101
|
Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S. Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila. Cell Host Microbe 2016; 18:571-81. [PMID: 26567510 DOI: 10.1016/j.chom.2015.10.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/31/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023]
Abstract
Enteric pathogens must overcome intestinal defenses to establish infection. In Drosophila, the ERK signaling pathway inhibits enteric virus infection. The intestinal microflora also impacts immunity but its role in enteric viral infection is unknown. Here we show that two signals are required to activate antiviral ERK signaling in the intestinal epithelium. One signal depends on recognition of peptidoglycan from the microbiota, particularly from the commensal Acetobacter pomorum, which primes the NF-kB-dependent induction of a secreted factor, Pvf2. However, the microbiota is not sufficient to induce this pathway; a second virus-initiated signaling event involving release of transcriptional paused genes mediated by the kinase Cdk9 is also required for Pvf2 production. Pvf2 stimulates antiviral immunity by binding to the receptor tyrosine kinase PVR, which is necessary and sufficient for intestinal ERK responses. These findings demonstrate that sensing of specific commensals primes inflammatory signaling required for epithelial responses that restrict enteric viral infections.
Collapse
Affiliation(s)
- Christine L Sansone
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan Cohen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Greg Osborn
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Harry Subramanian
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
102
|
Eng MW, van Zuylen MN, Severson DW. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:70-83. [PMID: 27418459 PMCID: PMC5010484 DOI: 10.1016/j.ibmb.2016.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 05/12/2023]
Abstract
The mosquito Aedes aegypti is the primary urban vector for dengue virus (DENV) worldwide. Insight into interactions occurring between host and pathogen is important in understanding what factors contribute to vector competence. However, many of the molecular mechanisms for vector competence remain unknown. Our previous global transcriptional analysis suggested that differential expression of apoptotic proteins is involved in determining refractoriness vs susceptibility to DENV-2 infection in Ae. aegypti females following a DENV-infected blood meal. To determine whether DENV-refractory Ae. aegypti showed more robust apoptosis upon infection, we compared numbers of apoptotic cells from midguts of refractory and susceptible strains and observed increased numbers of apoptotic cells in only the refractory strain upon DENV-2 infection. Thereafter, we manipulated apoptosis through dsRNA interference of the initiator caspase, Aedronc. Unexpectedly, dsAedronc-treated females showed both decreased frequency of disseminated infection and decreased virus titer in infected individuals. Insect caspases have also previously been identified as regulators of the cellular recycling process known as autophagy. We observed activation of autophagy in midgut and fat body tissues following a blood meal, as well as programmed activation of several apoptosis-related genes, including the effector caspase, Casps7. To determine whether autophagy was affected by caspase knockdown, we silenced Aedronc and Casps7, and observed reduced activation of autophagy upon silencing. Our results provide evidence that apoptosis-related genes are also involved in regulating autophagy, and that Aedronc may play an important role in DENV-2 infection success in Ae. aegypti, possibly through its regulation of autophagy.
Collapse
Affiliation(s)
- Matthew W Eng
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeleine N van Zuylen
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David W Severson
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
103
|
Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J 2016; 15:425. [PMID: 27549662 PMCID: PMC4994321 DOI: 10.1186/s12936-016-1468-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022] Open
Abstract
Background Malaria exerts a tremendous socioeconomic impact worldwide despite current control efforts, and novel disease transmission-blocking strategies are urgently needed. The Enterobacter bacterium Esp_Z, which is naturally harboured in the mosquito midgut, can inhibit the development of Plasmodium parasites prior to their invasion of the midgut epithelium through a mechanism that involves oxidative stress. Here, a multifaceted approach is used to study the tripartite interactions between the mosquito, Esp_Z and Plasmodium, towards addressing the feasibility of using sugar-baited exposure of mosquitoes to the Esp_Z bacterium for interruption of malaria transmission. Methods The ability of Esp_Z to colonize Anopheles gambiae midguts harbouring microbiota derived from wild mosquitoes was determined by qPCR. Upon introduction of Esp_Z via nectar feeding, the permissiveness of colonized mosquitoes to Plasmodium falciparum infection was determined, as well as the impact of Esp_Z on mosquito fitness parameters, such as longevity, number of eggs laid and number of larvae hatched. The genome of Esp_Z was sequenced, and transcriptome analyses were performed to identify bacterial genes that are important for colonization of the mosquito midgut, as well as for ROS-production. A gene expression analysis of members of the oxidative defence pathway of Plasmodium berghei was also conducted to assess the parasite’s oxidative defence response to Esp_Z exposure. Results Esp_Z persisted for up to 4 days in the An. gambiae midgut after introduction via nectar feeding, and was able to significantly inhibit Plasmodium sporogonic development. Introduction of this bacterium did not adversely affect mosquito fitness. Candidate genes involved in the selection of a better fit Esp_Z to the mosquito midgut environment and in its ability to condition oxidative status of its surroundings were identified, and parasite expression data indicated that Esp_Z is able to induce a partial and temporary shutdown of the ookinetes antioxidant response. Conclusions Esp_Z is capable of inhibiting sporogonic development of Plasmodium in the presence of the mosquito’s native microbiota without affecting mosquito fitness. Several candidate bacterial genes are likely mediating midgut colonization and ROS production, and inhibition of Plasmodium development appears to involve a shutdown of the parasite’s oxidative defence system. A better understanding of the complex reciprocal tripartite interactions can facilitate the development and optimization of an Esp_Z-based malaria control strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan J Dennison
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Chris M Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
104
|
Li X, Meng K, Qiao J, Liu H, Zhong C, Liu Q. Identification of Aadnr1, a novel gene related to innate immunity and apoptosis in Aedes albopictus. Gene 2016; 587:18-26. [PMID: 27045774 DOI: 10.1016/j.gene.2016.03.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/01/2022]
Abstract
Innate immunity and apoptosis play critical roles in defending pathogens in insects. In Drosophila, Dnr1 was reported as a negative regulator of apoptosis and immune deficiency (Imd) pathway which belongs to innate immunity. Aedes albopictus is an important kind of arbovirus vector and becoming a significant threat to public health due to its rapid global expansion. Here we identified an ortholog of dnr1 from A. albopictus, named as Aadnr1. Aadnr1 encoded a putative protein containing an N-terminal FERM domain and a C-terminal RING domain. AaDnr1 shared high identity with dipteran insects Dnr1 orthologs. Phylogenetic analyses showed that the closest relative of AaDnr1 was Aedes aegypti Dnr1. Real-time PCR proved that Aadnr1 mRNA was expressed ubiquitously during developmental and adult stages. Transcriptional levels of Aadnr1 were decreased drastically in C6/36 cells underwent apoptosis induced by Actinomycin D (Act D) treatment. Partial silence of Aadnr1 enhanced Act D-induced caspase activity. When challenged by heat-inactivated E. coli, transcriptional level of Aadnr1 was also decreased dramatically in C6/36 cells. While when C6/36 cells were infected with Sindbis virus TE/GFP, transcriptional level of Aadnr1 was reduced and recovered repeatedly, with an overall decreasing trend. It was also shown in this study that similar to Drosophila Dnr1, RING domain destabilized AaDnr1 protein. Taken together, the study identified an innate immunity and apoptosis related gene Aadnr1 in A. albopictus.
Collapse
Affiliation(s)
- Xiaomei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Kun Meng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jialu Qiao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chunyan Zhong
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
105
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
106
|
Alfonso-Parra C, Ahmed-Braimah YH, Degner EC, Avila FW, Villarreal SM, Pleiss JA, Wolfner MF, Harrington LC. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0004451. [PMID: 26901677 PMCID: PMC4764262 DOI: 10.1371/journal.pntd.0004451] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Abstract
The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito. Female post-mating behavior has important consequences for mosquito populations and their ability to transmit diseases. Male Aedes aegypti seminal fluid substances transferred during mating cause many important changes to female behavior and physiology, including blood feeding behavior, egg development, and oviposition. In an effort to understand how males induce these responses in Ae. aegypti females, we characterized the transcriptome changes that occur in the female reproductive tract at different time points after mating. We found several RNAs that are apparently transferred by the male, and 280 genes whose mRNA abundance in the female is affected by mating. The nature of the predicted products of many of these genes suggests roles in priming the reproductive tract for egg development, protecting the female against bacterial infections or processing the blood meal. This identification of mating-responsive genes provides information potentially useful for developing tools aimed at preventing disease transmission by manipulating female mosquitoes’ post-mating responses.
Collapse
Affiliation(s)
- Catalina Alfonso-Parra
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Instituto Colombiano de Medicina Tropical - Universidad CES, Medellín, Colombia
| | - Yasir H. Ahmed-Braimah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Ethan C. Degner
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Frank W. Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Susan M. Villarreal
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey A. Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MFW); (LCH)
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MFW); (LCH)
| |
Collapse
|
107
|
Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol 2015; 15:119-26. [PMID: 26629932 DOI: 10.1016/j.coviro.2015.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Arthropod-borne (arbo) viruses infect hematophagous arthropods (vectors) to maintain virus transmission between vertebrate hosts. The mosquito vector actively controls arbovirus infection to minimize its fitness costs. The RNA interference (RNAi) pathway is the major antiviral response vectors use to restrict arbovirus infections. We know this because depleting RNAi gene products profoundly impacts arbovirus replication, the antiviral RNAi pathway genes undergo positive, diversifying selection and arboviruses have evolved strategies to evade the vector's RNAi responses. The vector's RNAi defense and arbovirus countermeasures lead to an arms race that prevents potential virus-induced fitness costs yet maintains arbovirus infections needed for transmission. This review will discuss the latest findings in RNAi-arbovirus interactions in the model insect (Drosophila melanogaster) and in specific mosquito vectors.
Collapse
Affiliation(s)
- Ken E Olson
- Arthropod-borne and Infectious Diseases Laboratory, Mail Delivery 1692, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Carol D Blair
- Arthropod-borne and Infectious Diseases Laboratory, Mail Delivery 1692, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
108
|
Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India. Parasitol Res 2015; 115:1149-60. [DOI: 10.1007/s00436-015-4847-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
|
109
|
Ismail NA, Dom NC, Ismail R, Ahmad AH, Zaki A, Camalxaman SN. Mitochondrial Cytochrome Oxidase I Gene Sequence Analysis of Aedes Albopictus in Malaysia. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2015; 31:305-312. [PMID: 26675451 DOI: 10.2987/moco-31-04-305-312.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A study was conducted to establish polymorphic variation of the mitochondrial DNA encoding the cytochrome oxidase subunit 1 (CO1) gene in Aedes albopictus isolated from 2 hot spot dengue-infested areas in the Subang Jaya District, Malaysia. A phylogenetic analysis was performed with the use of sequences obtained from USJ6 and Taman Subang Mas (TSM). Comparison of the local CO1 sequences with a laboratory strain (USM), alongside reference strains derived from the GenBank database revealed low genetic variation in terms of nucleotide differences and haplotype diversity. Four methods were used to construct a phylogenetic tree and illustrate the genetic relationship of the 37 Ae. albopictus populations based on the CO1 sequences, namely neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian method, which revealed a distinct relationship between isolates from USJ6 and TSM. Our findings provide new information regarding the genetic diversity among morphologically similar Ae. albopictus, which has not been reported to date.
Collapse
Affiliation(s)
- Nurul-Ain Ismail
- 1 Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Nazri Che Dom
- 1 Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Rodziah Ismail
- 1 Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Abu Hassan Ahmad
- 2 School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Afiq Zaki
- 1 Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Siti Nazrina Camalxaman
- 1 Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia
| |
Collapse
|
110
|
Viral Interference and Persistence in Mosquito-Borne Flaviviruses. J Immunol Res 2015; 2015:873404. [PMID: 26583158 PMCID: PMC4637105 DOI: 10.1155/2015/873404] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.
Collapse
|
111
|
Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 Is Pro-Viral during West Nile Virus Infection of Culex Mosquitoes. PLoS Pathog 2015; 11:e1005143. [PMID: 26325027 PMCID: PMC4556628 DOI: 10.1371/journal.ppat.1005143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023] Open
Abstract
Although mosquitoes serve as vectors of many pathogens of public health importance, their response to viral infection is poorly understood. It also remains to be investigated whether viruses deploy some mechanism to be able to overcome this immune response. Here, we have used an RNA-Seq approach to identify differentially regulated genes in Culex quinquefasciatus cells following West Nile virus (WNV) infection, identifying 265 transcripts from various cellular pathways that were either upregulated or downregulated. Ubiquitin-proteasomal pathway genes, comprising 12% of total differentially regulated genes, were selected for further validation by real time RT-qPCR and functional analysis. It was found that treatment of infected cells with proteasomal inhibitor, MG-132, decreased WNV titers, indicating importance of this pathway during infection process. In infection models, the Culex ortholog of mammalian Cul4A/B (cullin RING ubiquitin ligase) was found to be upregulated in vitro as well as in vivo, especially in midguts of mosquitoes. Gene knockdown using dsRNA and overexpression studies indicated that Culex Cul4 acts as a pro-viral protein by degradation of CxSTAT via ubiquitin-proteasomal pathway. We also show that gene knockdown of Culex Cul4 leads to activation of the Jak-STAT pathway in mosquitoes leading to decrease viral replication in the body as well as saliva. Our results suggest a novel mechanism adopted by WNV to overcome mosquito immune response and increase viral replication. Mosquitoes are responsible for transmitting a large number of human and livestock viruses, like West Nile, dengue and Japanese encephalitis viruses. Infection of female mosquitoes with these viruses during blood feeding elicits an immune response. It is not known how the viruses manage to replicate in spite of this antiviral response. We used an unbiased transcriptome sequencing approach to identify genes differentially regulated after WNV infection resulting in 265 transcripts from various cellular pathways. Ubiquitin-proteasomal pathway, responsible for protein degradation, was found to be important during viral infection in mosquito cells. Using in vitro and in vivo infection models, we identified Culex Cul4 to be acting as pro-viral protein, increasing viral titers. Knockdown of Cul4 in Culex mosquitoes decreased viral titers in mosquito saliva. Identification of this novel immune evasion mechanism adopted by WNV provides new insights into transmission of arbovirus and interaction of WNV with its mosquito vector.
Collapse
Affiliation(s)
- Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Julio Rodriguez-Andres
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lee Trinidad
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Peter J. Walker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
112
|
Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti. PLoS One 2015; 10:e0135985. [PMID: 26275150 PMCID: PMC4537099 DOI: 10.1371/journal.pone.0135985] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/28/2015] [Indexed: 02/01/2023] Open
Abstract
Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells.
Collapse
|
113
|
Price DP, Schilkey FD, Ulanov A, Hansen IA. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasit Vectors 2015; 8:252. [PMID: 25924822 PMCID: PMC4415286 DOI: 10.1186/s13071-015-0863-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 04/16/2015] [Indexed: 01/13/2023] Open
Abstract
Background Environmental factors such as temperature, nutrient availability, and larval density determine the outcome of postembryonic development in mosquitoes. Suboptimal temperatures, crowding, and starvation during the larval phase reduce adult mosquito size, nutrient stores and affect vectorial capacity. Methods In this study we compared adult female Aedes aegypti, Rockefeller strain, raised under standard laboratory conditions (Large) with those raised under crowded and nutritionally deprived conditions (Small). To compare the gene expression and nutritional state of the major energy storage and metabolic organ, the fat body, we performed transcriptomics using Illumina based RNA-seq and metabolomics using GC/MS on females before and 24 hours following blood feeding. Results Analysis of fat body gene expression between the experimental groups revealed a large number of significantly differentially expressed genes. Transcripts related to immunity, reproduction, autophagy, several metabolic pathways; including amino acid degradation and metabolism; and membrane transport were differentially expressed. Metabolite profiling identified 60 metabolites within the fat body to be significantly affected between small and large mosquitoes, with the majority of detected free amino acids at a higher level in small mosquitoes compared to large. Conclusions Gene expression and metabolites in the adult fat body reflect the individual post-embryonic developmental history of a mosquito larva. These changes affect nutritional storage and utilization, immunity, and reproduction. Therefore, it is apparent that changes in larval environment due to weather conditions, nutrition availability, vector control efforts, and other factors can affect adult vectorial capacity in the field. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0863-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David P Price
- Department of Biology, New Mexico State University, Las Cruces, NM, USA. .,Molecular Biology Program, New Mexico State University, Las Cruces, USA.
| | | | - Alexander Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Illinois, USA.
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, USA. .,Molecular Biology Program, New Mexico State University, Las Cruces, USA.
| |
Collapse
|
114
|
Jaimes-Dueñez J, Arboleda S, Triana-Chávez O, Gómez-Palacio A. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl Trop Dis 2015; 9:e0003553. [PMID: 25893246 PMCID: PMC4403987 DOI: 10.1371/journal.pntd.0003553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West African conspecific, and a second that may have been recently introduced and is related to an East African conspecific. The first lineage can be found in cities showing a high incidence of dengue fever and the use of chemical insecticides, whereas the second is present in cities showing a low incidence of dengue fever where the use of chemical insecticides is not constant. This study helps to improve our knowledge of the population structure of Ae. aegypti involved in the diversity of dengue fever epidemiology in Colombia. Knowledge on the population structure of Aedes aegypti, the main vector of the dengue virus (DENV), is essential to improving dengue fever prevention strategies in endemic countries. In Colombia, despite the epidemiological relevance of dengue fever, the genetic population structure and phylogeography of the vector Ae. aegypti is little known. In this study, we evaluated the spatio-temporal structure and phylogeography of Colombian Ae. aegypti populations from cities showing different eco-epidemiologic attributes related to dengue fever. Our results indicated that Colombian Ae. aegypti populations harbor two mitochondrial lineages related to West and East African ancestors. The lineage related to West African populations is the most frequent and widely distributed in Colombia, and it was found in cities with a high incidence of the dengue fever. A second lineage related to East African populations, which may have been recently introduced in some regions, was found in cities showing a low incidence of dengue. These findings suggest complex population dynamic is involved in dengue fever epidemiology in Colombia, and indicate further studies about biological attributes of the Ae. aegypti lineages should be performed.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo Biología y Control de Enfermedades Infecciosas—BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Sair Arboleda
- Grupo Biología y Control de Enfermedades Infecciosas—BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas—BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Andrés Gómez-Palacio
- Grupo Biología y Control de Enfermedades Infecciosas—BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
- * E-mail:
| |
Collapse
|
115
|
Kean J, Rainey SM, McFarlane M, Donald CL, Schnettler E, Kohl A, Pondeville E. Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes. INSECTS 2015; 6:236-78. [PMID: 26463078 PMCID: PMC4553541 DOI: 10.3390/insects6010236] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023]
Abstract
Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence.
Collapse
Affiliation(s)
- Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Stephanie M Rainey
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
116
|
Whitehorn J, Kien DTH, Nguyen NM, Nguyen HL, Kyrylos PP, Carrington LB, Tran CNB, Quyen NTH, Thi LV, Le Thi D, Truong NT, Luong TTH, Nguyen CVV, Wills B, Wolbers M, Simmons CP. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health. J Infect Dis 2015; 212:1182-90. [PMID: 25784733 PMCID: PMC4577038 DOI: 10.1093/infdis/jiv173] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/09/2015] [Indexed: 11/12/2022] Open
Abstract
Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52–.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present.
Collapse
Affiliation(s)
- James Whitehorn
- London School of Hygiene and Tropical Medicine Oxford University Clinical Research Unit
| | | | | | | | | | | | | | | | | | - Dui Le Thi
- Oxford University Clinical Research Unit
| | | | | | | | - Bridget Wills
- Oxford University, United Kingdom Oxford University Clinical Research Unit
| | - Marcel Wolbers
- Oxford University, United Kingdom Oxford University Clinical Research Unit
| | - Cameron P Simmons
- Oxford University, United Kingdom Oxford University Clinical Research Unit University of Melbourne, Australia
| |
Collapse
|
117
|
Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Natl Acad Sci U S A 2014; 112:E176-85. [PMID: 25548172 DOI: 10.1073/pnas.1412984112] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.
Collapse
|
118
|
Tham HW, Balasubramaniam VRMT, Tejo BA, Ahmad H, Hassan SS. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 2014; 6:5028-46. [PMID: 25521592 PMCID: PMC4276941 DOI: 10.3390/v6125028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
Collapse
Affiliation(s)
- Hong-Wai Tham
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Vinod R M T Balasubramaniam
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Bimo Ario Tejo
- Department of Biotechnology and Neuroscience, Faculty of Life Science, Surya University, 15810 Tangerang, Banten, Indonesia.
| | - Hamdan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| | - Sharifah Syed Hassan
- Virus-Host Interaction Research Group, Infectious Disease Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
119
|
Huang YJS, Higgs S, Horne KM, Vanlandingham DL. Flavivirus-mosquito interactions. Viruses 2014; 6:4703-30. [PMID: 25421894 PMCID: PMC4246245 DOI: 10.3390/v6114703] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022] Open
Abstract
The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Stephen Higgs
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Kate McElroy Horne
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA.
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
120
|
Mosquito immunity against arboviruses. Viruses 2014; 6:4479-504. [PMID: 25415198 PMCID: PMC4246235 DOI: 10.3390/v6114479] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector.
Collapse
|
121
|
Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses 2014; 6:4294-313. [PMID: 25393895 PMCID: PMC4246223 DOI: 10.3390/v6114294] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/05/2023] Open
Abstract
Diseases caused by arthropod-borne viruses (arboviruses), such as Dengue, West Nile, and Chikungunya, constitute a major global health burden and are increasing in incidence and geographic range. The natural microbiota of insect vectors influences various aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and recent studies have highlighted the ability of insect-associated bacteria to reduce vector competence for arboviruses and other pathogens. This reduction can occur through mechanisms, such as immune response activation, resource competition, or the production of anti-viral molecules. Studying the interactions between insect vectors and their microbiota is an important step toward developing alternative strategies for arbovirus transmission control.
Collapse
Affiliation(s)
- Natapong Jupatanakul
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Shuzhen Sim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore.
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
122
|
Kang S, Shields AR, Jupatanakul N, Dimopoulos G. Suppressing dengue-2 infection by chemical inhibition of Aedes aegypti host factors. PLoS Negl Trop Dis 2014; 8:e3084. [PMID: 25101828 PMCID: PMC4125141 DOI: 10.1371/journal.pntd.0003084] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/28/2014] [Indexed: 12/31/2022] Open
Abstract
Dengue virus host factors (DENV HFs) that are essential for the completion of the infection cycle in the mosquito vector and vertebrate host represent potent targets for transmission blocking. Here we investigated whether known mammalian DENV HF inhibitors could influence virus infection in the arthropod vector A. aegypti. We evaluated the potency of bafilomycin (BAF; inhibitor of vacuolar H+-ATPase (vATPase)), mycophenolic acid (MPA; inhibitor of inosine-5′-monophosphate dehydrogenase (IMPDH)), castanospermine (CAS; inhibitor of glucosidase), and deoxynojirimycin (DNJ; inhibitor of glucosidase) in blocking DENV infection of the mosquito midgut, using various treatment methods that included direct injection, ingestion by sugar feeding or blood feeding, and silencing of target genes by RNA interference (RNAi). Injection of BAF (5 µM) and MPA (25 µM) prior to feeding on virus-infected blood inhibited DENV titers in the midgut at 7 days post-infection by 56% and 60%, and in the salivary gland at 14 days post-infection by 90% and 83%, respectively, while treatment of mosquitoes with CAS or DNJ did not affect susceptibility to the virus. Ingestion of BAF and MPA through a sugar meal or together with an infectious blood meal also resulted in various degrees of virus inhibition. RNAi-mediated silencing of several vATPase subunit genes and the IMPDH gene resulted in a reduced DENV infection, thereby indicating that BAF- and MPA-mediated virus inhibition in adult mosquitoes most likely occurred through the inhibition of these DENV HFs. The route and timing of BAF and MPA administration was essential, and treatment after exposure to the virus diminished the antiviral effect of these compounds. Here we provide proof-of-principle that chemical inhibition or RNAi-mediated depletion of the DENV HFs vATPase and IMPDH can be used to suppress DENV infection of adult A. aegypti mosquitoes, which may translate to a reduction in DENV transmission. Arboviruses utilize homologous host factors of the mammalian and insect cellular machinery to complete the infection cycle. Studies in both mammalian and insect cell lines have shown that virus infection can be suppressed through inhibition of host factors by chemical compounds that therefore could be developed into transmission blocking agents. However, similar studies have not been conducted in adult mosquitoes. Here we investigated the effect of four chemical compounds (bafilomycin, mycophenolic acid, castanospermine, and deoxynojirimycin), known to inhibit the host factors vacuolar H+-ATPase (vATPase), inosine-5′-monophosphate dehydrogenase (IMPDH) and glucosidases, on dengue virus replication in adult mosquitoes. We found that bafilomycin and mycophenolic acid suppressed dengue virus replication in adult mosquito guts when they were injected prior to dengue virus infection; however, castanospermine and deoxynojirimycin did not. Ingestion of bafilomycin and mycophenolic acid also inhibited virus replication. We showed that the predicted target genes of bafilomycin and mycophenolic acid function as virus host factors in adult mosquitoes through RNAi-mediated gene silencing. Inhibition of vATPase also decreases mosquito longevity and fecundity, thereby further compromising vector capacity. Our study demonstrated that chemical compounds or double stranded RNAs (dsRNA) can be used to suppress virus infection through inhibition of host factors in adult mosquitoes, thereby rendering such approaches interesting for the development of novel transmission-blocking strategies.
Collapse
Affiliation(s)
- Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alicia R. Shields
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
123
|
Rückert C, Bell-Sakyi L, Fazakerley JK, Fragkoudis R. Antiviral responses of arthropod vectors: an update on recent advances. Virusdisease 2014; 25:249-60. [PMID: 25674592 DOI: 10.1007/s13337-014-0217-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/30/2014] [Indexed: 01/24/2023] Open
Abstract
Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.
Collapse
Affiliation(s)
- Claudia Rückert
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK ; The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | | | | | | |
Collapse
|
124
|
Cassone BJ, Kamdem C, Cheng C, Tan JC, Hahn MW, Costantini C, Besansky NJ. Gene expression divergence between malaria vector sibling species Anopheles gambiae and An. coluzzii from rural and urban Yaoundé Cameroon. Mol Ecol 2014; 23:2242-59. [PMID: 24673723 DOI: 10.1111/mec.12733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023]
Abstract
Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioural and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii--the species that breeds in more stable, biotically complex and potentially polluted urban water bodies--overexpresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such overexpression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements.
Collapse
Affiliation(s)
- Bryan J Cassone
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556-0369, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Larson MK, Bender RC, Bayne CJ. Resistance of Biomphalaria glabrata 13-16-R1 snails to Schistosoma mansoni PR1 is a function of haemocyte abundance and constitutive levels of specific transcripts in haemocytes. Int J Parasitol 2014; 44:343-53. [PMID: 24681237 DOI: 10.1016/j.ijpara.2013.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/16/2022]
Abstract
Continuing transmission of human intestinal schistosomiasis depends on the parasite's access to susceptible snail intermediate hosts (often Biomphalaria glabrata). Transmission fails when parasite larvae enter resistant individuals in wild snail populations. The genetic basis for differences in snail susceptibility/resistance is being intensively investigated as a means to devise novel control strategies based on resistance genes. Reactive oxygen species produced by the snail's defence cells (haemocytes) are effectors of resistance. We hypothesised that genes relevant to production and consumption of reactive oxygen species would be expressed differentially in the haemocytes of snail hosts with different susceptibility/resistance phenotypes. By restricting the genetic diversity of snails, we sought to facilitate identification of resistance genes. By inbreeding, we procured from a 13-16-R1 snail population with both susceptible and resistant individuals 52 lines of B. glabrata (expected homozygosity ~87.5%), and determined the phenotype of each in regard to susceptibility/resistance to Schistosoma mansoni. The inbred lines were found to have line-specific differences in numbers of spreading haemocytes; these were enumerated in both juvenile and adult snails. Lines with high cell numbers were invariably resistant to S. mansoni, whereas lines with lower cell numbers could be resistant or susceptible. Transcript levels in haemocytes were quantified for 18 potentially defence-related genes. Among snails with low cell numbers, the different susceptibility/resistance phenotypes correlated with differences in transcript levels for two redox-relevant genes: an inferred phagocyte oxidase component and a peroxiredoxin. Allograft inflammatory factor (potentially a regulator of leucocyte activation) was expressed at higher levels in resistant snails regardless of spread cell number. Having abundant spreading haemocytes is inferred to enable a snail to kill parasite sporocysts. In contrast, snails with fewer spreading haemocytes seem to achieve resistance only if specific genes are expressed constitutively at levels that are high for the species.
Collapse
Affiliation(s)
- Maureen K Larson
- Department of Zoology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Randal C Bender
- Department of Zoology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Christopher J Bayne
- Department of Zoology, Oregon State University, Corvallis, OR 97331-2914, USA.
| |
Collapse
|
126
|
Jupatanakul N, Sim S, Dimopoulos G. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:1-9. [PMID: 24135719 PMCID: PMC3935818 DOI: 10.1016/j.dci.2013.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 05/07/2023]
Abstract
Upon exposure to dengue virus, the Aedes aegypti mosquito vector mounts an anti-viral immune defense by activating the Toll, JAK/STAT, and RNAi pathways, thereby limiting infection. While these pathways and several other factors have been identified as dengue virus antagonists, our knowledge of factors that facilitate dengue virus infection is limited. Previous dengue virus infection-responsive transcriptome analyses have revealed an increased mRNA abundance of members of the myeloid differentiation 2-related lipid recognition protein (ML) and the Niemann Pick-type C1 (NPC1) families upon dengue virus infection. These genes encode lipid-binding proteins that have been shown to play a role in host-pathogen interactions in other organisms. RNAi-mediated gene silencing of a ML and a NPC1 gene family member in both laboratory strain and field-derived Ae. aegypti mosquitoes resulted in significantly elevated resistance to dengue virus in mosquito midguts, suggesting that these genes play roles as dengue virus agonists. In addition to their possible roles in virus cell entry and replication, gene expression analyses suggested that ML and NPC1 family members also facilitate viral infection by modulating the mosquito's immune competence. Our study suggests that the dengue virus influences the expression of these genes to facilitate its infection of the mosquito host.
Collapse
Affiliation(s)
- Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
127
|
Bonizzoni M, Britton M, Marinotti O, Dunn WA, Fass J, James AA. Probing functional polymorphisms in the dengue vector, Aedes aegypti. BMC Genomics 2013; 14:739. [PMID: 24168143 PMCID: PMC4007706 DOI: 10.1186/1471-2164-14-739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dengue is the most prevalent arboviral disease world-wide and its primary vector is the mosquito Aedes aegypti. The current lack of commercially-available vaccines makes control of vector populations the only effective strategy to prevent dengue transmission. Aedes aegypti geographic populations exhibit great variability in insecticide resistance and susceptibility to dengue infection. The characterization of single nucleotide polymorphisms (SNPs) as molecular markers to study quantitatively this variation is needed greatly because this species has a low abundance of microsatellite markers and limited known restriction fragments length polymorphisms (RFLPs) and single-strand conformation polymorphism (SSCP) markers. RESULTS We used RNA-seq to characterize SNPs in three Ae. aegypti strains, including the Liverpool (LVP) strain, from which the current genome annotation is derived. We identified 131,764 unique genome locations with at least one alternative nucleotide to what is reported in the reference annotation. These comprised changes in both open-reading frames (ORFs) and untranslated regions (UTRs) of transcripts. An in depth-look at sequence variation in immunity genes revealed that those associated with autophagy, MD2-like receptors and Peptidoglycan Recognition Proteins had more sequence variation in their 3'UTRs than mutations associated with non-synonymous changes. This supports the conclusion that these genes had maintained their functional specificity while being adapted to different regulatory domains. In contrast, a number of peroxidases, serpins and Clip-domain serine proteases exhibited conservation of putative UTR regulatory sequences while displaying diversification of the ORFs. Transcriptome evidence also was found for ~2500 novel transcriptional units (NTUs) not annotated in the reference genome. CONCLUSIONS The transcriptome-wide assessment of within and inter-strain polymorphisms in Ae. aegypti adds considerably to the number of molecular markers available for genetic studies in this mosquito. Additionally, data supporting NTU discovery emphasizes the need for continuous amendments of the reference genome annotation.
Collapse
Affiliation(s)
- Mariangela Bonizzoni
- Program in Public Health, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Monica Britton
- Bioinformatics Core of the UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - William Augustine Dunn
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Joseph Fass
- Bioinformatics Core of the UC Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| |
Collapse
|