101
|
Tian L, Shen X, Murphy RW, Shen Y. The adaptation of codon usage of +ssRNA viruses to their hosts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:175-179. [PMID: 29864509 PMCID: PMC7106036 DOI: 10.1016/j.meegid.2018.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Viruses depend on their host's cellular structure to survive. Most of them do not have tRNAs, their translation relies on hosts' tRNA pools. Over the course of evolution, viruses needed to optimally exploit cellular processes of their host. Thus, codon usage of a virus should coevolve with its host to efficiently and rapidly replicate. Some viruses can invade a broad spectrum of hosts (BSTVs), while others can invade a narrow spectrum only (NSTVs). Consequently, we test the hypothesis that similarity of codon usage preference and the degree of matching between BSTVs and their hosts will be lower than that of NSTVs, which only need to coevolve with few hosts. We compare the patterns of codon usage in 255 virus genomes to test this hypothesis. Our results show that NSTVs have a higher degree of matching to their hosts' tRNA pools than BSTVs. Further, analysis of the effective number of codons (ENC) infers that codon usage bias of NSTVs is relatively stronger than that of BSTVs. Thus, codon usage of NSTVs tends to better match their host than that of BSTVs. This supports the hypothesis that viruses adapt to the expression system of their host(s).
Collapse
Affiliation(s)
- Lin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Shantou University Medical College, Shantou 515041, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Robert W Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto M5S 2C6, Canada
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Shantou University Medical College, Shantou 515041, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
102
|
Chakraborty S, Uddin A, Mazumder TH, Choudhury MN, Malakar AK, Paul P, Halder B, Deka H, Mazumder GA, Barbhuiya RA, Barbhuiya MA, Devi WJ. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents. Mitochondrion 2018; 42:64-76. [DOI: 10.1016/j.mito.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/09/2017] [Accepted: 11/27/2017] [Indexed: 02/03/2023]
|
103
|
Gun L, Haixian P, Yumiao R, Han T, Jingqi L, Liguang Z. Codon usage characteristics of PB2 gene in influenza A H7N9 virus from different host species. INFECTION GENETICS AND EVOLUTION 2018; 65:430-435. [PMID: 30179716 DOI: 10.1016/j.meegid.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
The influenza A H7N9 virus is a highly contagious virus which can only infect poultry before early 2013. But after that time, it widely caused human infections in China and brought Southeast Asia great threaten in the public health area. The coding gene for polymerase basic protein 2 (PB2) in influenza A H7N9 virus encodes the PB2 protein, which is a part of the RNA polymerase. The enzyme lacks a correction function during its own replication process, so the mutation frequency of the influenza A H7N9 virus gene is high and the PB2 gene is also included. To investigate the codon usages characteristics of PB2 gene, gene sequences of 12 kinds of poultry are downloaded form the gene bank (NCBI) and their codon usage characteristics such as the effective number of codons (ENC), the evolutionary relationship of the sequences, the codon adaptation index (CAI), the correspondence analysis (COA), the relative synonymous codon usage (RSCU) and their PR2-bias are compared and studied. The value of these reults showed that there is a low codon usage bias in the PB2 gene. Then, the differences between the codon usages of PB2 gene from 12 kinds of poultry are compared and their potential applications are discussed. These results could lay a foundation for other further study on the evolution of H7N9.
Collapse
Affiliation(s)
- Li Gun
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China.
| | - Pan Haixian
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Ren Yumiao
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Tian Han
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Lu Jingqi
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Zhang Liguang
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| |
Collapse
|
104
|
Vasanthi S, Dass JFP. Comparative genome-wide analysis of codon usage of different bacterial species infecting Oryza sativa. J Cell Biochem 2018; 119:9346-9356. [PMID: 30105828 DOI: 10.1002/jcb.27214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 11/05/2022]
Abstract
Oryza sativa is vastly affected by microbial pathogen, causing blight-related diseases, which in turn deplete the growth and productivity of rice. In this study, we analyzed four bacterial rice pathogen genomes and reported on their codon usage that might have greater implication in mutation-related research. Differential codon usage indices, such as codon adaptation index (CAI), codon bias index (CBI), effective number of codons (ENc), relative synonymous codon usage (RSCU), correspondence analysis (COA), and parity plots, were applied on coding sequences of Pseudomonas fuscovaginae, Pseudomonas syringae, Xanthomonas oryzae, and Pseudomonas avenae speices. The RSCU results proposed a high-frequency usage of CUG and CGC that codes for leucine and arginine in all of the species. The CBI and CAI values between the genomes range from 0.17 to 0.3 and from 0.26 to 0.35, respectively, indicating a direct proportionality between these indexes. The mean ENc value of P. avenae coding sequence showed high codon bias compared with other genomes. The axis I variation from COA analysis shows a mean value of 42.28% codon variations in these bacterial species. Correlation studies between axis I and ENc-GC3, along with CAI and CBI, suggested the presence of nucleotide bias and mutational pressure as major forces for codon bias within these species. Hence, certain genes with high CAI-CBI have been correlated for better gene expression. Our study highlights the importance of nucleotide biasness, mutation pressure, and natural selection in shaping protein-coding genes in these four rice-affecting bacteria. This would further help in investigating the evolution of pathogenic gene families, which may direct research toward synthetic genes that could be suppressed or overrepresented based on their codon usage pattern toward pathogenicity.
Collapse
Affiliation(s)
- S Vasanthi
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - J Febin Prabhu Dass
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
105
|
Uddin A, Chakraborty S. Codon Usage Pattern of Genes Involved in Central Nervous System. Mol Neurobiol 2018; 56:1737-1748. [PMID: 29922982 DOI: 10.1007/s12035-018-1173-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
Abstract
Codon usage bias (CUB) is the non-uniform usage of synonymous codons in which some codons are more preferred to others in the transcript. Analysis of codon usage bias has applications in understanding the basics of molecular biology, genetics, gene expression, and molecular evolution. To understand the patterns of codon usage in genes involved in the central nervous system (CNS), we used bioinformatic approaches to analyze the protein-coding sequences of genes involved in the CNS. The improved effective number of codons (ENC) suggested that the overall codon usage bias was low. The relative synonymous codon usage (RSCU) revealed that the most frequently occurring codons had a G or C at the third codon position. The codons namely TCC, AGC, CTG, CAG, CGC, ATC, ACC, GTG, GCC, GGC, and CGG (average RSCU > 1.6) were over-represented. Both mutation pressure and natural selection might affect the codon usage pattern as evident from correspondence and parity plot analyses. The overall GC content (59.93) was higher than AT content, i.e., genes were GC-rich. The correlation of GC12 with GC3 suggested that mutation pressure might affect the codon usage pattern.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, 788150, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
106
|
Das S, Uddin A, Bhattacharyya D, Chakraborty S. Transcript free energy positively correlates with codon usage bias in mitochondrial genes of Calypogeia species (Calypogeiaceae, Marchantiophyta). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:201-213. [DOI: 10.1080/24701394.2018.1472772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sudipa Das
- Department of Life Science and Bioinformatics, Assam University, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Assam, India
| | | | | |
Collapse
|
107
|
Dissimilar substitution rates between two strands of DNA influence codon usage pattern in some human genes. Gene 2018; 645:179-187. [PMID: 29229516 DOI: 10.1016/j.gene.2017.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/23/2022]
Abstract
We illustrated the descriptive aspects of codon usage of some important human genes and their expression potential in E. coli. By comparing the results of various codon usage parameters, effects that are due to selection and mutational pressures have been deciphered. The variation in GC3s explains a significant proportion of the variation in codon usage patterns. The codons CGC, CGG, CTG and GCG showed strong positive correlation with GC3, which suggested that codon usage had been influenced by GC bias. We also found that ACC (Thr, RSCU-1.77), GCC (Ala, RSCU-1.67), CCC (Pro, RSCU-1.54), TCC (Ser, RSCU-1.47) were frequently used which signified that C was common at 2nd and 3rd codon positions. Correspondence analysis revealed that F1 axis had significant correlation with various GC contents suggesting that compositional properties under mutation pressure might affect codon usage bias. Nc-GC3 plot analysis suggested that both mutation pressure and natural selection might affect the codon usage bias which is also supported by neutrality plot analysis. The dinucleotide CT, TG and AG were significantly over-represented and CG, TA, AT, TT, and GT were underrepresented due to high rate of spontaneous mutation resulting from cytosine deamination.
Collapse
|
108
|
Paul P, Malakar AK, Chakraborty S. Codon usage vis-a-vis start and stop codon context analysis of three dicot species. J Genet 2018; 97:97-107. [PMID: 29666329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To understand the variation in genomic composition and its effect on codon usage, we performed the comparative analysis of codon usage and nucleotide usage in the genes of three dicots, Glycine max, Arabidopsis thaliana and Medicago truncatula. The dicot genes were found to be A/T rich and have predominantly A-ending and/or T-ending codons. GC3s directly mimic theusage pattern of global GC content. Relative synonymous codon usage analysis suggests that the high usage frequency of A/T over G/C mononucleotide containing codons in AT-rich dicot genome is due to compositional constraint as a factor of codon usage bias. Odds ratio analysis identified the dinucleotides TpG, TpC, GpA, CpA and CpT as over-represented, where, CpG and TpA as under-represented dinucleotides. The results of (NcExp-NcObs)/NcExp plot suggests that selection pressure other than mutation played a significant role in influencing the pattern of codon usage in these dicots. PR2 analysis revealed the significant role of selection pressure on codon usage. Analysis of varience on codon usage at start and stop site showed variation in codon selection in these sites. This study provides evidence that the dicot genes were subjected to compositional selection pressure.
Collapse
Affiliation(s)
- Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar 788 011, India.
| | | | | |
Collapse
|
109
|
Paul P, Malakar AK, Chakraborty S. Codon usage vis-a-vis start and stop codon context analysis of three dicot species. J Genet 2018. [DOI: 10.1007/s12041-018-0892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
110
|
Xia H, Wang Y, Atoni E, Zhang B, Yuan Z. Mosquito-Associated Viruses in China. Virol Sin 2018; 33:5-20. [PMID: 29532388 PMCID: PMC5866263 DOI: 10.1007/s12250-018-0002-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/05/2017] [Indexed: 10/30/2022] Open
Abstract
Mosquitoes are classified into approximately 3500 species and further grouped into 41 genera. Epidemiologically, they are considered to be among the most important disease vectors in the world and they can harbor a wide variety of viruses. Several mosquito viruses are considered to be of significant medical importance and can cause serious public health issues throughout the world. Such viruses are Japanese encephalitis virus (JEV), dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV). Others are the newly recognized mosquito viruses such as Banna virus (BAV) and Yunnan orbivirus (YNOV) with unclear medical significance. The remaining mosquito viruses are those that naturally infect mosquitoes but do not appear to infect humans or other vertebrates. With the continuous development and improvement of mosquito and mosquito-associated virus surveillance systems in China, many novel mosquito-associated viruses have been discovered in recent years. This review aims to systematically outline the history, characteristics, distribution, and/or current epidemic status of mosquito-associated viruses in China.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
111
|
Takaaki K, Tatsuo S. Analysis of factors affecting codon usage bias in human papillomavirus. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jbsa2017.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
112
|
Mazumder GA, Uddin A, Chakraborty S. Codon usage pattern of complex III gene of respiratory chain among platyhelminths. INFECTION GENETICS AND EVOLUTION 2018; 57:128-137. [DOI: 10.1016/j.meegid.2017.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/30/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
|
113
|
Deb B, Uddin A, Mazumder GA, Chakraborty S. Analysis of codon usage pattern of mitochondrial protein-coding genes in different hookworms. Mol Biochem Parasitol 2018; 219:24-32. [DOI: 10.1016/j.molbiopara.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
114
|
Hu M, Jin Y, Zhou J, Huang Z, Li B, Zhou W, Ren H, Yue J, Liang L. Genetic Characteristic and Global Transmission of Influenza A H9N2 Virus. Front Microbiol 2017; 8:2611. [PMID: 29312274 PMCID: PMC5744263 DOI: 10.3389/fmicb.2017.02611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
The H9N2 virus has been demonstrated to donate its genes to other subtypes of influenza A virus, forming new reassortant virus which may infect human beings. Understanding the genetic characteristic and the global transmission patterns of the virus would guide the prevention and control of potentially emerging avian influenza A virus. In this paper, we hierarchically classified the evolution of the H9N2 virus into three main lineages based on the phylogenetic characteristics of the virus. Due to the distribution of sampling locations, we named the three lineages as Worldwide lineage, Asia-Africa lineage, and China lineage. Codon usage analysis and selective positive site analysis of the lineages further showed the lineage-specific evolution of the virus. We reconstructed the transmission routes of the virus in the three lineages through phylogeography analysis, by which several epicenters for migration of the virus were identified. The hierarchical classification of the lineages implied a possible original seeding process of the virus, starting from the Worldwide lineages to the Asian-Africa lineages and to the China lineages. In the process of H9N2 virus global transmission, the United States was the origin of the virus. China Mainland, Hong Kong SAR, Japan, and Korea were important transfer centers. Based on both the transmission route and the distribution of the hosts in each lineage, we concluded that the wild birds' migration has contributed much to the long-distance global spread of the virus, while poultry trade and people's lifestyle may have contributed to the relatively short-distance transmission in some areas of the Asia and Africa.
Collapse
Affiliation(s)
- Mingda Hu
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yuan Jin
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Zhou
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhisong Huang
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Beiping Li
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Zhou
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hongguang Ren
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Yue
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Long Liang
- Laboratory of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
115
|
Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts. INFECTION GENETICS AND EVOLUTION 2017; 58:1-16. [PMID: 29198972 DOI: 10.1016/j.meegid.2017.11.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/02/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a negative-sense, single stranded RNA virus with a three-segmented genome that belongs to the genus Nairovirus within the family Bunyaviridae. CCHFV uses Hyalomma ticks as a vector to infect humans with a wide range of clinical signs, from asymptomatic to Zika-like syndrome. Despite significant progress in genomic analyses, the influences of viral relationships with different hosts on overall viral fitness, survival, and evading the host's immune systems remain unknown. To better understand the evolutionary characteristics of CCHFV, we performed a comprehensive analysis of the codon usage pattern in 179 CCHFV strains by calculating the relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), and other indicators. The results indicate that the codon usage bias of CCHFV is relatively low. Several lines of evidence support the hypothesis that a translation selection factor is shaping codon usage pattern in this virus. A correspondence analysis (CA) showed that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of CCHFV. Additionally, the results from a comparative analysis of RSCU between CCHFV and its hosts suggest that CCHFV tends to evolve codon usage patterns that are comparable to those of its hosts. Furthermore, the selection pressures from Homo sapiens, Bos taurus, and Ovis aries on the CCHFV RSCU patterns were dominant when compared with selection pressure from Hyalomma spp. vectors. Taken together, both natural selection and mutation pressure are important for shaping the codon usage pattern of CCHFV. We believe that such findings will assist researchers in understanding the evolution of CCHFV and its adaptation to its hosts.
Collapse
|
116
|
Analysis of the codon usage pattern in Middle East Respiratory Syndrome Coronavirus. Oncotarget 2017; 8:110337-110349. [PMID: 29299151 PMCID: PMC5746386 DOI: 10.18632/oncotarget.22738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which first broken out in Jeddah in 2012, causes a severe acute respiratory illness with a high mortality rate. To better understand the molecular characteristics of isolated MERS-CoV genomes, we first analysed the codon usage pattern of the zoonotic MERS-CoV strains comprehensively to gain an insight into the mechanism of cross-species transmission. We found that MERS human/camel isolates showed a low codon usage bias. Both mutation and nature selection pressure have contributed to this low codon usage bias, with the former being the main determining factor. We also observed that gene function, evolution time and the different host species of the virus all contributed to the bias of MERS-CoV, to some extent. Additionally, the codon usage pattern of MERS-CoV isolates is different from other related Nidovirales viruses isolated from bats and hedgehogs. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus.
Collapse
|
117
|
Genome-wide analysis of codon usage bias patterns in an enterotoxigenic Escherichia coli F18 strain. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
118
|
Ma XX, Chang QY, Ma P, Li LJ, Zhou XK, Zhang DR, Li MS, Cao X, Ma ZR. Analyses of nucleotide, codon and amino acids usages between peste des petits ruminants virus and rinderpest virus. Gene 2017; 637:115-123. [PMID: 28947301 DOI: 10.1016/j.gene.2017.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Peste des petits ruminants virus (PPRV) and rinderpest virus (RPV) are two causative agents of an economically important disease for ruminants (i.e., sheep, cattle and goat). In this study, the nucleotide, codon and amino acid usages for PPRV and RPV have been analyzed by multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis represents that ACG for Thr and GCG for Ala are selected with under-representation in both PPRV and RPV, and AGA for Arg in PPRV and AGG for Arg in RPV are used with over-representation. The usage of nucleotide pair (CpG) tends to be removed from viral genes of the two viruses, suggesting that other evolutionary forces take part in evolutionary processes for viral genes in addition to mutation pressure from nucleotide usage at the third codon position. The overall nucleotide usage of viral gene is not major factor in shaping synonymous codon usage patterns, while the nucleotide usages at the third codon position and the nucleotide pairs play important roles in shaping synonymous codon usage patterns. Although PPRV and RPV are closely related antigenically, the codon and amino acid usage patterns for viral genes represent a significant genetic diversity between PPRV and RPV. Moreover, the overall codon usage trends for viral genes between PPRV and RPV are mainly influenced by mutation pressure from nucleotide usage at the third codon position and translation selection from hosts. Taken together, this is first comprehensive analyses for nucleotide, codon and amino acid usages of viral genes of PPRV and RPV and the findings are expected to increase our understanding of evolutionary forces influencing viral evolutionary pathway and adaptation toward hosts.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Qiu-Yan Chang
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Peng Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Lin-Jie Li
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Xiao-Kai Zhou
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - De-Rong Zhang
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Ming-Sheng Li
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Xin Cao
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China.
| | - Zhong-Ren Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China.
| |
Collapse
|
119
|
Chen Y, Li X, Chi X, Wang S, Ma Y, Chen J. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus. PLoS One 2017; 12:e0183646. [PMID: 28880881 PMCID: PMC5589121 DOI: 10.1371/journal.pone.0183646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanmei Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (JC); (YM)
| | - Jilong Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
- * E-mail: (JC); (YM)
| |
Collapse
|
120
|
He W, Zhang H, Zhang Y, Wang R, Lu S, Ji Y, Liu C, Yuan P, Su S. Codon usage bias in the N gene of rabies virus. INFECTION GENETICS AND EVOLUTION 2017; 54:458-465. [PMID: 28818621 DOI: 10.1016/j.meegid.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
Since its emergence, rabies virus (RABV) has been a major worldwide concern especially in developing countries. The nucleoprotein (N) of RABV is highly conserved and key for genetic typing, thus a better understanding of the N gene evolutionary trajectory can assist the development of control measures. We found that the N gene of RABV has a low codon usage bias with a mean effective number of codons (ENC) value of 56.33 influenced by both mutation pressure and natural selection. However, neutrality analysis indicated that natural selection dominates over mutation pressure. Additionally, we found that dinucleotide bias partly contributed to RABV codon usage bias. On the other hand, based on the clades of phylogenetic tree, we found that the evolutionary rate of the Africa 2 clade was the highest with a mean value of 3.75×10-3 substitutions per site per year. Above all, our results regarding N gene of RABV codon usage will serve future RABV evolution research.
Collapse
Affiliation(s)
- Wanting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuchen Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruyi Wang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sijia Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanjie Ji
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chang Liu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pengkun Yuan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
121
|
Factors affecting the codon usage bias of SRY gene across mammals. Gene 2017; 630:13-20. [PMID: 28827114 DOI: 10.1016/j.gene.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 11/24/2022]
Abstract
Codon usage bias (CUB) is extensively found in a wide variety genomes and it is mostly affected by mutation pressure and natural selection. Analysis of CUB helps in studying the evolutionary features of a genome. The SRY gene plays an important role in male reproductive organ and a good candidate to study the evolutionary forces, since little work was reported earlier on this gene. We used bioinformatic methods to analyze the protein-coding sequences of SRY gene in 172 different mammalian species to understand the patterns of codon usage and the evolutionary forces acting on it. We found that the codon bias of SRY gene varies widely across mammals. Relative synonymous codon usage (RSCU) value revealed that the codons such as TCG, CCG, CAT, ATT, ACT, GCT, GTT, GCG, GGG and GGT were over-represented. Correspondence analysis indicated that the distribution of codons was more close to the axes indicating that compositional constraints might correlate to codon bias. Z-score analysis on RSCU values of codons identified a set of 11 codons viz. TCT, TTT, CTA, CTC, TAT, CAG, CGT, ATA, ACC, AAT and GTA which differed significantly at p<0.01 between 5% high and low gene expression datasets. Further, it was evident from the neutrality plot that GC12 was influenced by both mutation pressure and natural selection. From the study we concluded that natural selection played a dominant role, but mutational pressure played a minor role in the codon usage pattern of SRY gene across mammals.
Collapse
|
122
|
Nath Choudhury M, Uddin A, Chakraborty S. Codon usage bias and its influencing factors for Y-linked genes in human. Comput Biol Chem 2017; 69:77-86. [DOI: 10.1016/j.compbiolchem.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 11/30/2022]
|
123
|
Sadhasivam A, Vetrivel U. Genome-wide codon usage profiling of ocular infective Chlamydia trachomatis serovars and drug target identification. J Biomol Struct Dyn 2017. [PMID: 28627970 DOI: 10.1080/07391102.2017.1343685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening.
Collapse
Affiliation(s)
- Anupriya Sadhasivam
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| | - Umashankar Vetrivel
- a Centre for Bioinformatics , Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya , Chennai 600 006 , Tamil Nadu , India
| |
Collapse
|
124
|
Uddin A, Choudhury MN, Chakraborty S. Factors influencing codon usage of mitochondrial ND1 gene in pisces, aves and mammals. Mitochondrion 2017; 37:17-26. [PMID: 28668667 DOI: 10.1016/j.mito.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Animal mitochondrial genome harbours 13 protein coding genes which regulate the process of respiration. The mitochondrial NADH dehydrogenase 1 (MT-ND1) gene, one of the 13 protein-coding genes, encodes the NADH dehydrogenase 1 enzyme of the respiratory chain. Analysis of codon usage bias (CUB) acquires importance for better understanding of the molecular biology, new gene discovery, design of transgenes and gene evolution. The MT-ND1 gene seems to be a good candidate for analyzing codon usage pattern, since no work has yet been reported. Moreover, it is still not clear which factors significantly influence the codon usage pattern. In the present study, comparative analysis of codon usage pattern, expression level and influencing factors for MT-ND1 gene from 100 different species each of pisces, aves and mammals were used for CUB analysis. Our result suggests that the gene is AT rich in pisces, aves and mammals and most of the nucleotides significantly differ among them as revealed from t-test. CUB was not remarkable as reflected by high value of effective number of codons and it also significantly differs among pisces, aves and mammals. Although we found that CUB is mainly influenced by natural selection and mutation pressure for MT-ND1 gene as suggested by correlation and correspondence analysis but neutrality plot further revealed that natural selection played a major role and mutation pressure played a minor role in codon usage pattern. Additionally, t-test analysis showed that the MT-ND1 gene has a wide significant discrepancy in codon choices in pisces, aves and mammals. This study has contributed to boost our understanding about the mechanism of distribution of the codons and the factors that may influence the evolution of the MT-ND1 gene.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India.
| | | | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
125
|
Abstract
BACKGROUND Bovine coronavirus (BCoV) belong to the genus Betacoronavirus of the family Coronaviridae. BCoV are widespread around the world and cause enteric or respiratory infections among cattle, leading to important economic losses to the beef and dairy industry worldwide. To study the relation of codon usage among viruses and their hosts is essential to understand host-pathogen interaction, evasion from host's immune system and evolution. METHODS We performed a comprehensive analysis of codon usage and composition of BCoV. RESULTS The global codon usage among BCoV strains is similar. Significant differences of codon preferences in BCoV genes in relation to codon usage of Bos taurus host genes were found. Most of the highly frequent codons are U-ending. G + C compositional constraint and dinucleotide composition also plays a role in the overall pattern of BCoV codon usage. CONCLUSIONS The results of these studies revealed that mutational bias is a leading force shaping codon usage in this virus. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, Sede Salto, Centro Universitario Regional Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, Sede Salto, Centro Universitario Regional Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Sede Salto, Centro Universitario Regional Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
126
|
|
127
|
Hussain S, Rasool ST. Analysis of synonymous codon usage in Zika virus. Acta Trop 2017; 173:136-146. [PMID: 28606821 DOI: 10.1016/j.actatropica.2017.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 01/11/2023]
Abstract
Zika virus is a zoonotic pathogen, which have made frequent incursion into the human population in Africa and South East Asia over the course of several decades but never reached to the pandemic proportions until the most recent outbreak. Viruses are solely dependent on host synthetic machinery for their replication cycle; therefore, replication and persistence in a host species of different genetic background requires certain degree of adaptation. These adaptations are necessary to avoid detection from host immune surveillance and maximize the utilization of available resources for efficient viral replication. Study of genomic composition and codon usage pattern not only offer an insight into the adaptation of viruses to their new host, but may also provide some information about pathogenesis and spread of the virus. To elucidate the genetic features and synonymous codon usage bias in ZIKV genome, a comprehensive analysis was performed on 80 full-length ZIKV sequences. Our analyses shows that the overall extent of codon usage bias in ZIKV genome is low and affected by nucleotide composition, protein properties, natural selection, and gene expression level.
Collapse
|
128
|
|
129
|
Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome. Genetica 2017; 145:295-305. [PMID: 28421323 DOI: 10.1007/s10709-017-9965-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
Abstract
Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.
Collapse
|
130
|
Singh NK, Tyagi A. A detailed analysis of codon usage patterns and influencing factors in Zika virus. Arch Virol 2017; 162:1963-1973. [PMID: 28324177 DOI: 10.1007/s00705-017-3324-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/12/2017] [Indexed: 02/01/2023]
Abstract
Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.
Collapse
Affiliation(s)
- Niraj K Singh
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India.
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| |
Collapse
|
131
|
Chakraborty S, Nag D, Mazumder TH, Uddin A. Codon usage pattern and prediction of gene expression level in Bungarus species. Gene 2016; 604:48-60. [PMID: 27845207 DOI: 10.1016/j.gene.2016.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Codon bias study in an organism gains significance in understanding the molecular mechanism as well as the functional conservation of gene expression during the course of evolution. The prime focus in this study is to compare the codon usage patterns among the four species belonging to the genus Bungarus (B. multicinctus, B. fasciatus, B. candidus and B. flaviceps) using several codon bias parameters. Our results suggested that relatively low codon bias exists in the coding sequences of the selected species. The compositional constraints together with gene expression level might influence the patterns of codon usage among the genes of Bungarus species. Both natural selection and mutation pressure affect the codon usage pattern in Bungarus species as evident from correspondence analysis. Neutrality plot indicates that natural selection played a major role while mutation pressure played a minor role in codon usage pattern of the genes in Bungarus species.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam 788011, India.
| | - Debojyoti Nag
- Department of Biotechnology, Assam University, Silchar, Assam 788011, India
| | | | - Arif Uddin
- Department of Biotechnology, Assam University, Silchar, Assam 788011, India; Moinul Hoque Choudhury Memorial Science College, Algapur, HailaKandi, Assam 788150, India
| |
Collapse
|
132
|
Uddin A, Choudhury MN, Chakraborty S. Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:36-48. [PMID: 27776434 DOI: 10.1080/24701394.2016.1233534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) gene is a subunit of the respiratory chain complex I and involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). To understand the pattern of compositional properties, codon usage and expression level of mitochondrial ND1 genes in pisces, aves, and mammals, we used bioinformatic approaches as no work was reported earlier. In this study, a perl script was used for calculating nucleotide contents and different codon usage bias parameters. The codon usage bias of MT-ND1 was low but the expression level was high as revealed from high ENC and CAI value. Correspondence analysis (COA) suggests that the pattern of codon usage for MT-ND1 gene is not same across species and that compositional constraint played an important role in codon usage pattern of this gene among pisces, aves, and mammals. From the regression equation of GC12 on GC3, it can be inferred that the natural selection might have played a dominant role while mutation pressure played a minor role in influencing the codon usage patterns. Further, ND1 gene has a discrepancy with cytochrome B (CYB) gene in preference of codons as evident from COA. The codon usage bias was low. It is influenced by nucleotide composition, natural selection, mutation pressure, length (number) of amino acids, and relative dinucleotide composition. This study helps in understanding the molecular biology, genetics, evolution of MT-ND1 gene, and also for designing a synthetic gene.
Collapse
Affiliation(s)
- Arif Uddin
- a Department of Zoology , Moinul Hoque Choudhury Memorial Science College , Algapur , India
| | | | | |
Collapse
|
133
|
Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg Microbes Infect 2016; 5:e107. [PMID: 27729643 PMCID: PMC5117728 DOI: 10.1038/emi.2016.106] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022]
Abstract
The codon usage patterns of viruses reflect the evolutionary changes that allow them to optimize their survival and adapt their fitness to the external environment and, most importantly, their hosts. Here we report the genotype-specific codon usage patterns of Zika virus (ZIKV) strains from the current and previous outbreaks. Several genotype-specific and common codon usage traits were noted in the ZIKV coding sequences, indicating their independent evolutionary origins from a common ancestor. The overall influence of natural selection was more profound than that of mutation pressure, acting on a specific set of viral genes in the Asian-genotype ZIKV strains from the recent outbreak. An interplay between codon adaptation and deoptimization may have allowed the virus to adapt to multiple host and vectors and is reported for the first time in ZIKV genomes. Combining our codon analysis with geographical data on Aedes populations in the Americas suggested that ZIKV has evolved host- and vector-specific codon usage patterns to maintain successful replication and transmission chains within multiple hosts and vectors.
Collapse
|
134
|
Cristina J, Fajardo A, Soñora M, Moratorio G, Musto H. A detailed comparative analysis of codon usage bias in Zika virus. Virus Res 2016; 223:147-52. [PMID: 27449601 DOI: 10.1016/j.virusres.2016.06.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022]
Abstract
Zika virus (ZIKV) is a member of the family Flaviviridae and its genome consists of a single-stranded positive sense RNA molecule with 10,794 nucleotides. Clinical manifestations of disease caused by ZIKV infection range from asymptomatic cases to an influenza-like syndrome. There is an increasing concern about the possible relation among microcephaly and ZIKV infection. To get insight into the relation of codon usage among viruses and their hosts is extremely important to understand virus survival, fitness, evasion from host's immune system and evolution. In this study, we performed a comprehensive analysis of codon usage and composition of ZIKV. The overall codon usage among ZIKV strains is similar and slightly biased. Different codon preferences in ZIKV genes in relation to codon usage of human, Aedes aegypti and Aedes albopictus genes were found. Most of the highly frequent codons are A-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. G+C compositional constraint as well as dinucleotide composition also influence the codon usage of ZIKV. The results of these studies suggest that the emergence of ZIKV outside Africa, in the Pacific and the Americas may also be reflected in ZIKV codon usage. No significant differences were found in codon usage among strains isolated from microcephaly cases and the rest of strains from the Asian cluster enrolled in these studies.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay.
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Martín Soñora
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay; Viral Populations and Pathogenesis laboratory. Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
135
|
Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae. Int J Mol Sci 2016; 17:ijms17071138. [PMID: 27428961 PMCID: PMC4964511 DOI: 10.3390/ijms17071138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022] Open
Abstract
Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C.
Collapse
|
136
|
Uddin A, Chakraborty S. Codon usage trend in mitochondrial CYB gene. Gene 2016; 586:105-14. [DOI: 10.1016/j.gene.2016.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/11/2016] [Accepted: 04/02/2016] [Indexed: 11/25/2022]
|
137
|
Singh NK, Tyagi A, Kaur R, Verma R, Gupta PK. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus. Virus Res 2016; 221:58-65. [PMID: 27189042 DOI: 10.1016/j.virusres.2016.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022]
Abstract
Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.
Collapse
Affiliation(s)
- Niraj K Singh
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India.
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Rajinder Kaur
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Praveen K Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
138
|
Kumar N, Bera BC, Greenbaum BD, Bhatia S, Sood R, Selvaraj P, Anand T, Tripathi BN, Virmani N. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses. PLoS One 2016; 11:e0154376. [PMID: 27119730 PMCID: PMC4847779 DOI: 10.1371/journal.pone.0154376] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Animals
- Biological Evolution
- Codon
- Gene Expression Regulation, Viral
- Genetic Code
- Genome, Viral
- Horse Diseases/virology
- Horses
- Host-Pathogen Interactions
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/metabolism
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/metabolism
- Models, Statistical
- Mutation Rate
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Species Specificity
- Virus Replication
Collapse
Affiliation(s)
- Naveen Kumar
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Bidhan Chandra Bera
- Biotechnology Lab, Veterinary Type Culture Collection, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | - Benjamin D. Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Pathology, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sandeep Bhatia
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Richa Sood
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Pavulraj Selvaraj
- Equine Pathology Lab, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | - Taruna Anand
- Biotechnology Lab, Veterinary Type Culture Collection, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | | | - Nitin Virmani
- Equine Pathology Lab, National Research Center on Equines (NRCE), Hisar, Haryana, India
- * E-mail:
| |
Collapse
|
139
|
Andersen KG, Shapiro BJ, Matranga CB, Sealfon R, Lin AE, Moses LM, Folarin OA, Goba A, Odia I, Ehiane PE, Momoh M, England EM, Winnicki S, Branco LM, Gire SK, Phelan E, Tariyal R, Tewhey R, Omoniwa O, Fullah M, Fonnie R, Fonnie M, Kanneh L, Jalloh S, Gbakie M, Saffa S, Karbo K, Gladden AD, Qu J, Stremlau M, Nekoui M, Finucane HK, Tabrizi S, Vitti JJ, Birren B, Fitzgerald M, McCowan C, Ireland A, Berlin AM, Bochicchio J, Tazon-Vega B, Lennon NJ, Ryan EM, Bjornson Z, Milner DA, Lukens AK, Broodie N, Rowland M, Heinrich M, Akdag M, Schieffelin JS, Levy D, Akpan H, Bausch DG, Rubins K, McCormick JB, Lander ES, Günther S, Hensley L, Okogbenin S, Schaffner SF, Okokhere PO, Khan SH, Grant DS, Akpede GO, Asogun DA, Gnirke A, Levin JZ, Happi CT, Garry RF, Sabeti PC. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell 2016; 162:738-50. [PMID: 26276630 DOI: 10.1016/j.cell.2015.07.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/26/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Kristian G Andersen
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; The Scripps Research Institute, Scripps Translational Science Institute, La Jolla, CA 92037, USA.
| | - B Jesse Shapiro
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Biological Sciences, University of Montréal, Montréal, QC H2V 2S9, Canada
| | | | - Rachel Sealfon
- Broad Institute, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Lina M Moses
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Onikepe A Folarin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Redemption City, Osun State, Nigeria
| | - Augustine Goba
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Ikponmwonsa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Philomena E Ehiane
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Mambu Momoh
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone; Eastern Polytechnic College, Kenema, Eastern Province, Sierra Leone
| | | | - Sarah Winnicki
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Stephen K Gire
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | | | - Ryan Tewhey
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Omowunmi Omoniwa
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Mohammed Fullah
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone; Eastern Polytechnic College, Kenema, Eastern Province, Sierra Leone
| | - Richard Fonnie
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Mbalu Fonnie
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Lansana Kanneh
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Simbirie Jalloh
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Michael Gbakie
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Sidiki Saffa
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Kandeh Karbo
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | | | - James Qu
- Broad Institute, Cambridge, MA 02142, USA
| | - Matthew Stremlau
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Mahan Nekoui
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Shervin Tabrizi
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Joseph J Vitti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | - Zach Bjornson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Danny A Milner
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | - Nisha Broodie
- College of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | - John S Schieffelin
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Danielle Levy
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Henry Akpan
- Nigerian Federal Ministry of Health, Abuja, Federal Capital Territory, Nigeria
| | - Daniel G Bausch
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Kathleen Rubins
- The National Aeronautics and Space Administration, Johnson Space Center, Houston, TX 77058, USA
| | - Joseph B McCormick
- The University of Texas School of Public Health, Brownsville, TX 77030, USA
| | | | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20259 Hamburg, Germany
| | - Lisa Hensley
- NIAID Integrated Research Facility, Frederick, MD 21702, USA
| | - Sylvanus Okogbenin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | | | - Peter O Okokhere
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - S Humarr Khan
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Donald S Grant
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - George O Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | | | - Christian T Happi
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Redemption City, Osun State, Nigeria.
| | - Robert F Garry
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
140
|
Expression levels and codon usage patterns in nuclear genes of the filarial nematode Wucheraria bancrofti and the blood fluke Schistosoma haematobium. J Helminthol 2016; 91:72-79. [PMID: 27048929 DOI: 10.1017/s0022149x16000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synonymous codons are used with different frequencies, a phenomenon known as codon bias, which exists in many genomes and is mainly resolute by mutation and selection. To elucidate the genetic characteristics and evolutionary relationship of Wucheraria bancrofti and Schistosoma haematobium we examined the pattern of synonymous codon usage in nuclear genes of both the species. The mean overall GC contents of W. bancrofti and S. haematobium were 43.41 and 36.37%, respectively, which suggests that genes in both the species were AT rich. The value of the High Effective Number of Codons in both species suggests that codon usage bias was weak. Both species had a wide range of P3 distribution in the neutrality plot, with a significant correlation between P12 and P3. The codons were closer to the axes in correspondence analysis, suggesting that mutation pressure influenced the codon usage pattern in these species. We have identified the more frequently used codons in these species, most codons ending with an A or T. The nucleotides A/T and C/G were not proportionally used at the third position of codons, which reveals that natural selection might influence the codon usage patterns. The regression equation of P12 on P3 suggests that natural selection might have played a major role, while mutational pressure played a minor role in codon usage pattern in both species. These results form the basis of exploring the evolutionary mechanisms and the heterologous expression of medically important proteins of W. bancrofti and S. haematobium.
Collapse
|
141
|
Uddin A, Chakraborty S. Synonymous codon usage pattern in mitochondrial CYB gene in pisces, aves, and mammals. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:187-196. [DOI: 10.3109/19401736.2015.1115842] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arif Uddin
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | |
Collapse
|
142
|
Bioinformatics analysis of codon usage patterns and influencing factors in Penaeus monodon nudivirus. Arch Virol 2015; 161:459-64. [DOI: 10.1007/s00705-015-2689-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022]
|
143
|
Makhija A, Kumar S. Analysis of synonymous codon usage in spike protein gene of infectious bronchitis virus. Can J Microbiol 2015; 61:983-9. [PMID: 26452019 DOI: 10.1139/cjm-2015-0418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Infectious bronchitis virus (IBV) is responsible for causing respiratory, renal, and urogenital diseases in poultry. IBV infection in poultry leads to high mortality rates in affected flocks and to severe economic losses due to a drop in egg production and a reduced gain in live weight of the broiler birds. IBV-encoded spike protein (S) is the major protective immunogen for the host. Although the functions of the S protein have been well studied, the factors shaping synonymous codon usage bias and nucleotide composition in the S gene have not been reported yet. In the present study, we analyzed the relative synonymous codon usage and effective number of codons (Nc) using the 53 IBV S genes. The major trend in codon usage variation was studied using correspondence analysis. The plot of Nc values against GC3 as well as the correlation between base composition and codon usage bias suggest that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in the S gene. Interestingly, no association of aromaticity, degree of hydrophobicity, and aliphatic index was observed with the codon usage variation in IBV S genes. The study represents a comprehensive analysis of IBV S gene codon usage patterns and provides a basic understanding of the codon usage bias.
Collapse
Affiliation(s)
- Aditi Makhija
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
144
|
Uddin A, Mazumder TH, Choudhury MN, Chakraborty S. Codon bias and gene expression of mitochondrial ND2 gene in chordates. Bioinformation 2015; 11:407-12. [PMID: 26420922 PMCID: PMC4574124 DOI: 10.6026/97320630011407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/24/2015] [Indexed: 11/23/2022] Open
Abstract
Background: Mitochondrial ND gene, which encodes NADH dehydrogenase, is the first enzyme of the mitochondrial electron
transport chain. Leigh syndrome, a neurodegenerative disease caused by mutation in the ND2 gene (T4681C), is associated with
bilateral symmetric lesions in basal ganglia and subcortical brain regions. Therefore, it is of interest to analyze mitochondrial DNA
to glean information for evolutionary relationship. This study highlights on the analysis of compositional dynamics and selection
pressure in shaping the codon usage patterns in the coding sequence of MT-ND2 gene across pisces, aves and mammals by using
bioinformatics tools like effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage
(RSCU) etc. Results: We observed a low codon usage bias as reflected by high ENC values in MT-ND2 gene among pisces, aves
and mammals. The most frequently used codons were ending with A/C at the 3rd position of codon and the gene was AT rich in
all the three classes. The codons TCA, CTA, CGA and TGA were over represented in all three classes. The F1 correspondence
showed significant positive correlation with G, T3 and CAI while the F2 axis showed significant negative correlation with A and T
but significant positive correlation with G, C, G3, C3, ENC, GC, GC1, GC2 and GC3. Conclusions: The codon usage bias in MTND2
gene is not associated with expression level. Mutation pressure and natural selection affect the codon usage pattern in MT-ND
2 gene.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
| | | | | | | |
Collapse
|
145
|
Nasrullah I, Butt AM, Tahir S, Idrees M, Tong Y. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evol Biol 2015; 15:174. [PMID: 26306510 PMCID: PMC4550055 DOI: 10.1186/s12862-015-0456-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. RESULTS Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. CONCLUSIONS To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
Collapse
Affiliation(s)
- Izza Nasrullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Azeem M Butt
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, 53700, Pakistan.
| | - Shifa Tahir
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France. .,CNRS, UMR7247, F-37380, Nouzilly, France. .,Université François Rabelais de Tours, Tours, F-37380, France.
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, 53700, Pakistan.
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China.
| |
Collapse
|
146
|
Luo X, Liu Q, Xiong Y, Ye C, Jin D, Xu J. Genome-wide analysis of synonymous codon usage in Huaiyangshan virus and other bunyaviruses. J Basic Microbiol 2015; 55:1374-83. [PMID: 26173646 DOI: 10.1002/jobm.201500233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 11/09/2022]
Abstract
Huaiyangshan virus (HYSV) is a newly discovered bunyavirus, which is transmitted by ticks and causes hemorrhagic fever-like illness in human. The interplay of codon usage among viruses and their hosts is expected to affect viral survival, evasion from host's immune system and evolution. However, little is known about the codon usage in HYSV genome. In the present study, we analyzed synonymous codon usage in 120 available full-length HYSV sequences and performed a comparative analysis of synonymous codon usage patterns in HYSV and 42 other bunyaviruses. The relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C-ended. A comparative analysis of RSCU between HYSV and its hosts reflected that codon usage patterns of HYSV were mostly coincident with that of its hosts. Our data suggested that although mutational bias dominated codon usage, patterns of codon usage in HYSV were also under the influence of nature selection. Phylogenetic analysis based on RSCU values across different HYSV strains and 42 other bunyaviruses suggested that codon usage pattern in HYSV was the most similar with that of Uukuniemi virus among these bunyaviruses and that viruses belonged to Phlebovirus showed a diversity of codon usage patterns.
Collapse
Affiliation(s)
- Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qingzhen Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Dong Jin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
147
|
Kumar CS, Hazarika NMJ, Kumar S. Analysis of synonymous codon usage in the VP2 protein gene of infectious bursal disease virus. Arch Virol 2015; 160:2359-66. [DOI: 10.1007/s00705-015-2505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
148
|
Mazumder TH, Chakraborty S. Gaining insights into the codon usage patterns of TP53 gene across eight mammalian species. PLoS One 2015; 10:e0121709. [PMID: 25807269 PMCID: PMC4373688 DOI: 10.1371/journal.pone.0121709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/14/2015] [Indexed: 02/06/2023] Open
Abstract
TP53 gene is known as the “guardian of the genome” as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB) is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution.
Collapse
Affiliation(s)
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
- * E-mail:
| |
Collapse
|
149
|
Pal A, Banerjee R, Mondal UK, Mukhopadhyay S, Bothra AK. Deconstruction of archaeal genome depict strategic consensus in core pathways coding sequence assembly. PLoS One 2015; 10:e0118245. [PMID: 25674789 PMCID: PMC4326414 DOI: 10.1371/journal.pone.0118245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022] Open
Abstract
A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding frequency signature.
Collapse
Affiliation(s)
- Ayon Pal
- Department of Botany, Raiganj College (University College), Raiganj, Uttar Dinajpur, West Bengal, India
| | - Rachana Banerjee
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Uttam K Mondal
- Cheminformatics Bioinformatics Laboratory, Department of Chemistry, Raiganj College (University College), Raiganj, Uttar Dinajpur, West Bengal, India
| | - Subhasis Mukhopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Asim K Bothra
- Cheminformatics Bioinformatics Laboratory, Department of Chemistry, Raiganj College (University College), Raiganj, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
150
|
Cristina J, Moreno P, Moratorio G, Musto H. Genome-wide analysis of codon usage bias in Ebolavirus. Virus Res 2015; 196:87-93. [DOI: 10.1016/j.virusres.2014.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|