101
|
Kim JS, Choe H, Kim KM, Lee YR, Rhee MS, Park DS. Lactobacillus porci sp. nov., isolated from small intestine of a swine. Int J Syst Evol Microbiol 2018; 68:3118-3124. [DOI: 10.1099/ijsem.0.002949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ji-Sun Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hanna Choe
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Kyung Mo Kim
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- 2Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Yu-Ri Lee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Moon-Soo Rhee
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Doo-Sang Park
- 1Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
102
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
103
|
The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. ISME JOURNAL 2018; 12:2770-2784. [PMID: 30013162 DOI: 10.1038/s41396-018-0211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
The eco-evolutionary interactions among members of the vertebrate gut microbiota that ultimately result in host-specific communities are poorly understood. Here we show that Lactobacillus reuteri coexists with species that belong to the Lactobacillus johnsonii cluster (L. johnsonii, L. gasseri, and L taiwanensis) in a taxonomically wide range of rodents, suggesting cohabitation over evolutionary times. The two dominant Lactobacillus species found in wild mice establish a commensalistic relationship in gastric biofilms when introduced together into germ-free mice in which L. reuteri facilitates colonization of L. taiwanensis. Genomic analysis revealed allopatric diversification in strains of both species that originated from geographically separated locations (Scotland and France). Allopatry of the strains resulted in reduced formation of mixed biofilms in vitro, indicating that interspecies interactions in gastric Lactobacillus-biofilms are the result of an adaptive evolutionary process that occurred in a biogeographical context. In summary, these findings suggest that members within the vertebrate gut microbiota can evolve inter-dependencies through ecological facilitation, which could represent one mechanism by which host-specific bacterial communities assemble across vertebrate species and an explanation for their spatial and biogeographic patterns.
Collapse
|
104
|
Petrova MI, Macklaim JM, Wuyts S, Verhoeven T, Vanderleyden J, Gloor GB, Lebeer S, Reid G. Comparative Genomic and Phenotypic Analysis of the Vaginal Probiotic Lactobacillus rhamnosus GR-1. Front Microbiol 2018; 9:1278. [PMID: 29963028 PMCID: PMC6013579 DOI: 10.3389/fmicb.2018.01278] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/25/2018] [Indexed: 11/28/2022] Open
Abstract
Lactobacillus represents a versatile bacterial genus, which can adapt to a wide variety of ecological niches, including human body sites such as the intestinal and urogenital tract. In this study, the complete genome sequence of the vaginal probiotic Lactobacillus rhamnosus GR-1 was determined and compared to other L. rhamnosus strains at genomic and phenotypic level. The strain GR-1 was originally isolated from a female urethra, and was assessed with L. rhamnosus GG from a feces sample of a healthy male, and L. rhamnosus LC705 from a dairy product. A key difference is the absence in GR-1 and LC705 of the spaCBA locus required for pili-mediated intestinal epithelial adhesion. In addition, the L. rhamnosus GR-1 genome contains a unique cluster for exopolysaccharide production, which is postulated to synthesize glucose-rich, rhamnose-lacking exopolysaccharide molecules that are different from the galactose-rich extracellular polysaccharide of L. rhamnosus GG. Compared to L. rhamnosus GG, L. rhamnosus GR-1 was also genetically predicted and experimentally shown to better metabolize lactose and maltose, and to better withstand oxidative stress, which is of relevance in the vagina. This study could thus provide a molecular framework for the selection of the optimal probiotic strain for each targeted niche and condition, but further substantiation of niche adaptation mechanisms of lactobacilli is warranted.
Collapse
Affiliation(s)
- Mariya I. Petrova
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jean M. Macklaim
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Sander Wuyts
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tine Verhoeven
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Gregory B. Gloor
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Sarah Lebeer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Gregor Reid
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Department of Surgery, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
105
|
Yu J, Zhao J, Song Y, Zhang J, Yu Z, Zhang H, Sun Z. Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation. Front Microbiol 2018; 9:1151. [PMID: 29915568 PMCID: PMC5994480 DOI: 10.3389/fmicb.2018.01151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection). A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiachao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
106
|
Burgos FA, Ray CL, Arias CR. Bacterial diversity and community structure of the intestinal microbiome of Channel Catfish (Ictalurus punctatus) during ontogenesis. Syst Appl Microbiol 2018; 41:494-505. [PMID: 29803608 DOI: 10.1016/j.syapm.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022]
Abstract
The acquisition of gut microbes does not occur randomly and is highly dependent on host factors, environmental cues, and self-assembly rules exerted by the microbes themselves. The main objective of this project was to characterize how the gut microbiome develops during the early life stages of Channel Catfish and to identify i) which bacteria are the main constituents of the gut microbiome at different ontogenesis stages, and ii) at which time point(s) the gut microbiome stabilizes. High-throughput Illumina Miseq DNA sequencing of the V4 domain of the 16S rRNA gene was used to assess the microbial community composition during the life stages of Channel Catfish along with water and feed samples. Microbiomes from fertilized eggs, sac fry, swim up fry, pre-fingerlings, and fingerlings were all significantly distinct. OTUs analyses showed that the phylum Proteobacteria, Firmicutes, Fusobacteria and Cyanobacteria dominated the Channel Catfish gut microbiome. During the early stages of ontogenesis, the fish microbiome was dynamic and highly diverse, with significant shifts occurring between fertilized eggs to sac fry (6dph), and from sac fry to swim up fry (15dph). The gut microbiome stabilized between the pre-fingerlings and fingerlings stage (≤90dph) with an observed reduction in species richness. Feed had a more significantly contribution to the microbial colonization of the gut than water. We have identified the period in which the gut microbiome changes rapidly from 15dph until 21dph before stabilizing after 90dph.
Collapse
Affiliation(s)
- Francisca A Burgos
- School of Fisheries, Aquaculture and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36832, USA; Escuela Superior Politécnica del Litoral, Facultad de Ingeniería Marítima, Ciencias Oceánicas, Biológicas y Recursos Naturales, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
| | - Candis L Ray
- United States Department of Agriculture, Agricultural Research Service, Stuttgart National Aquaculture Research Center, Stuttgart, AR, 72160, USA
| | - Covadonga R Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36832, USA.
| |
Collapse
|
107
|
Klopper KB, Bester E, Deane SM, Wolfaardt GM, Dicks LMT. Survival of Planktonic and Sessile Cells of Lactobacillus rhamnosus and Lactobacillus reuteri upon Exposure to Simulated Fasting-State Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2018; 11:594-603. [DOI: 10.1007/s12602-018-9426-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
108
|
Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri. Int J Food Microbiol 2018; 272:12-21. [DOI: 10.1016/j.ijfoodmicro.2018.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
109
|
Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol 2018; 9:757. [PMID: 29725324 PMCID: PMC5917019 DOI: 10.3389/fmicb.2018.00757] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
110
|
Fernández S, Fraga M, Silveyra E, Trombert AN, Rabaza A, Pla M, Zunino P. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef Microbes 2018; 9:613-624. [PMID: 29633640 DOI: 10.3920/bm2017.0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of native microorganisms with probiotic capacity is an alternative tool for the treatment and prevention of several diseases that affect animals, such as neonatal calf diarrhoea. The selection of probiotic strains within a collection is based on different in vitro and in vivo assays, which predict their potential. The aim of this study was to characterise a group of native Lactobacillus spp. strains isolated from faeces of healthy calves using an in vitro approach and to assess their ability to colonise the gastrointestinal tract (GIT) of calves. Native Lactobacillus spp. strains were evaluated on their capacity to survive low pH conditions and bile salts presence, biofilm formation and adhesion to both mucus and Caco-2 cells. Based on the in vitro characterisation, four strains (Lactobacillus johnsonii TP1.1, Lactobacillus reuteri TP1.3B, L. johnsonii TP1.6 and Lactobacillus amylovorus TP8.7) were selected to evaluate their capacity to colonise and persist in the GIT of calves. The assessment of enteric persistence involved an in vivo assay with oral administration of probiotics and quantification in faeces of the administered bacterial species with real-time quantitative PCR (qPCR). The study was conducted using 15 calves (1-month-old) which were divided into five groups of three animals, four of which were treated with four different selected strains and one was the control group. Strains TP1.3B and TP1.6 managed to persist in treated animals until ten days after the end of the administration period, indicating that they could be promising candidates for the design of probiotics for calves.
Collapse
Affiliation(s)
- S Fernández
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| | - M Fraga
- 2 Animal Health Unit, Instituto Nacional de Investigación Agropecuaria, Ruta 50 Km 11, Colonia, Uruguay
| | - E Silveyra
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| | - A N Trombert
- 3 Genomic and Bioinformatic Centre, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - A Rabaza
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| | - M Pla
- 4 Dairy Unit, Instituto Nacional de Investigación Agropecuaria, Ruta 50 Km 11, Colonia, Uruguay
| | - P Zunino
- 1 Department of Microbiology, Instituto de Investigaciones Biológicas 'Clemente Estable', Av Italia 3318, Montevideo, Uruguay
| |
Collapse
|
111
|
Di Rienzi SC, Jacobson J, Kennedy EA, Bell ME, Shi Q, Waters JL, Lawrence P, Brenna JT, Britton RA, Walter J, Ley RE. Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids. eLife 2018; 7:e32581. [PMID: 29580380 PMCID: PMC5902164 DOI: 10.7554/elife.32581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Juliet Jacobson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Elizabeth A Kennedy
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Mary E Bell
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Qiaojuan Shi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Jillian L Waters
- Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Peter Lawrence
- Division of Nutritional SciencesCornell UniversityIthacaUnited States
| | - J Thomas Brenna
- Division of Nutritional SciencesCornell UniversityIthacaUnited States
- Dell Pediatric Research Institute, Dell Medical SchoolUniversity of Texas at AustinAustinUnited States
| | - Robert A Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUnited States
| | - Jens Walter
- Department of Agricultural, Food, and Nutritional ScienceUniversity of AlbertaEdmontonCanada
- Department of Biological SciencesUniversity of AlbertaEdmontonCanada
| | - Ruth E Ley
- Department of Microbiome ScienceMax Planck Institute for Developmental BiologyTübingenGermany
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| |
Collapse
|
112
|
Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe-host interactions. Proc Natl Acad Sci U S A 2018; 115:E2706-E2715. [PMID: 29507249 PMCID: PMC5866549 DOI: 10.1073/pnas.1715016115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gut bacteria play a key role in health and disease, but the molecular mechanisms underpinning their interaction with the host remain elusive. The serine-rich repeat proteins (SRRPs) are a family of adhesins identified in many Gram-positive pathogenic bacteria. We previously showed that beneficial bacterial species found in the gut also express SRRPs and that SRRP was required for the ability of Lactobacillus reuteri strain to colonize mice. Here, our structural and biochemical data reveal that L. reuteri SRRP adopts a β-solenoid fold not observed in other structurally characterized SRRPs and functions as an adhesin via a pH-dependent mechanism, providing structural insights into the role of these adhesins in biofilm formation of gut symbionts. Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.
Collapse
|
113
|
Kiňová Sepová H, Florová B, Bilková A, Drobná E, Březina V. Evaluation of adhesion properties of lactobacilli probiotic candidates. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
114
|
Latousakis D, Juge N. How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus. Int J Mol Sci 2018; 19:ijms19010136. [PMID: 29301365 PMCID: PMC5796085 DOI: 10.3390/ijms19010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species. These systems play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of bacterial protein glycosylation in the interaction of the gut microbiota with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Nathalie Juge
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
115
|
Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci 2018; 75:149-160. [PMID: 29124307 PMCID: PMC5752736 DOI: 10.1007/s00018-017-2693-8] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023]
Abstract
Since the early days of the intestinal microbiota research, mouse models have been used frequently to study the interaction of microbes with their host. However, to translate the knowledge gained from mouse studies to a human situation, the major spatio-temporal similarities and differences between intestinal microbiota in mice and humans need to be considered. This is done here with specific attention for the comparative physiology of the intestinal tract, the effect of dietary patterns and differences in genetics. Detailed phylogenetic and metagenomic analysis showed that while many common genera are found in the human and murine intestine, these differ strongly in abundance and in total only 4% of the bacterial genes are found to share considerable identity. Moreover, a large variety of murine strains is available yet most of the microbiota research is performed in wild-type, inbred strains and their transgenic derivatives. It has become increasingly clear that the providers, rearing facilities and the genetic background of these mice have a significant impact on the microbial composition and this is illustrated with recent experimental data. This may affect the reproducibility of mouse microbiota studies and their conclusions. Hence, future studies should take these into account to truly show the effect of diet, genotype or environmental factors on the microbial composition.
Collapse
Affiliation(s)
- Floor Hugenholtz
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE, Wageningen, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, Building 124, 6708 WE, Wageningen, The Netherlands.
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, P.O. Box 21, 00014, Helsinki, Finland.
| |
Collapse
|
116
|
Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits. mBio 2017; 8:mBio.01809-17. [PMID: 29138307 PMCID: PMC5686540 DOI: 10.1128/mbio.01809-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium, which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. The response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment. Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium, which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.
Collapse
|
117
|
Hampe CS, Roth CL. Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine 2017; 58:207-227. [PMID: 29052181 DOI: 10.1007/s12020-017-1433-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The intestinal microbial composition appears to differ between healthy controls and individuals with Type 2 diabetes (T2D). This observation has led to the hypothesis that perturbations of the intestinal microbiota may contribute to the development of T2D. Manipulations of the intestinal microbiota may therefore provide a novel approach in the prevention and treatment of T2D. Indeed, fecal transplants have shown promising results in both animal models for obesity and T2D and in human clinical trials. To avoid possible complications associated with fecal transplants, probiotics are considered as a viable alternative therapy. An important, however often underappreciated, characteristic of probiotics is that individual strains may have different, even opposing, effects on the host. This strain specificity exists also within the same species. A comprehensive understanding of the underlying mechanisms at the strain level is therefore crucial for the selection of suitable probiotic strains. PURPOSE The aim of this review is to discuss the mechanisms employed by specific probiotic strains of the Lactobacillus and the Bifidobacterium genuses, which showed efficacy in the treatment of obesity and T2D. Some probiotic strains employ recurring beneficial effects, including the production of anti-microbial lactic acid, while other strains display highly unique features, such as hydrolysis of tannins. CONCLUSION A major obstacle in the evaluation of probiotic strains lays in the great number of strains, differences in detection methodology and measured outcome parameters. The understanding of further research should be directed towards the development of standardized evaluation methods to facilitate the comparison of different studies.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98109, USA.
| | - Christian L Roth
- Center for Integrative Brain Research, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
- Pediatric Endocrinology, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
118
|
Papizadeh M, Rohani M, Nahrevanian H, Javadi A, Pourshafie MR. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microb Pathog 2017; 111:118-131. [DOI: 10.1016/j.micpath.2017.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
|
119
|
Lee JY, Han GG, Choi J, Jin GD, Kang SK, Chae BJ, Kim EB, Choi YJ. Pan-Genomic Approaches in Lactobacillus reuteri as a Porcine Probiotic: Investigation of Host Adaptation and Antipathogenic Activity. MICROBIAL ECOLOGY 2017; 74:709-721. [PMID: 28439658 DOI: 10.1007/s00248-017-0977-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
After the introduction of a ban on the use of antibiotic growth promoters (AGPs) for livestock, reuterin-producing Lactobacillus reuteri is getting attention as an alternative to AGPs. In this study, we investigated genetic features of L. reuteri associated with host specificity and antipathogenic effect. We isolated 104 L. reuteri strains from porcine feces, and 16 strains, composed of eight strains exhibiting the higher antipathogenic effect (group HS) and eight strains exhibiting the lower effect (group LS), were selected for genomic comparison. We generated draft genomes of the 16 isolates and investigated their pan-genome together with the 26 National Center for Biotechnology Information-registered genomes. L. reuteri genomes organized six clades with multi-locus sequence analysis, and the clade IV includes the 16 isolates. First, we identified six L. reuteri clade IV-specific genes including three hypothetical protein-coding genes. The three annotated genes encode transposases and cell surface proteins, indicating that these genes are the result of adaptation to the host gastrointestinal epithelia and that these host-specific traits were acquired by horizontal gene transfer. We also identified differences between groups HS and LS in the pdu-cbi-cob-hem gene cluster, which is essential for reuterin and cobalamin synthesis, and six genes specific to group HS are revealed. While the strains of group HS possessed all genes of this cluster, LS strains have lost many genes of the cluster. This study provides a deeper understanding of the relationship between probiotic properties and genomic features of L. reuteri.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Geon Goo Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jaeyun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Gwi-Deuk Jin
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung Jo Chae
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
120
|
Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol 2017; 49:129-139. [PMID: 28866242 DOI: 10.1016/j.copbio.2017.08.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 02/08/2023]
Abstract
Strategies aimed at modulating the gut microbiota by using live microbes range from single strains (probiotics or live biotherapeutics) to whole non-defined fecal transplants. Although often clinically efficacious, our understanding on how microbial-based strategies modulate gut microbiome composition and function is vastly incomplete. In this review, we present a framework based on ecological theory that provides mechanistic explanations for the findings obtained in studies that attempted to modulate the gut microbiota of humans and animals using live microbes. We argue that an ecological perspective grounded in theory is necessary to interpret and predict the impact of microbiome-modulating strategies and thus advance our ability to develop improved and targeted approaches with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Jens Walter
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, AB, Canada; Department of Biological Sciences, University of Alberta, AB, Canada.
| | - María X Maldonado-Gómez
- Department of Food Science and Technology, University of California, Davis 95616, United States
| | - Inés Martínez
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, AB, Canada; Sacco System, Cadorago 22071, Italy
| |
Collapse
|
121
|
Lagkouvardos I, Overmann J, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes 2017; 8:493-503. [PMID: 28418756 PMCID: PMC5628658 DOI: 10.1080/19490976.2017.1320468] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 02/03/2023] Open
Abstract
During the last 15 years, molecular techniques have been preferred over culture-based approaches for the study of mammalian gut microbiota, i.e. the communities of microorganisms dwelling in the intestine of mammals. The main reason is the belief that the majority of gut bacteria, especially strict anaerobes, escape cultivation. Despite numerous such statements in publications, the literature does not provide a clear overview on the subject. In the present manuscript, we highlight recent work on the cultivation of bacteria from the intestine of mammals, review the literature and provide novel data pertaining to cultured fractions of mammalian gut microbiota. These data show that, despite marked inter-sample variations, 35 to 65% of molecular species detected by sequencing have representative strains in culture.
Collapse
Affiliation(s)
- Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Core Facility Microbiome/NGS, Technical University of Munich, Munich, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Clavel
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| |
Collapse
|
122
|
Clavel T, Neto JCG, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev 2017; 279:8-22. [PMID: 28856739 PMCID: PMC5657458 DOI: 10.1111/imr.12578] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The community of microorganisms in the mammalian gastrointestinal tract, referred to as the gut microbiota, influences host physiology and immunity. The last decade of microbiome research has provided significant advancements for the field and highlighted the importance of gut microbes to states of both health and disease. Novel molecular techniques have unraveled the tremendous diversity of intestinal symbionts that potentially influence the host, many proof-of-concept studies have demonstrated causative roles of gut microbial communities in various pathologies, and microbiome-based approaches are beginning to be implemented in the clinic for diagnostic purposes or for personalized treatments. However, several challenges for the field remain: purely descriptive reports outnumbering mechanistic studies and slow translation of experimental results obtained in animal models into the clinics. Moreover, there is a dearth of knowledge regarding how gut microbes, including novel species that have yet to be identified, impact host immune responses. The sheer complexity of the gut microbial ecosystem makes it difficult, in part, to fully understand the microbiota-host networks that regulate immunity. In the present manuscript, we review key findings on the interactions between gut microbiota members and the immune system. Because culturing microbes allows performing functional studies, we have emphasized the impact of specific taxa or communities thereof. We also highlight underlying molecular mechanisms and discuss opportunities to implement minimal microbiome-based strategies.
Collapse
Affiliation(s)
- Thomas Clavel
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - João Carlos Gomes Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Core Facility Microbiome/NGS, Technical University of Munich, Germany
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
123
|
Nemcová R, Maďar M, Gancarčíková S, Pistl J. The Influence of Supplementation of Feed with Lactobacillus reuteri L2/6 Biocenol on Intestinal Microbiota of Conventional Mice. FOLIA VETERINARIA 2017. [DOI: 10.1515/fv-2017-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
FISH (fluorescence in situ hybridization) analysis of the intestinal tract of conventional mice, following 14-day supplementation of feed with host non-specific (porcine) strain L. reuteri L2/6, showed in the presence of complex microbiota, a significant increase in the counts of representatives of the genera Lactobacillus and Bifidobacterium, and a significant decrease in the representatives of the genera Clostridium, Bacteroides and Enterobacteriaceae. At the same time, the supplemented strain stimulated the population of caecal lactobacilli of the species L. reuteri. These results demonstrated that the L. reuteri L2/6 colonised the jejunum, ileum and caecum and modulated the investigated intestinal microbiota.
Collapse
Affiliation(s)
- R. Nemcová
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - M. Maďar
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - S. Gancarčíková
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - J. Pistl
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| |
Collapse
|
124
|
Clavel T, Lagkouvardos I, Stecher B. From complex gut communities to minimal microbiomes via cultivation. Curr Opin Microbiol 2017. [DOI: 10.1016/j.mib.2017.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
125
|
Danchin A, Braham S. Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota. Microb Biotechnol 2017; 10:688-701. [PMID: 28612402 PMCID: PMC5481537 DOI: 10.1111/1751-7915.12722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbial communities thrive in a number of environments. Exploration of their microbiomes – their global genome – may reveal metabolic features that contribute to the development and welfare of their hosts, or chemical cleansing of environments. Yet we often lack final demonstration of their causal role in features of interest. The reason is that we do not have proper baselines that we could use to monitor how microbiota cope with key metabolites in the hosting environment. Here, focusing on animal gut microbiota, we describe the fate of cobalamins – metabolites of the B12 coenzyme family – that are essential for animals but synthesized only by prokaryotes. Microbiota produce the vitamin used in a variety of animals (and in algae). Coprophagy plays a role in its management. For coprophobic man, preliminary observations suggest that the gut microbial production of vitamin B12 plays only a limited role. By contrast, the vitamin is key for structuring microbiota. This implies that it is freely available in the environment. This can only result from lysis of the microbes that make it. A consequence for biotechnology applications is that, if valuable for their host, B12‐producing microbes should be sensitive to bacteriophages and colicins, or make spores.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | | |
Collapse
|
126
|
Sousa A, Frazão N, Ramiro RS, Gordo I. Evolution of commensal bacteria in the intestinal tract of mice. Curr Opin Microbiol 2017; 38:114-121. [PMID: 28591676 DOI: 10.1016/j.mib.2017.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 12/19/2022]
Abstract
Hundreds of different bacterial species inhabit our intestines and contribute to our health status, with significant loss of species diversity typically observed in disease conditions. Within each microbial species a great deal of diversity is hidden and such intra-specific variation is also key to the proper homeostasis between the host and its microbial inhabitants. Indeed, it is at this level that new mechanisms of antibiotic resistance emerge and pathogenic characteristics evolve. Yet, our knowledge on intra-species variation in the gut is still limited and an understanding of the evolutionary mechanisms acting on it is extremely reduced. Here we review recent work that has begun to reveal that adaptation of commensal bacteria to the mammalian intestine may be fast and highly repeatable, and that the time scales of evolutionary and ecological change can be very similar in these ecosystems.
Collapse
Affiliation(s)
- Ana Sousa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, Portugal; iBiMED, Institute for Biomedicine, Universidade de Aveiro, Portugal
| | - Nelson Frazão
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, Portugal
| | - Ricardo S Ramiro
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, Portugal.
| |
Collapse
|
127
|
Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species. Appl Environ Microbiol 2017; 83:AEM.00132-17. [PMID: 28389535 DOI: 10.1128/aem.00132-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs.IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We developed and applied an experimental approach to determine host adaptation of L. reuteri to different hosts. Our findings confirmed adaptation to rodents and provided evidence of adaptation to poultry, suggesting that L. reuteri evolved via natural selection in different hosts. By complementing phylogenetic analyses with experimental evidence, this study provides novel information about the mechanisms driving host-microbe coevolution with vertebrates and serve as a basis to inform the application of L. reuteri as a probiotic for different host species.
Collapse
|
128
|
Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:55-70. [PMID: 28185400 DOI: 10.1111/1758-2229.12523] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
With rapidly improving sequencing technologies, scientists have recently gained the ability to examine diverse microbial communities at high genomic resolution, revealing that both free-living and host-associated microbes partition their environment at fine phylogenetic scales. This 'microdiversity,' or closely related (> 97% similar 16S rRNA gene) but ecologically and physiologically distinct sub-taxonomic groups, appears to be an intrinsic property of microorganisms. However, the functional implications of microdiversity as well as its effects on microbial biogeography are poorly understood. Here, we present two theoretical models outlining the evolutionary mechanisms that drive the formation of microdiverse 'sub-taxa.' Additionally, we review recent literature and reveal that microdiversity influences a wide range of functional traits across diverse ecosystems and microbes. Moving to higher levels of organization, we use laboratory data from marine, soil, and host-associated bacteria to demonstrate that the aggregated trait-based response of microdiverse sub-taxa modifies the fundamental niche of microbes. The correspondence between microdiversity and niche space represents a critical tool for future studies of microbial ecology. By combining growth experiments on diverse isolates with examinations of environmental abundance patterns, researchers can better quantify the fundamental and realized niches of microbes and improve understanding of microbial biogeography and response to future environmental change.
Collapse
Affiliation(s)
- Alyse A Larkin
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
129
|
Navarro JB, Mashburn-Warren L, Bakaletz LO, Bailey MT, Goodman SD. Enhanced Probiotic Potential of Lactobacillus reuteri When Delivered as a Biofilm on Dextranomer Microspheres That Contain Beneficial Cargo. Front Microbiol 2017; 8:489. [PMID: 28396655 PMCID: PMC5366311 DOI: 10.3389/fmicb.2017.00489] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
As with all orally consumed probiotics, the Gram-positive bacterium Lactobacillus reuteri encounters numerous challenges as it transits through the gastrointestinal tract of the host, including low pH, effectors of the host immune system, as well as competition with commensal and pathogenic bacteria, all of which can greatly reduce the availability of live bacteria for therapeutic purposes. Recently we showed that L. reuteri, when adhered in the form of a biofilm to a semi-permeable biocompatible dextranomer microsphere, reduces the incidence of necrotizing enterocolitis by 50% in a well-defined animal model following delivery of a single prophylactic dose. Herein, using the same semi-permeable microspheres, we showed that providing compounds beneficial to L. reuteri as diffusible cargo within the microsphere lumen resulted in further advantageous effects including glucosyltransferase-dependent bacterial adherence to the microsphere surface, resistance of bound bacteria against acidic conditions, enhanced adherence of L. reuteri to human intestinal epithelial cells in vitro, and facilitated production of the antimicrobial compound reuterin and the anti-inflammatory molecule histamine. These data support continued development of this novel probiotic formulation as an adaptable and effective means for targeted delivery of cargo beneficial to the probiotic bacterium.
Collapse
Affiliation(s)
- Jason B Navarro
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Wexner Medical Center, Institute for Behavioral Medicine Research, The Ohio State UniversityColumbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| |
Collapse
|
130
|
Iskandar CF, Borges F, Taminiau B, Daube G, Zagorec M, Remenant B, Leisner JJ, Hansen MA, Sørensen SJ, Mangavel C, Cailliez-Grimal C, Revol-Junelles AM. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium. Front Microbiol 2017; 8:357. [PMID: 28337181 PMCID: PMC5341603 DOI: 10.3389/fmicb.2017.00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.
Collapse
Affiliation(s)
- Christelle F. Iskandar
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | | | | | - Jørgen J. Leisner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Martin A. Hansen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Søren J. Sørensen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Catherine Cailliez-Grimal
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| |
Collapse
|
131
|
Bene KP, Kavanaugh DW, Leclaire C, Gunning AP, MacKenzie DA, Wittmann A, Young ID, Kawasaki N, Rajnavolgyi E, Juge N. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors. Front Microbiol 2017; 8:321. [PMID: 28326063 PMCID: PMC5339304 DOI: 10.3389/fmicb.2017.00321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.
Collapse
Affiliation(s)
- Krisztián P Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Devon W Kavanaugh
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Charlotte Leclaire
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Allan P Gunning
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Donald A MacKenzie
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | | | - Ian D Young
- Food and Health Programme, Institute of Food Research Norwich, UK
| | | | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Nathalie Juge
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| |
Collapse
|
132
|
Cleary JL, Condren AR, Zink KE, Sanchez LM. Calling all hosts: Bacterial communication in situ. Chem 2017; 2:334-358. [PMID: 28948238 DOI: 10.1016/j.chempr.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteria are cosmopolitan organisms that in recent years have demonstrated many roles in maintaining host equilibrium. In this review, we discuss three roles bacteria can occupy in a host: pathogenic, symbiotic, and transient, with a specific focus on how bacterial small molecules contribute to homeostasis or dysbiosis. First, we will dissect how small molecules produced by pathogenic bacteria can be used as a source for communication during colonization and as protection against host immune responses. The ability to achieve a higher level of organization through small molecule communication gives pathogenic bacteria an opportunity for increased virulence and fitness. Conversely, in symbiotic relationships with hosts, small molecules are used in the initial acquisition, colonization, and maintenance of this beneficial population. Chemical signals can come from both the host and symbiont, and it is often observed that these interKingdom symbioses result in coevolution of both species involved. Furthermore, the transition from transient to commensal or opportunistic likely relies on molecular mechanisms. The small molecules utilized and produced by transient bacteria are desirable for both the immune and nutritional benefits they provide to the host. Finally, the advantages and disadvantages of modern analytical techniques that are available to researchers in order to study small molecules in situ is an important aspect of this review. It is our opinion that small molecules produced by bacteria are central to many biological processes and a larger focus on uncovering the function and identity of these small molecules is required to gain a deeper understanding of host-microbe associations.
Collapse
Affiliation(s)
- Jessica L Cleary
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago IL 60612, USA
| | - Alanna R Condren
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago IL 60612, USA
| | - Katherine E Zink
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago IL 60612, USA
| | - Laura M Sanchez
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago IL 60612, USA
| |
Collapse
|
133
|
Arena MP, Capozzi V, Spano G, Fiocco D. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 2017; 101:2641-2657. [PMID: 28213732 DOI: 10.1007/s00253-017-8182-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| |
Collapse
|
134
|
Cong Q, Shen J, Borek D, Robbins RK, Opler PA, Otwinowski Z, Grishin NV. When COI barcodes deceive: complete genomes reveal introgression in hairstreaks. Proc Biol Sci 2017; 284:20161735. [PMID: 28179510 PMCID: PMC5310595 DOI: 10.1098/rspb.2016.1735] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/09/2017] [Indexed: 12/24/2022] Open
Abstract
Two species of hairstreak butterflies from the genus Calycopis are known in the United States: C. cecrops and C. isobeon Analysis of mitochondrial COI barcodes of Calycopis revealed cecrops-like specimens from the eastern US with atypical barcodes that were 2.6% different from either USA species, but similar to Central American Calycopis species. To address the possibility that the specimens with atypical barcodes represent an undescribed cryptic species, we sequenced complete genomes of 27 Calycopis specimens of four species: C. cecrops, C. isobeon, C. quintana and C. bactra Some of these specimens were collected up to 60 years ago and preserved dry in museum collections, but nonetheless produced genomes as complete as fresh samples. Phylogenetic trees reconstructed using the whole mitochondrial and nuclear genomes were incongruent. While USA Calycopis with atypical barcodes grouped with Central American species C. quintana by mitochondria, nuclear genome trees placed them within typical USA C. cecrops in agreement with morphology, suggesting mitochondrial introgression. Nuclear genomes also show introgression, especially between C. cecrops and C. isobeon About 2.3% of each C. cecrops genome has probably (p-value < 0.01, FDR < 0.1) introgressed from C. isobeon and about 3.4% of each C. isobeon genome may have come from C. cecrops. The introgressed regions are enriched in genes encoding transmembrane proteins, mitochondria-targeting proteins and components of the larval cuticle. This study provides the first example of mitochondrial introgression in Lepidoptera supported by complete genome sequencing. Our results caution about relying solely on COI barcodes and mitochondrial DNA for species identification or discovery.
Collapse
Affiliation(s)
- Qian Cong
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Jinhui Shen
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Dominika Borek
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Robert K Robbins
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, NHB Stop 105, Washington, DC, USA
| | - Paul A Opler
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| |
Collapse
|
135
|
Monedero V, Revilla-Guarinos A, Zúñiga M. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:1-51. [PMID: 28438266 DOI: 10.1016/bs.aambs.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others.
Collapse
Affiliation(s)
- Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| | | | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna, Spain
| |
Collapse
|
136
|
Lecker JL, Froberg-Fejko K. PrimiOtic and PrimiOtic Plus: novel probiotic for primates suffering from idiopathic chronic diarrhea. Lab Anim (NY) 2016; 44:414-5. [PMID: 26398619 DOI: 10.1038/laban.844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Idiopathic chronic diarrhea of nonhuman primates is a major gastrointestinal disorder and a leading cause of serious morbidity in nonhuman primates kept in captivity. Many animals are not responsive to traditional treatments. Millions of dollars are spent annually on diagnosis and supportive care of these animals. Probiotics like Bio-Serv's PrimiOtic and PrimiOtic Plus can help to reduce the incidence of diarrhea in captive nonhuman primates by supporting the natural microflora in the gut.
Collapse
|
137
|
Wahlström A, Kovatcheva-Datchary P, Ståhlman M, Khan MT, Bäckhed F, Marschall HU. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J Lipid Res 2016; 58:412-419. [PMID: 27956475 DOI: 10.1194/jlr.m072819] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum and liver. We found that cecal microbiota composition differed between mice colonized with mouse and human microbiota and was stable over time. Human and mouse microbiota reduced total BA levels similarly, but the humanized mice produced less secondary BAs. The human microbiota was able to reduce the levels of tauro-β-muricholic acid and induce expression of FXR target genes Fgf15 and Shp in ileum after long-term colonization. We show that a human microbiota can change BA composition and induce FXR signaling in colonized mice, but the levels of secondary BAs produced are lower than in mice colonized with a mouse microbiota.
Collapse
Affiliation(s)
- Annika Wahlström
- Department of Molecular and Clinical Medicine and Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petia Kovatcheva-Datchary
- Department of Molecular and Clinical Medicine and Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine and Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Muhammad-Tanweer Khan
- Department of Molecular and Clinical Medicine and Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine and Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine and Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
138
|
Petrova MI, Reid G, Vaneechoutte M, Lebeer S. Lactobacillus iners: Friend or Foe? Trends Microbiol 2016; 25:182-191. [PMID: 27914761 DOI: 10.1016/j.tim.2016.11.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
Abstract
The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host.
Collapse
Affiliation(s)
- Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, B- 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gregor Reid
- Western University Departments of Microbiology & Immunology and Surgery, and The Lawson Health Research Institute London, 268 Grosvenor Street, London, ON Canada N6A 4V2
| | - Mario Vaneechoutte
- Ghent University, Laboratory of Bacteriology Research, Faculty of Medicine & Health Sciences, De Pintelaan 185, Medical Research Building 2, B-9000 Gent, Belgium
| | - Sarah Lebeer
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, B- 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| |
Collapse
|
139
|
Gänzle M, Ripari V. Composition and function of sourdough microbiota: From ecological theory to bread quality. Int J Food Microbiol 2016; 239:19-25. [DOI: 10.1016/j.ijfoodmicro.2016.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
140
|
Berg M, Zhou XY, Shapira M. Host-Specific Functional Significance of Caenorhabditis Gut Commensals. Front Microbiol 2016; 7:1622. [PMID: 27799924 PMCID: PMC5066524 DOI: 10.3389/fmicb.2016.01622] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
The gut microbiota is an important contributor to host health and fitness. Given its importance, microbiota composition should not be left to chance. However, what determines this composition is far from clear, with results supporting contributions of both environmental factors and host genetics. To gauge the relative contributions of host genetics and environment, specifically the microbial diversity, we characterized the gut microbiotas of Caenorhabditis species spanning 200-300 million years of evolution, and raised on different composted soil environments. Comparisons were based on 16S rDNA deep sequencing data, as well as on functional evaluation of gut isolates. Worm microbiotas were distinct from those in their respective soil environment, and included bacteria previously identified as part of the C. elegans core microbiota. Microbiotas differed between experiments initiated with different soil communities, but within each experiment, worm microbiotas clustered according to host identity, demonstrating a dominant contribution of environmental diversity, but also a significant contribution of host genetics. The dominance of environmental contributions hindered identification of host-associated microbial taxa from 16S data. Characterization of gut isolates from C. elegans and C. briggsae, focusing on the core family Enterobacteriaceae, were also unable to expose phylogenetic distinctions between microbiotas of the two species. However, functional evaluation of the isolates revealed host-specific contributions, wherein gut commensals protected their own host from infection, but not a non-host. Identification of commensal host-specificity at the functional level, otherwise overlooked in standard sequence-based analyses, suggests that the contribution of host genetics to shaping of gut microbiotas may be greater than previously realized.
Collapse
Affiliation(s)
- Maureen Berg
- Department of Integrative Biology, University of California, Berkeley Berkeley, CA, USA
| | - Xiao Ying Zhou
- Department of Integrative Biology, University of California, Berkeley Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, BerkeleyBerkeley, CA, USA; Graduate Group in Microbiology, University of California, BerkeleyBerkeley, CA, USA
| |
Collapse
|
141
|
Ellegaard KM, Engel P. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Front Microbiol 2016; 7:1475. [PMID: 27708630 PMCID: PMC5030217 DOI: 10.3389/fmicb.2016.01475] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
142
|
Salas-Jara MJ, Ilabaca A, Vega M, García A. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms 2016; 4:E35. [PMID: 27681929 PMCID: PMC5039595 DOI: 10.3390/microorganisms4030035] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Probiotics are live bacteria, generally administered in food, conferring beneficial effects to the host because they help to prevent or treat diseases, the majority of which are gastrointestinal. Numerous investigations have verified the beneficial effect of probiotic strains in biofilm form, including increased resistance to temperature, gastric pH and mechanical forces to that of their planktonic counterparts. In addition, the development of new encapsulation technologies, which have exploited the properties of biofilms in the creation of double coated capsules, has given origin to fourth generation probiotics. Up to now, reviews have focused on the detrimental effects of biofilms associated with pathogenic bacteria. Therefore, this work aims to amalgamate information describing the biofilms of Lactobacillus strains which are used as probiotics, particularly L. rhamnosus, L. plantarum, L. reuteri, and L. fermentum. Additionally, we have reviewed the development of probiotics using technology inspired by biofilms.
Collapse
Affiliation(s)
- María José Salas-Jara
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Alejandra Ilabaca
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Marco Vega
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Apolinaria García
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| |
Collapse
|
143
|
Powell E, Ratnayeke N, Moran NA. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 2016; 25:4461-71. [PMID: 27482856 DOI: 10.1111/mec.13787] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/30/2023]
Abstract
Host-restricted lineages of gut bacteria often include many closely related strains, but this fine-scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single-copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild-caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus-restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations.
Collapse
Affiliation(s)
- Elijah Powell
- Department of Integrative Biology, University of Texas, NMS Building, 2506 Speedway, A5000, Austin, TX, 78712, USA.
| | - Nalin Ratnayeke
- Department of Integrative Biology, University of Texas, NMS Building, 2506 Speedway, A5000, Austin, TX, 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, NMS Building, 2506 Speedway, A5000, Austin, TX, 78712, USA
| |
Collapse
|
144
|
The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1:16131. [PMID: 27670113 DOI: 10.1038/nmicrobiol.2016.131] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023]
Abstract
Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. The resource is available at www.dsmz.de/miBC.
Collapse
|
145
|
Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SA, Leulier F. Nomadic lifestyle of Lactobacillus plantarum
revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 2016; 18:4974-4989. [DOI: 10.1111/1462-2920.13455] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Maria Elena Martino
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Jumamurat R. Bayjanov
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences; Radboud UMC, P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Brian E. Caffrey
- Max Planck Institute for Molecular Genetics; Ihnestrasse 63-73 Berlin 14195 Germany
| | - Michiel Wels
- NIZO food research; P.O. Box 20, 6710 BA Ede The Netherlands
| | - Pauline Joncour
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University; De Elst 1 6708WD Wageningen The Netherlands
| | - Sacha A.F.T. van Hijum
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences; Radboud UMC, P.O. Box 9101 6500 HB Nijmegen The Netherlands
- NIZO food research; P.O. Box 20, 6710 BA Ede The Netherlands
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| |
Collapse
|
146
|
The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol 2016; 306:316-327. [DOI: 10.1016/j.ijmm.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
|
147
|
Complete genome sequence of probiotic Lactobacillus reuteri ZLR003 isolated from healthy weaned pig. J Biotechnol 2016; 228:69-70. [DOI: 10.1016/j.jbiotec.2016.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
|
148
|
Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Front Microbiol 2016; 7:713. [PMID: 27242734 PMCID: PMC4871866 DOI: 10.3389/fmicb.2016.00713] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin) with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD) to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325). Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, R. gnavus, Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal trophic chain with the potential to highly impact the metabolic balance as well as the gut microbiota/host homeostasis by the formation of different short chain fatty acids.
Collapse
Affiliation(s)
- Christina Engels
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland; Research Informatics, Scientific IT Services, ETH ZurichBasel, Switzerland; SIB Swiss Institute of BioinformaticsBasel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland; SIB Swiss Institute of BioinformaticsBasel, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich Zurich, Switzerland
| |
Collapse
|
149
|
Shapira M. Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends Ecol Evol 2016; 31:539-549. [PMID: 27039196 DOI: 10.1016/j.tree.2016.03.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023]
Abstract
Our understanding of species evolution is undergoing restructuring. It is well accepted that host-symbiont coevolution is responsible for fundamental aspects of biology. However, the emerging importance of plant- and animal-associated microbiotas to their hosts suggests a scale of coevolutionary interactions many-fold greater than previously considered. This review builds on current understanding of symbionts and their contributions to host evolution to evaluate recent data demonstrating similar contributions of gut microbiotas. It further considers a multilayered model for microbiota to account for emerging themes in host-microbiota interactions. Drawing on the structure of bacterial genomes, this model distinguishes between a host-adapted core microbiota, and a flexible, environmentally modulated microbial pool, differing in constraints on their maintenance and in their contributions to host adaptation.
Collapse
Affiliation(s)
- Michael Shapira
- University of California, Berkeley, department of Integrative Biology and Graduate Group in Microbiology. Valley Life Sciences Building, room 5155, Berkeley, CA 94720, USA.
| |
Collapse
|
150
|
Wang S, Yang Y, Zhao Y, Zhao H, Bai J, Chen J, Zhou Y, Wang C, Li Y. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression. Front Microbiol 2016; 7:384. [PMID: 27065957 PMCID: PMC4811924 DOI: 10.3389/fmicb.2016.00384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Yanbei Yang
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Yulin Zhao
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Honghai Zhao
- Department of Biotechnology, Heilongjiang Vocational College for Nationalities Harbin, China
| | - Jingwen Bai
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Jianqing Chen
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Yonghui Zhou
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Chang Wang
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Yanhua Li
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| |
Collapse
|