101
|
Saxena A, Kumar M, Chakdar H, Anuroopa N, Bagyaraj D. Bacillusspecies in soil as a natural resource for plant health and nutrition. J Appl Microbiol 2019; 128:1583-1594. [DOI: 10.1111/jam.14506] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Affiliation(s)
- A.K. Saxena
- ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - M. Kumar
- ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - H. Chakdar
- ICAR‐National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - N. Anuroopa
- Centre for Natural Biological Resources and Community Development Bangalore Karnataka India
- Government Science College Nrupathunga Road Bangalore Karnataka India
| | - D.J. Bagyaraj
- Centre for Natural Biological Resources and Community Development Bangalore Karnataka India
| |
Collapse
|
102
|
Zinc biosorption, biochemical and molecular characterization of plant growth-promoting zinc-tolerant bacteria. 3 Biotech 2019; 9:421. [PMID: 31696026 DOI: 10.1007/s13205-019-1959-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zinc plays a key role in plant nutrition at low levels; however, at higher concentrations Zn ions can be highly phytotoxic and plant growth-promoting rhizobacteria can be used to reduce such metal toxicity. In the present investigation we had reported the zinc biosorption and molecular characterization of plant growth-promoting zinc-tolerant bacteria. Initially, thirty bacteria having zinc solubilizing ability were screened for MIC against zinc ion and displayed high value of MIC ranging from 2.5 to 62.5 mM. Biochemically, all the 30 isolates showed significant difference in the 6 biochemical tests performed. The molecular diversity studies based on the repetitive DNA PCR viz, REP, ERIC and BOX elements showed significant genetic diversity among these 30 zinc-tolerant bacteria. These ZTB strains also showed multiple PGP activities and all ZTB strains were found positive for production of IAA, GA3 and ammonia, whereas 24 were found positive for ACC deaminase activity, 8 showed siderophore production and 9 ZTB isolates were positive for HCN production. Out of 30 isolates, 24 showed phosphorus solubilization activity, 30 showed potash solubilization, 15 showed silica solubilization and 27 showed phytase production activities. All the 30 ZTB stains showed zinc solubilization up to 0.25% insoluble ZnO in the medium, whereas at 2% ZnO in MSM only 12 isolates showed solubilization which were further selected for zinc biosorption and pot studies. The heavy metal removal studies revealed that ZTB stains were able to remove zinc ions effectively from the medium efficiently and the highest zinc biosorption (< 90%) was recorded with the bacterial strain Z-15. Further, the inoculation of ZTB strains under zinc stress conditions (pot containing 1000 mg/kg Zn) resulted in significant increase of shoot length, root length and total chlorophyll content in maize seedlings compared with the uninoculated control. The partial 16S rDNA sequence of the potential ZTB isolates viz. Z-15, Z-24, Z-28 and Z-29 revealed their identity as Serratia sp. The ability of these zinc-tolerant bacteria to tolerate the toxic level of zinc may serve as suitable candidates for developing microbial formulations for the growth of crop plants in Zn-contaminated areas.
Collapse
|
103
|
Rebolleda-Gómez M, Forrester NJ, Russell AL, Wei N, Fetters AM, Stephens JD, Ashman TL. Gazing into the anthosphere: considering how microbes influence floral evolution. THE NEW PHYTOLOGIST 2019; 224:1012-1020. [PMID: 31442301 DOI: 10.1111/nph.16137] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The flower is the hallmark of angiosperms and its evolution is key to their diversification. As knowledge of ecological interactions between flowers and their microbial communities (the anthosphere) expands, it becomes increasingly important to consider the evolutionary impacts of these associations and their potential eco-evolutionary dynamics. In this Viewpoint we synthesize current knowledge of the anthosphere within a multilevel selection framework and illustrate the potential for the extended floral phenotype (the phenotype expressed from the genes of the plant and its associated flower microbes) to evolve. We argue that flower microbes are an important, but understudied, axis of variation that shape floral trait evolution and angiosperm reproductive ecology. We highlight knowledge gaps and discuss approaches that are critical for gaining a deeper understanding of the role microbes play in mediating plant reproduction, ecology, and evolution.
Collapse
Affiliation(s)
- María Rebolleda-Gómez
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jessica D Stephens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
104
|
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9530963. [PMID: 31886270 PMCID: PMC6925695 DOI: 10.1155/2019/9530963] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Salinity is one of the major abiotic constraints that hinder health and quality of crops. Conversely, halotolerant plant growth-promoting rhizospheric (PGPR) bacteria are considered biologically safe for alleviating salinity stress. RESULTS We isolated halotolerant PGPR strains from the rhizospheric soil of Artemisia princeps, Chenopodium ficifolium, Echinochloa crus-galli, and Oenothera biennis plants; overall, 126 strains were isolated. The plant growth-promoting traits of these isolates were studied by inoculating them with the soil used to grow soybean plants under normal and salt stress (NaCl; 200 mM) conditions. The isolates identified as positive for growth-promoting activities were subjected to molecular identification. Out of 126 isolates, five strains-Arthrobacter woluwensis (AK1), Microbacterium oxydans (AK2), Arthrobacter aurescens (AK3), Bacillus megaterium (AK4), and Bacillus aryabhattai (AK5)-were identified to be highly tolerant to salt stress and demonstrated several plant growth-promoting traits like increased production of indole-3-acetic acid (IAA), gibberellin (GA), and siderophores and increased phosphate solubilization. These strains were inoculated in the soil of soybean plants grown under salt stress (NaCl; 200 mM) and various physiological and morphological parameters of plants were studied. The results showed that the microbial inoculation elevated the antioxidant (SOD and GSH) level and K+ uptake and reduced the Na+ ion concentration. Moreover, inoculation of these microbes significantly lowered the ABA level and increased plant growth attributes and chlorophyll content in soybean plants under 200 mM NaCl stress. The salt-tolerant gene GmST1 was highly expressed with the highest expression of 42.85% in AK1-treated plants, whereas the lowest expression observed was 13.46% in AK5-treated plants. Similarly, expression of the IAA regulating gene GmLAX3 was highly depleted in salt-stressed plants by 38.92%, which was upregulated from 11.26% to 43.13% upon inoculation with the microorganism. CONCLUSION Our results showed that the salt stress-resistant microorganism used in these experiments could be a potential biofertilizer to mitigate the detrimental effects of salt stress in plants via regulation of phytohormones and gene expression.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajid Ali
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
105
|
Ding X, Jimenez‐Gongora T, Krenz B, Lozano‐Duran R. Chloroplast clustering around the nucleus is a general response to pathogen perception in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:1298-1306. [PMID: 31257720 PMCID: PMC6715600 DOI: 10.1111/mpp.12840] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is increasingly clear that chloroplasts play a central role in plant stress responses. Upon activation of immune responses, chloroplasts are the source of multiple defensive signals, including reactive oxygen species (ROS). Intriguingly, it has been described that chloroplasts establish physical contact with the nucleus, through clustering around it and extending stromules, following activation of effector-triggered immunity (ETI). However, how prevalent this phenomenon is in plant-pathogen interactions, how its induction occurs, and what the underlying biological significance is are important questions that remain unanswered. Here, we describe that the chloroplast perinuclear clustering seems to be a general plant response upon perception of an invasion threat. Indeed, activation of pattern-triggered immunity, ETI, transient expression of the Rep protein from geminiviruses, or infection with viruses or bacteria all are capable of triggering this response in Nicotiana benthamiana. Interestingly, this response seems non-cell-autonomous, and exogenous treatment with H2 O2 is sufficient to elicit this relocalization of chloroplasts, which appears to require accumulation of ROS. Taken together, our results indicate that chloroplasts cluster around the nucleus during plant-pathogen interactions, suggesting a fundamental role of this positioning in plant defence, and identify ROS as sufficient and possibly required for the onset of this response.
Collapse
Affiliation(s)
- Xue Ding
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Bjӧrn Krenz
- Leibniz Institute DSMZ38124BraunschweigGermany
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
| |
Collapse
|
106
|
Kang SM, Shahzad R, Bilal S, Khan AL, Park YG, Lee KE, Asaf S, Khan MA, Lee IJ. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 2019; 19:80. [PMID: 31023221 PMCID: PMC6485084 DOI: 10.1186/s12866-019-1450-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The utilization of plant growth-promoting microbes is an environment friendly strategy to counteract stressful condition and encourage plants tolerance. In this regards, the current study was designed to isolate ACC deaminase and indole-3-acetic acid (IAA) producing halotolerant bacteria to promote tomato (Solanum lycopersicum L.) growth and tolerance against salinity stress. RESULTS The selected bacterial isolate MO1 was identified as Leclercia adecarboxylata and IAA quantification results revealed that MO1 produced significant amount of IAA (9.815 ± 0.6293 μg mL- 1). The MO1 showed the presence of ACC (1-Aminocyclopropane-1-Carboxylate) deaminase responsible acdS gene and tolerance against salinity stress. A plant microbe interaction experiment using tomato (Solanum lycopersicum L.) with glycine betaine (GB) as a positive control was carried out to investigate the positive role MO1 in improving plant growth and stress tolerance. The results indicated that MO1 inoculation and GB application significantly increased growth attributes under normal as well as saline condition (120 mM NaCl). The MO1 inoculation and GB treatment approach conferred good protection against salinity stress by significantly improving glucose by 17.57 and 18.76%, sucrose by 34.2 and 12.49%, fructose by 19.9 and 10.9%, citric acid by 47.48 and 34.57%, malic acid by 52.19 and 28.38%, serine by 43.78 and 69.42%, glycine by 14.48 and 22.76%, methionine by 100 and 124.99%, threonine by 70 and 63.08%, and proline by 36.92 and 48.38%, respectively, while under normal conditions MO1 inoculation and GB treatment also enhanced glucose by 19.83 and 13.19%, sucrose by 23.43 and 15.75%, fructose by 15.79 and 8.18%, citric acid by 43.26 and 33.14%, malic acid by 36.18 and 14.48%, serine by 46.5 and 48.55%, glycine by 19.85 and 29.77%, methionine by 22.22 and 38.89%, threonine by 21.95 and 17.07%, and proline by 29.61 and 34.68% compared to levels in non-treated plants, respectively. In addition, the endogenous abscisic acid (ABA) level was noticeably lower in MO1-inoculated (30.28 and 30.04%) and GB-treated plants (45 and 35.35%) compared to their corresponding control plants under normal condition as well as salinity stress, respectively. CONCLUSION The current findings suggest that the IAA- and ACC-deaminase-producing abilities MO1 can improve plants tolerance to salinity stress.
Collapse
Affiliation(s)
- Sang-Mo Kang
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Raheem Shahzad
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Yeon-Gyeong Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ko-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
107
|
The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 2019; 219:26-39. [DOI: 10.1016/j.micres.2018.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
|
108
|
Khan AL, Mabood F, Akber F, Ali A, Shahzad R, Al-Harrasi A, Al-Rawahi A, Shinwari ZK, Lee IJ. Endogenous phytohormones of frankincense producing Boswellia sacra tree populations. PLoS One 2018; 13:e0207910. [PMID: 30566477 PMCID: PMC6300221 DOI: 10.1371/journal.pone.0207910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
Boswellia sacra, an endemic tree to Oman, is exposed to man-made incisions for commercial level frankincense production, whereas unsustainable harvesting may lead to population decline. In this case, assessment of endogenous phytohormones (gibberellic acid (GA), indole-acetic acid (IAA), salicylic acid (SA) and kinetin) can help to understand population health and growth dynamics. Hence, it was aimed to devise a robust method using Near-Infrared spectroscopy (NIRS) coupled with multivariate methods for phytohormone analysis of thirteen different populations of B. sacra. NIRS data was recorded in absorption mode (10000-4000 cm-1) to build partial least squares regression model (calibration set 70%). Model was externally cross validated (30%) as a test set to check their prediction ability before the application to quantify the unknown amount of phytohormones in thirteen different populations of B. sacra. The results showed that phytohormonal contents varied significantly, showing a trend of SA>GA/IAA>kinetin across different populations. SA and GA contents were significantly higher in Pop13 (Hasik), followed by Pop2 (Dowkah)-an extreme end of B. sacra tree cover in Dhofar region. A similar trend in the concentration of phytohormones was found when the samples from 13 populations were subjected to advance liquid chromatography mass spectrophotometer and gas chromatograph with selected ion monitor analysis. The current analysis provides alternative tool to assess plant health, which could be important to in situ propagation of tree population as well as monitoring tree population growth dynamics.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fazal Mabood
- Department of Biological Sciences & Chemistry, University of Nizwa, Nizwa, Oman
| | - Fazal Akber
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Amjad Ali
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
109
|
Kosakivska IV, Voytenko LV, Drobot KO, Matvieieva NA. Accumulation of Indolyl-3-Acetic and Abscisic Acids by “Hairy” Roots of Artemisia vulgaris. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718060051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Lee YH, Jang SJ, Han JH, Bae JS, Shin H, Park HJ, Sang MK, Han SH, Kim KS, Han SW, Hong JK. Enhanced Tolerance of Chinese Cabbage Seedlings Mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against High Temperature Stress and Fungal Infections. THE PLANT PATHOLOGY JOURNAL 2018; 34:555-566. [PMID: 30588228 PMCID: PMC6305178 DOI: 10.5423/ppj.oa.07.2018.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Two rhizobacteria Bacillus aryabhattai H26-2 and B. siamensis H30-3 were evaluated whether they are involved in stress tolerance against drought and high temperature as well as fungal infections in Chinese cabbage plants. Chinese cabbage seedlings cv. Ryeokgwang (spring cultivar) has shown better growth compared to cv. Buram-3-ho (autumn cultivar) under high temperature conditions in a greenhouse, whilst there was no difference in drought stress tolerance of the two cultivars. In vitro growth of B. aryabhattai H26-2 and B. siamensis H30-3 were differentially regulated under PEG 6000-induced drought stress at different growing temperatures (30, 40 and 50°C). Pretreatment with B. aryabhattai H26-2 and B. siamensis H30-3 enhanced the tolerance of Chinese cabbage seedlings to high temperature, but not to drought stress. It turns out that only B. siamensis H30-3 showed in vitro antifungal activities and in planta crop protection against two fungal pathogens Alternaria brassicicola and Colletotrichum higginsianum causing black spots and anthracnose on Chinese cabbage plants cv. Ryeokgwang, respectively. B. siamensis H30-3 brings several genes involved in production of cyclic lipopeptides in its genome and secreted hydrolytic enzymes like chitinase, protease and cellulase. B. siamensis H30-3 was found to produce siderophore, a high affinity iron-chelating compound. Expressions of BrChi1 and BrGST1 genes were up-regulated in Chinese cabbage leaves by B. siamensis H30-3. These findings suggest that integration of B. aryabhattai H26-2 and B. siamensis H30-3 in Chinese cabbage production system may increase productivity through improved plant growth under high temperature and crop protection against fungal pathogens.
Collapse
Affiliation(s)
- Young Hee Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Su Jeong Jang
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Joon-Hee Han
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Jin Su Bae
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| | - Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029,
Korea
| | - Mee Kyung Sang
- National Institute of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | | | - Kyoung Su Kim
- Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), 33 Dongjin-ro, Jinju 52725,
Korea
| |
Collapse
|
111
|
Shahid M, Khan MS. Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech 2018; 8:131. [PMID: 29450121 PMCID: PMC5812922 DOI: 10.1007/s13205-018-1145-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, strain PSBB1 isolated from Vicia faba rhizosphere was identified as Burkholderia cepacia, by 16S rDNA sequence analysis and characterized. Strain PSBB1 tolerated glyphosate up to 3200 μg ml-1 and produced IAA (81.6 μg ml-1), ACC deaminase (69.3 mg-1 protein h-1), SA (39.3 μg ml-1) and 2,3-DHBA (26.6 μg ml-1), solubilized insoluble P (50.8 μg ml-1) and secreted 29.4 μg ml-1 exopolysaccharides, which decreased with increasing concentrations of glyphosate. Cell damage following glyphosate application was visible under SEM and CLSM. The phytotoxicity of glyphosate on chickpea was variable but significant. B. cepacia mitigated toxicity and enhanced the size, dry matter, symbiosis, seed attributes and nutritional contents of chickpea. Further, B. cepacia strain PSBB1 declined the levels of CAT, POD, APX and GPX and MDA contents at 4332 μg kg-1 soil glyphosate. Proline also increased under glyphosate stress but declined in B. cepacia inoculated plants. The ability to tolerate higher concentration of glyphosate, the capacity to secrete plant growth regulators even under herbicide stress and potential to reduce the level of proline and antioxidant enzymes makes B. cepacia as an interesting choice for enhancing chickpea production in soils contaminated even with herbicides.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Mohd. Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
112
|
Kerry RG, Patra S, Gouda S, Patra JK, Das G. Microbes and Their Role in Drought Tolerance of Agricultural Food Crops. Microb Biotechnol 2018:253-273. [DOI: 10.1007/978-981-10-7140-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
113
|
Metabolism-mediated induction of zinc tolerance in Brassica rapa by Burkholderia cepacia CS2-1. J Microbiol 2017; 55:955-965. [PMID: 29214486 DOI: 10.1007/s12275-017-7305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Brassica rapa (Chinese cabbage) is an essential component of traditional Korean food. However, the crop is often subject to zinc (Zn+) toxicity from contaminated irrigation water, which, as a result, compromises plant growth and production, as well as the health of human consumers. The present study investigated the bioaccumulation of Zn+ by Burkholderia cepacia CS2-1 and its effect on the heavy metal tolerance of Chinese cabbage. Strain CS2-1 was identified and characterized on the basis of 16S rRNA sequences and phylogenetic analysis. The strain actively produced indole-3-acetic acid (3.08 ± 0.21 μg/ml) and was also able to produce siderophore, solubilize minerals, and tolerate various concentrations of Zn+. The heavy metal tolerance of B. rapa plants was enhanced by CS2-1 inoculation, as indicated by growth attributes, Zn+ uptake, amino acid synthesis, antioxidant levels, and endogenous hormone (ABA and SA) synthesis. Without inoculation, the application of Zn+ negatively affected the growth and physiology of B. rapa plants. However, CS2-1 inoculation improved plant growth, lowered Zn+ uptake, altered both amino acid regulation and levels of flavonoids and phenolics, and significantly decreased levels of superoxide dismutase, endogenous abscisic acid, and salicylic acid. These findings indicate that B. cepacia CS2-1 is suitable for bioremediation against Zn+-induced oxidative stress.
Collapse
|
114
|
Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front Microbiol 2017; 8:2104. [PMID: 29163398 PMCID: PMC5671593 DOI: 10.3389/fmicb.2017.02104] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Plants are subjected to various abiotic stresses, such as drought, extreme temperature, salinity, and heavy metals. Abiotic stresses have negative impact on the physiology and morphology of plants through defects in the genetic regulation of cellular pathways. Plants employ several tolerance mechanisms and pathways to avert the effects of stresses that are triggered whenever alterations in metabolism are encountered. Phytohormones are among the most important growth regulators; they are known for having a prominent impact on plant metabolism, and additionally, they play a vital role in the stimulation of plant defense response mechanisms against stresses. Exogenous phytohormone supplementation has been adopted to improve growth and metabolism under stress conditions. Recent investigations have shown that phytohormones produced by root-associated microbes may prove to be important metabolic engineering targets for inducing host tolerance to abiotic stresses. Phytohormone biosynthetic pathways have been identified using several genetic and biochemical methods, and numerous reviews are currently available on this topic. Here, we review current knowledge on the function of phytohormones involved in the improvement of abiotic stress tolerance and defense response in plants exposed to different stressors. We focus on recent successes in identifying the roles of microbial phytohormones that induce stress tolerance, especially in crop plants. In doing so, this review highlights important plant morpho-physiological traits that can be exploited to identify the positive effects of phytohormones on stress tolerance. This review will therefore be helpful to plant physiologists and agricultural microbiologists in designing strategies and tools for the development of broad spectrum microbial inoculants supporting sustainable crop production under hostile environments.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - Stephan J. Wirth
- Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza, Egypt
| |
Collapse
|
115
|
Ogata-Gutiérrez K, Chumpitaz-Segovia C, Lirio-Paredes J, Finetti-Sialer MM, Zúñiga-Dávila D. Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops. World J Microbiol Biotechnol 2017; 33:203. [PMID: 29079927 DOI: 10.1007/s11274-017-2369-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/15/2017] [Indexed: 12/30/2022]
Abstract
Bacteria isolated from soil and rhizosphere samples collected in Peru from Andean crops were tested in vitro and in vivo to determine their potential as plant growth promoters and their ability to induce systemic resistance to Alternaria alternata in tomato plants. The isolates were identified by sequencing their 16S ribosomal RNA gene. Test for phosphate solubilization, and indolacetic acid were also carried out, together with in vitro antagonism assays in dual cultures towards the plant pathogens Fusarium solani, A. alternata and Curvularia lunata. The three most promising isolates (Pa15, Ps155, Ps168) belonged to the genus Pseudomonas. Further assays were carried out with tomato plants to assess their plant protection effect towards A. alternata and as growth promoters. Inoculation of tomato seeds with all isolates significantly enhanced seed germination, plantlets emergence and plant development. Bacterial inoculation also reduce damage level caused by A. alternata. The expression levels of three tomato genes involved in the jasmonate (AOS), ethylene responsive (ERF-2) and pathogenesis related (PR-P2) pathways were determined in plants challenged with A. alternata, alone or with each bacterial isolate, respectively. Results showed that at 24 h after infection, in absence of the pathogen, the expression level of the tested genes was very low. The presence of A. alternata alone and in combination with bacteria increased the transcripts of all genes. Data showed a potential of best performing isolate Ps168 to sustain tomato plants nutrition and activate defense-related genes for protection by pathogenic fungi.
Collapse
Affiliation(s)
- Katty Ogata-Gutiérrez
- Laboratorio de Ecología Microbiana y Biotecnología, Departmento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Carolina Chumpitaz-Segovia
- Laboratorio de Ecología Microbiana y Biotecnología, Departmento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Jesus Lirio-Paredes
- Laboratorio de Ecología Microbiana y Biotecnología, Departmento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Mariella M Finetti-Sialer
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología, Departmento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| |
Collapse
|
116
|
Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation. FRONTIERS IN PLANT SCIENCE 2017; 8:1143. [PMID: 28706529 PMCID: PMC5489591 DOI: 10.3389/fpls.2017.01143] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/14/2017] [Indexed: 05/04/2023]
Abstract
Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Lin Zhu
- School of Life Science and Technology, Tongji UniversityShanghai, China
| | - Yue Xie
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Feiyue Li
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Xin Xiao
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology UniversityBengbu, China
| |
Collapse
|
117
|
Tiwari S, Prasad V, Chauhan PS, Lata C. Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1510. [PMID: 28900441 PMCID: PMC5581838 DOI: 10.3389/fpls.2017.01510] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/16/2017] [Indexed: 05/18/2023]
Abstract
Being sessile in nature, plants have to withstand various adverse environmental stress conditions including both biotic and abiotic stresses. Comparatively, abiotic stresses such as drought, salinity, high temperature, and cold pose major threat to agriculture by negatively impacting plant growth and yield worldwide. Rice is one of the most widely consumed staple cereals across the globe, the production and productivity of which is also severely affected by different abiotic stresses. Therefore, several crop improvement programs are directed toward developing stress tolerant rice cultivars either through marker assisted breeding or transgenic technology. Alternatively, some known rhizospheric competent bacteria are also known to improve plant growth during abiotic stresses. A plant growth promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens NBRI-SN13 (SN13) was previously reported by our lab to confer salt stress tolerance to rice seedlings. However, the present study investigates the role of SN13 in ameliorating various abiotic stresses such as salt, drought, desiccation, heat, cold, and freezing on a popular rice cv. Saryu-52 under hydroponic growth conditions. Apart from this, seedlings were also exogenously supplied with abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA) and ethephon (ET) to study the role of SN13 in phytohormone-induced stress tolerance as well as its role in abiotic and biotic stress cross-talk. All abiotic stresses and phytohormone treatments significantly affected various physiological and biochemical parameters like membrane integrity and osmolyte accumulation. SN13 also positively modulated stress-responsive gene expressions under various abiotic stresses and phytohormone treatments suggesting its multifaceted role in cross-talk among stresses and phytohormones in response to PGPR. To the best of our knowledge, this is the first report on detailed analysis of plant growth promotion and stress alleviation by a PGPR in rice seedlings subjected to various abiotic stresses and phytohormone treatments for 0, 1, 3, 10, and 24 h.
Collapse
Affiliation(s)
- Shalini Tiwari
- Council of Scientific & Industrial Research–National Botanical Research InstituteLucknow, India
- Department of Botany, University of LucknowLucknow, India
| | - Vivek Prasad
- Department of Botany, University of LucknowLucknow, India
| | - Puneet S. Chauhan
- Council of Scientific & Industrial Research–National Botanical Research InstituteLucknow, India
| | - Charu Lata
- Council of Scientific & Industrial Research–National Botanical Research InstituteLucknow, India
- *Correspondence: Charu Lata, ;
| |
Collapse
|