28458094 DOI: 10.1016/j.mib.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
Abstract
Naturally competent bacteria can pull free DNA from their surroundings. This incoming DNA can serve various purposes, ranging from acting as a source of nutrients or DNA stretches for repair to the acquisition of novel genetic information. The latter process defines the natural competence for transformation as a mode of horizontal gene transfer (HGT) and led to its discovery almost a century ago. However, although it is widely accepted that natural competence can contribute to the spread of genetic material among prokaryotes, the question remains whether this mode of HGT can foster the transfer of larger DNA regions or only transfers shorter fragments, given that extracellular DNA is often heavily fragmented. Here, I outline examples of competence-mediated movement of large genomic segments. Moreover, I discuss a recent proposition that transformation is used to cure bacteria of selfish mobile genetic elements. Such a transformation-mediated genome maintenance mechanism could indeed be an important and underappreciated function of natural competence.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
106
|
Okura M, Nozawa T, Watanabe T, Murase K, Nakagawa I, Takamatsu D, Osaki M, Sekizaki T, Gottschalk M, Hamada S, Maruyama F. A Locus Encoding Variable Defense Systems against Invading DNA Identified in Streptococcus suis. Genome Biol Evol 2017; 9:1000-1012. [PMID: 28379509 PMCID: PMC5398294 DOI: 10.1093/gbe/evx062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis, an important zoonotic pathogen, is known to have an open pan-genome and to develop a competent state. In S. suis, limited genetic lineages are suggested to be associated with zoonosis. However, little is known about the evolution of diversified lineages and their respective phenotypic or ecological characteristics. In this study, we performed comparative genome analyses of S. suis, with a focus on the competence genes, mobile genetic elements, and genetic elements related to various defense systems against exogenous DNAs (defense elements) that are associated with gene gain/loss/exchange mediated by horizontal DNA movements and their restrictions. Our genome analyses revealed a conserved competence-inducing peptide type (pherotype) of the competence system and large-scale genome rearrangements in certain clusters based on the genome phylogeny of 58 S. suis strains. Moreover, the profiles of the defense elements were similar or identical to each other among the strains belonging to the same genomic clusters. Our findings suggest that these genetic characteristics of each cluster might exert specific effects on the phenotypic or ecological differences between the clusters. We also found certain loci that shift several types of defense elements in S. suis. Of note, one of these loci is a previously unrecognized variable region in bacteria, at which strains of distinct clusters code for different and various defense elements. This locus might represent a novel defense mechanism that has evolved through an arms race between bacteria and invading DNAs, mediated by mobile genetic elements and genetic competence.
Collapse
Affiliation(s)
- Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi Nozawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kazunori Murase
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Makoto Osaki
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Thailand-Japan Collaboration Center for Emerging and Re-emerging Infections, Osaka University, Suita-Osaka, Japan
| | - Fumito Maruyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
107
|
Hülter N, Sørum V, Borch-Pedersen K, Liljegren MM, Utnes ALG, Primicerio R, Harms K, Johnsen PJ. Costs and benefits of natural transformation in Acinetobacter baylyi. BMC Microbiol 2017; 17:34. [PMID: 28202049 PMCID: PMC5312590 DOI: 10.1186/s12866-017-0953-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Natural transformation enables acquisition of adaptive traits and drives genome evolution in prokaryotes. Yet, the selective forces responsible for the evolution and maintenance of natural transformation remain elusive since taken-up DNA has also been hypothesized to provide benefits such as nutrients or templates for DNA repair to individual cells. Results We investigated the immediate effects of DNA uptake and recombination on the naturally competent bacterium Acinetobacter baylyi in both benign and genotoxic conditions. In head-to-head competition experiments between DNA uptake-proficient and -deficient strains, we observed a fitness benefit of DNA uptake independent of UV stress. This benefit was found with both homologous and heterologous DNA and was independent of recombination. Recombination with taken-up DNA reduced survival of transformed cells with increasing levels of UV-stress through interference with nucleotide excision repair, suggesting that DNA strand breaks occur during recombination attempts with taken-up DNA. Consistent with this, we show that absence of RecBCD and RecFOR recombinational DNA repair pathways strongly decrease natural transformation. Conclusions Our data show a physiological benefit of DNA uptake unrelated to recombination. In contrast, recombination during transformation is a strand break inducing process that represents a previously unrecognized cost of natural transformation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0953-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Hülter
- Genomic Microbiology, Institute of Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 11, 24118, Kiel, Germany.,Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Kristina Borch-Pedersen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, 0033, Oslo, Norway
| | - Mikkel M Liljegren
- Centre for Ecolgical and Evolutionary Synthesis, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Ane L G Utnes
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Raul Primicerio
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Klaus Harms
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway. .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway.
| |
Collapse
|
108
|
A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 2016; 6:36891. [PMID: 27845364 PMCID: PMC5109276 DOI: 10.1038/srep36891] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
Cholera is a devastating diarrhoeal disease caused by certain strains of serogroup O1/O139 Vibrio cholerae. Mobile genetic elements such as genomic islands (GIs) have been pivotal in the evolution of O1/O139 V. cholerae. Perhaps the most important GI involved in cholera disease is the V. cholerae pathogenicity island 1 (VPI-1). This GI contains the toxin-coregulated pilus (TCP) gene cluster that is necessary for colonization of the human intestine as well as being the receptor for infection by the cholera-toxin bearing CTX phage. In this study, we report a GI (designated GIVchS12) from a non-O1/O139 strain of V. cholerae that is present in the same chromosomal location as VPI-1, contains an integrase gene with 94% nucleotide and 100% protein identity to the VPI-1 integrase, and attachment (att) sites 100% identical to those found in VPI-1. However, instead of TCP and the other accessory genes present in VPI-1, GIVchS12 contains a CRISPR-Cas element and a type VI secretion system (T6SS). GIs similar to GIVchS12 were identified in other V. cholerae genomes, also containing CRISPR-Cas elements and/or T6SS's. This study highlights the diversity of GIs circulating in natural V. cholerae populations and identifies GIs with VPI-1 recombination characteristics as a propagator of CRISPR-Cas and T6SS modules.
Collapse
|
109
|
Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange. Curr Genet 2016; 63:451-455. [DOI: 10.1007/s00294-016-0663-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
110
|
Emergence of a Competence-Reducing Filamentous Phage from the Genome of Acinetobacter baylyi ADP1. J Bacteriol 2016; 198:3209-3219. [PMID: 27645387 DOI: 10.1128/jb.00424-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/15/2016] [Indexed: 01/17/2023] Open
Abstract
Bacterial genomes commonly contain prophage sequences as a result of past infections with lysogenic phages. Many of these integrated viral sequences are believed to be cryptic, but prophage genes are sometimes coopted by the host, and some prophages may be reactivated to form infectious particles when cells are stressed or mutate. We found that a previously uncharacterized filamentous phage emerged from the genome of Acinetobacter baylyi ADP1 during a laboratory evolution experiment. This phage has a genetic organization similar to that of the Vibrio cholerae CTXϕ phage. The emergence of the ADP1 phage was associated with the evolution of reduced transformability in our experimental populations, so we named it the competence-reducing acinetobacter phage (CRAϕ). Knocking out ADP1 genes required for competence leads to resistance to CRAϕ infection. Although filamentous bacteriophages are known to target type IV pili, this is the first report of a phage that apparently uses a competence pilus as a receptor. A. baylyi may be especially susceptible to this route of infection because every cell is competent during normal growth, whereas competence is induced only under certain environmental conditions or in a subpopulation of cells in other bacterial species. It is possible that CRAϕ-like phages restrict horizontal gene transfer in nature by inhibiting the growth of naturally transformable strains. We also found that prophages with homology to CRAϕ exist in several strains of Acinetobacter baumannii These CRAϕ-like A. baumannii prophages encode toxins similar to CTXϕ that might contribute to the virulence of this opportunistic multidrug-resistant pathogen. IMPORTANCE We observed the emergence of a novel filamentous phage (CRAϕ) from the genome of Acinetobacter baylyi ADP1 during a long-term laboratory evolution experiment. CRAϕ is the first bacteriophage reported to require the molecular machinery involved in the uptake of environmental DNA for infection. Reactivation and evolution of CRAϕ reduced the potential for horizontal transfer of genes via natural transformation in our experiment. Risk of infection by similar phages may limit the expression and maintenance of bacterial competence in nature. The closest studied relative of CRAϕ is the Vibrio cholerae CTXϕ phage. Variants of CRAϕ are found in the genomes of Acinetobacter baumannii strains, and it is possible that phage-encoded toxins contribute to the virulence of this opportunistic multidrug-resistant pathogen.
Collapse
|
111
|
Abstract
Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller's ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller's ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Pere Puigbò
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda Present address: Department of Biology, University of Turku, Finland
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| |
Collapse
|
112
|
Bertelli C, Cissé OH, Rusconi B, Kebbi-Beghdadi C, Croxatto A, Goesmann A, Collyn F, Greub G. CRISPR System Acquisition and Evolution of an Obligate Intracellular Chlamydia-Related Bacterium. Genome Biol Evol 2016; 8:2376-86. [PMID: 27516530 PMCID: PMC5010888 DOI: 10.1093/gbe/evw138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, a new Chlamydia-related organism, Protochlamydia naegleriophila KNic, was discovered within a Naegleria amoeba. To decipher the mechanisms at play in the modeling of genomes from the Protochlamydia genus, we sequenced the full genome of Pr. naegleriophila, which includes a 2,885,090 bp chromosome and a 145,285 bp megaplasmid. For the first time within the Chlamydiales order, we describe the presence of a clustered regularly interspaced short palindromic repeats (CRISPR) system, the immune system of bacteria, located on the chromosome. It is composed of a small CRISPR locus comprising eight repeats and associated cas-cse genes of the subtype I-E. A CRISPR locus is also present within Chlamydia sp. Diamant, another Pr. naegleriophila strain, suggesting that the CRISPR system was acquired by a common ancestor of Pr. naegleriophila, after its divergence from Pr. amoebophila. Both nucleotide bias and comparative genomics approaches identified probable horizontal gene acquisitions within two and four genomic islands in Pr. naegleriophila KNic and Diamant genomes, respectively. The plasmid encodes an F-type conjugative system highly similar to 1) that found in the Pam100G genomic island of Pr. amoebophila UWE25 chromosome, as well as on the plasmid of Rubidus massiliensis and 2) to the three genes remaining in the chromosome of Parachlamydia acanthamoebae strains. Therefore, this conjugative system was likely acquired on an ancestral plasmid before the divergence of Parachlamydiaceae Overall, this new complete Pr. naegleriophila genome sequence enables further investigation of the dynamic processes shaping the genomes of the family Parachlamydiaceae and the genus Protochlamydia.
Collapse
Affiliation(s)
- Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ousmane H Cissé
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Brigida Rusconi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Antony Croxatto
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Germany
| | - François Collyn
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| |
Collapse
|
113
|
Hynes AP, Shakya M, Mercer RG, Grüll MP, Bown L, Davidson F, Steffen E, Matchem H, Peach ME, Berger T, Grebe K, Zhaxybayeva O, Lang AS. Functional and Evolutionary Characterization of a Gene Transfer Agent's Multilocus "Genome". Mol Biol Evol 2016; 33:2530-43. [PMID: 27343288 PMCID: PMC5026251 DOI: 10.1093/molbev/msw125] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell’s genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures “repurposed” by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage. Utilizing transcriptomic, genetic and biochemical approaches, we report that the RcGTA “genome” consists of at least 24 genes distributed across five distinct loci. We demonstrate that, of these additional loci, two are involved in cell recognition and binding and one in the production and maturation of RcGTA particles. The five RcGTA “genome” loci are widespread within Rhodobacterales, but not all loci have the same evolutionary histories. Specifically, two of the loci have been subject to frequent, probably virus-mediated, gene transfer events. We argue that it is unlikely that RcGTA is a selfish genetic element. Instead, our findings are compatible with the scenario that RcGTA is a virus-derived element maintained by the producing organism due to a selective advantage of within-population gene exchange. The modularity of the RcGTA “genome” is presumably a result of selection on the host organism to retain GTA functionality.
Collapse
Affiliation(s)
- Alexander P Hynes
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Migun Shakya
- Department of Biological Sciences, Dartmouth College
| | - Ryan G Mercer
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Marc P Grüll
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Fraser Davidson
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Ekaterina Steffen
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Heidi Matchem
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Mandy E Peach
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Tim Berger
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Katherine Grebe
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College Department of Computer Science, Dartmouth College
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
114
|
Abstract
The diversification of prokaryotes is accelerated by their ability to acquire DNA from other genomes. However, the underlying processes also facilitate genome infection by costly mobile genetic elements. The discovery that cells can uptake DNA by natural transformation was instrumental to the birth of molecular biology nearly a century ago. Surprisingly, a new study shows that this mechanism could efficiently cure the genome of mobile elements acquired through previous sexual exchanges. Natural transformation was thought to provide new genetic information to bacteria. Instead, a new study suggests it cures the genome of deleterious mobile elements.
Collapse
Affiliation(s)
- Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR3525, Paris, France
- * E-mail:
| |
Collapse
|