101
|
Poutahidis T, Erdman SE. Commensal bacteria modulate the tumor microenvironment. Cancer Lett 2016; 380:356-8. [PMID: 26739062 PMCID: PMC4942371 DOI: 10.1016/j.canlet.2015.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments.
Collapse
Affiliation(s)
- Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece 54124
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
102
|
Erdman SE, Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:91-126. [PMID: 27793228 DOI: 10.1016/bs.irn.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now understood that gut bacteria exert effects beyond the local boundaries of the gastrointestinal tract to include distant tissues and overall health. Prototype probiotic bacterium Lactobacillus reuteri has been found to upregulate hormone oxytocin and systemic immune responses to achieve a wide array of health benefits involving wound healing, mental health, metabolism, and myoskeletal maintenance. Together these display that the gut microbiome and host animal interact via immune-endocrine-brain signaling networks. Such findings provide novel therapeutic strategies to stimulate powerful homeostatic pathways and genetic programs, stemming from the coevolution of mammals and their microbiome.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
103
|
Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C, Purpura M, Wilson JM. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. PeerJ 2016; 4:e2276. [PMID: 27547577 PMCID: PMC4963221 DOI: 10.7717/peerj.2276] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022] Open
Abstract
Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery, and maintains physical performance subsequent to damaging exercise.
Collapse
Affiliation(s)
- Ralf Jäger
- Increnovo LLC , Milwaukee , WI , United States of America
| | - Kevin A Shields
- Department of Health Sciences and Human Performance, University of Tampa , Tampa , FL , United States of America
| | - Ryan P Lowery
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, United States of America; Research Division, Applied Science and Performance Institute, Tampa, FL, United States of America
| | - Eduardo O De Souza
- Department of Health Sciences and Human Performance, University of Tampa , Tampa , FL , United States of America
| | - Jeremy M Partl
- Department of Health Sciences and Human Performance, University of Tampa , Tampa , FL , United States of America
| | - Chase Hollmer
- Department of Health Sciences and Human Performance, University of Tampa , Tampa , FL , United States of America
| | - Martin Purpura
- Increnovo LLC , Milwaukee , WI , United States of America
| | - Jacob M Wilson
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, United States of America; Research Division, Applied Science and Performance Institute, Tampa, FL, United States of America
| |
Collapse
|
104
|
Tremellen K. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING) - a novel theory for the development of late onset hypogonadism in obese men. Basic Clin Androl 2016; 26:7. [PMID: 27340554 PMCID: PMC4918028 DOI: 10.1186/s12610-016-0034-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022] Open
Abstract
Obesity is an increasing public health problem, with two-thirds of the adult population in many Western countries now being either overweight or obese. Male obesity is associated with late onset hypogonadism, a condition characterised by decreased serum testosterone, sperm quality plus diminished fertility and quality of life. In this paper we propose a novel theory underlying the development of obesity related hypogonadism- the GELDING theory (Gut Endotoxin Leading to a Decline IN Gonadal function). Several observational studies have previously reported an association between obesity related hypogonadism (low testosterone) and systemic inflammation. However, for the first time we postulate that the trans-mucosal passage of bacterial lipopolysaccharide (LPS) from the gut lumen into the circulation is a key inflammatory trigger underlying male hypogonadism. Obesity and a high fat/high calorie diet are both reported to result in changes to gut bacteria and intestinal wall permeability, leading to the passage of bacterial endotoxin (lipopolysaccharide- LPS) from within the gut lumen into the circulation (metabolic endotoxaemia), where it initiates systemic inflammation. Endotoxin is known to reduce testosterone production by the testis, both by direct inhibition of Leydig cell steroidogenic pathways and indirectly by reducing pituitary LH drive, thereby also leading to a decline in sperm production. In this paper we also highlight the novel evolutionary benefits of the GELDING theory. Testosterone is known to be a powerful immune-suppressive, decreasing a man's ability to fight infection. Therefore we postulate that the male reproductive axis has evolved the capacity to lower testosterone production during times of infection and resulting endotoxin exposure, decreasing the immunosuppressive influence of testosterone, in turn enhancing the ability to fight infection. While this response is adaptive in times of sepsis, it becomes maladaptive in the setting of "non-infectious" obesity related metabolic endotoxaemia.
Collapse
Affiliation(s)
- Kelton Tremellen
- Department of Obstetrics, Gynaecology and Reproductive Medicine, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
105
|
Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci U S A 2016; 113:E3130-9. [PMID: 27185913 DOI: 10.1073/pnas.1600324113] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1-2 wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies.
Collapse
|
106
|
Lee J, Yang W, Hostetler A, Schultz N, Suckow MA, Stewart KL, Kim DD, Kim HS. Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol 2016; 16:69. [PMID: 27095067 PMCID: PMC4837529 DOI: 10.1186/s12866-016-0686-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background The gut microbiota is playing more important roles in host immune regulation than was initially expected. Since many benefits of microbes are highly strain-specific and their mechanistic details remain largely elusive, further identification of new probiotic bacteria with immunoregulatory potentials is of great interest. Results We have screened our collection of probiotic lactic acid bacteria (LAB) for their efficacy in modulating host immune response. Some LAB are characterized by suppression of TNF-α induction when LAB culture supernatants are added to THP-1 cells, demonstrating the LAB’s anti-inflammatory potential. These suppressive materials were not inactivated by heat or trypsin. On the other hand, treatment of THP-1 directly with live bacterial cells identified a group of pro-inflammatory LAB, which stimulated significant production of TNF-α. Among those, we chose the Lactobacillus reuteri BM36301 as an anti-inflammatory strain and the L. reuteri BM36304 as a pro-inflammatory strain, and further studied their in vivo effects. We supplied C57BL/6 mice with these bacteria in drinking water while feeding them a standard diet for 20 weeks. Interestingly, these L. reuteri strains evoked different consequences depending on the gender of the mice. That is, males treated with anti-inflammatory BM36301 experienced less weight gain and higher testosterone level; females treated with BM36301 maintained lower serum TNF-α as well as healthy skin with active folliculogenesis and hair growth. Furthermore, while males treated with pro-inflammatory BM36304 developed higher serum levels of TNF-α and insulin, in contrast females did not experience such effects from this bacteria strain. Conclusion The L. reuteri BM36301 was selected as an anti-inflammatory strain in vitro. It helped mice maintain healthy conditions as they aged. These findings propose the L. reuteri BM36301 as a potential probiotic strain to improve various aspects of aging issues. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0686-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joon Lee
- Research and Development, Benebios LLC, 10527 Garden Grove Blvd, Garden Grove, CA, 92843, USA.
| | - Woo Yang
- Research and Development, Benebios LLC, 10527 Garden Grove Blvd, Garden Grove, CA, 92843, USA
| | - Andrew Hostetler
- Research and Development, Benebios LLC, 10527 Garden Grove Blvd, Garden Grove, CA, 92843, USA
| | - Nathan Schultz
- Research and Development, Benebios LLC, 10527 Garden Grove Blvd, Garden Grove, CA, 92843, USA
| | - Mark A Suckow
- 400 Freimann Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current address: Department of Veterinary Population Medicine, 225 Veterinary Medical Center, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA
| | - Kay L Stewart
- 400 Freimann Life Science Center, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Daniel D Kim
- Research and Development, Benebios LLC, 10527 Garden Grove Blvd, Garden Grove, CA, 92843, USA
| | - Hyung Soo Kim
- Research and Development, Benebios LLC, 10527 Garden Grove Blvd, Garden Grove, CA, 92843, USA.
| |
Collapse
|
107
|
Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients 2016; 8:205. [PMID: 27070637 PMCID: PMC4848674 DOI: 10.3390/nu8040205] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023] Open
Abstract
Lactobacillus plantarum (L. plantarum) is a well-known probiotic among the ingested-microorganism probiotics (i.e., ingested microorganisms associated with beneficial effects for the host). However, few studies have examined the effects of L. plantarum TWK10 (LP10) supplementation on exercise performance, physical fatigue, and gut microbial profile. Male Institute of Cancer Research (ICR) strain mice were divided into three groups (n = 8 per group) for oral administration of LP10 for six weeks at 0, 2.05 × 10⁸, or 1.03 × 10⁹ colony-forming units/kg/day, designated the vehicle, LP10-1X and LP10-5X groups, respectively. LP10 significantly decreased final body weight and increased relative muscle weight (%). LP10 supplementation dose-dependently increased grip strength (p < 0.0001) and endurance swimming time (p < 0.001) and decreased levels of serum lactate (p < 0.0001), ammonia (p < 0.0001), creatine kinase (p = 0.0118), and glucose (p = 0.0151) after acute exercise challenge. The number of type I fibers (slow muscle) in gastrocnemius muscle significantly increased with LP10 treatment. In addition, serum levels of albumin, blood urea nitrogen, creatinine, and triacylglycerol significantly decreased with LP10 treatment. Long-term supplementation with LP10 may increase muscle mass, enhance energy harvesting, and have health-promotion, performance-improvement, and anti-fatigue effects.
Collapse
|
108
|
Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, Teliousis K, Ibrahim YM, Mirabal S, Erdman SE. Beneficial bacteria inhibit cachexia. Oncotarget 2016; 7:11803-16. [PMID: 26933816 PMCID: PMC4914249 DOI: 10.18632/oncotarget.7730] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.
Collapse
Affiliation(s)
- Bernard J. Varian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sravya Goureshetti
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jessica R. Lakritz
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana Levkovich
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin Kwok
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Konstantinos Teliousis
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yassin M. Ibrahim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
109
|
Erdman SE, Poutahidis T. Gut bacteria and cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:86-90. [PMID: 26050963 DOI: 10.1016/j.bbcan.2015.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023]
Abstract
Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumbers the cells in the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed at promoting GI tract homeostasis.
Collapse
Affiliation(s)
- Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Greece
| |
Collapse
|
110
|
Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 2015; 21:389-409. [PMID: 25609213 DOI: 10.1093/molehr/gav003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Reproduction is vital for producing offspring and preserving genetic resources. However, incidences of many reproductive disorders (e.g. miscarriage, intrauterine growth restriction, premature delivery and lower sperm quality) have either increased dramatically or remained at high rates over the last decades. Mounting evidence shows a strong correlation between enteral protein nutrition and reproduction. Besides serving as major nutrients in the diet, amino acids (AA) are signaling molecules in the regulation of diverse physiological processes, ranging from spermatogenesis to oocyte fertilization and to embryo implantation. Notably, the numbers of bacteria in the intestine exceed the numbers of host cells by 10 times. Microbes in the small-intestinal lumen actively metabolize large amounts of dietary AA and, therefore, affect the entry of AA into the portal circulation for whole-body utilization. Changes in the composition and abundance of AA-metabolizing bacteria in the gut during pregnancy, as well as their translocation to the uterus, may alter uterine function and epigenetic modifications of maternal physiology and metabolism, which are crucial for pregnancy recognition and fetal development. Thus, the presence of the maternal gut microbiota and AA metabolites in the intrauterine environments (e.g. endometrium and placenta) and breast milk is likely a unique signature for the programming of the whole-body microbiome and metabolism in both the fetus and infant. Dietary intervention with functional AA, probiotics and prebiotics to alter the abundance and activity of intestinal bacteria may ameliorate or prevent the development of metabolic syndrome, while improving reproductive performance in both males and females as well as their offspring.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Suqin Hang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
111
|
|
112
|
Abstract
Radiant skin and hair are universal indicators of good health. It was recently shown that feeding of probiotic bacteria to aged mice rapidly induced youthful vitality characterised by thick lustrous skin and hair, and enhanced reproductive fitness, not seen in untreated controls. Probiotic-treated animals displayed integrated immune and hypothalamic-pituitary outputs that were isolated mechanistically to microbe-induced anti-inflammatory interleukin-10 and neuropeptide hormone oxytocin. In this way, probiotic microbes interface with mammalian physiological underpinnings to impart superb physical and reproductive fitness displayed as radiant and resilient skin and mucosae, unveiling novel strategies for integumentary health.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Faculty of Veterinary Medicine, Laboratory of Pathology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
113
|
Al-Asmakh M, Stukenborg JB, Reda A, Anuar F, Strand ML, Hedin L, Pettersson S, Söder O. The gut microbiota and developmental programming of the testis in mice. PLoS One 2014; 9:e103809. [PMID: 25118984 PMCID: PMC4132106 DOI: 10.1371/journal.pone.0103809] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 01/15/2023] Open
Abstract
Nutrients and environmental chemicals, including endocrine disruptors, have been incriminated in the current increase in male reproductive dysfunction, but the underlying mechanisms remain unknown. The gastrointestinal tract represents the largest surface area exposed to our environment and thereby plays a key role in connection with exposure of internal organs to exogenous factors. In this context the gut microbiome (all bacteria and their metabolites) have been shown to be important contributors to body physiology including metabolism, cognitive functions and immunity. Pivotal to male reproduction is a proper development of the testis, including the formation of the blood-testis barrier (BTB) that encapsulates and protects germ cells from stress induced environmental cues, e.g. pathogenic organisms and xenobiotics. Here we used specific pathogen free (SPF) mice and germ-free (GF) mice to explore whether gut microbiota and/or their metabolites can influence testis development and regulation of BTB. Lumen formation in the seminiferous tubules, which coincides with the development of the BTB was delayed in the testes of GF mice at 16 days postpartum. In addition, perfusion experiments (Evans blue) demonstrated increased BTB permeability in these same mice. Reduced expressions of occludin, ZO-2 and E-cadherin in GF testis suggested that the microbiota modulated BTB permeability by regulation of cell-cell adhesion. Interestingly, exposure of GF mice to Clostridium Tyrobutyricum (CBUT), which secrete high levels of butyrate, restored the integrity of the BTB and normalized the levels of cell adhesion proteins. Moreover, the GF mice exhibited lower serum levels of gonadotropins (LH and FSH) than the SPF group. In addition, the intratesticular content of testosterone was lower in GF compared to SPF or CBUT animals. Thus, the gut microbiome can modulate the permeability of the BTB and might play a role in the regulation of endocrine functions of the testis.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Science, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Ahmed Reda
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Farhana Anuar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Lisa Strand
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Lars Hedin
- Sidra Medical and Research Center, Division of Clinical Epidemiology, Doha, Qatar
| | - Sven Pettersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Olle Söder
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
114
|
Markle JGM, Frank DN, Adeli K, von Bergen M, Danska JS. Microbiome manipulation modifies sex-specific risk for autoimmunity. Gut Microbes 2014; 5:485-93. [PMID: 25007153 DOI: 10.4161/gmic.29795] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite growing evidence for a causal role of environmental factors in autoimmune diseases including the rise in disease frequencies over the past several decades we lack an understanding of how particular environmental exposures modify disease risk. In addition, many autoimmune diseases display sex-biased incidence, with females being disproportionately affected but the mechanisms underlying this sex bias remain elusive. Emerging evidence suggests that both host metabolism and immune function is crucially regulated by the intestinal microbiome. Recently, we showed that in the non-obese diabetic (NOD) mouse model of Type 1 Diabetes (T1D), the gut commensal microbial community strongly impacts the pronounced sex bias in T1D risk by controlling serum testosterone and metabolic phenotypes (1). Here we present new data in the NOD model that explores the correlations between microbial phylogeny, testosterone levels, and metabolic phenotypes, and discuss the future of microbiome-centered analysis and microbe-based therapeutic approaches in autoimmune diseases.
Collapse
Affiliation(s)
- Janet G M Markle
- Department of Immunology; University of Toronto; Toronto, ON Canada; Program in Genetics and Genomic Biology; The Hospital for Sick Children; Toronto, ON Canada
| | - Daniel N Frank
- Division of Infectious Diseases; University of Colorado; Aurora, CO USA
| | - Khosrow Adeli
- Department of Laboratory Medicine; The Hospital for Sick Children; Toronto, ON Canada; Department of Biochemistry; University of Toronto; Toronto, ON Canada
| | - Martin von Bergen
- Department of Metabolomics and Department of Proteomics; Helmholtz Center for Environmental Research; Leipzig, Germany; Department of Biotechnology, Chemistry, and Environmental Engineering; Aalborg University; Aalborg, Denmark
| | - Jayne S Danska
- Department of Immunology; University of Toronto; Toronto, ON Canada; Program in Genetics and Genomic Biology; The Hospital for Sick Children; Toronto, ON Canada; Department of Medical Biophysics; University of Toronto; Toronto, ON Canada
| |
Collapse
|