101
|
Enninga J, Rosenshine I. Imaging the assembly, structure and activity of type III secretion systems. Cell Microbiol 2009; 11:1462-70. [PMID: 19622097 DOI: 10.1111/j.1462-5822.2009.01360.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
102
|
Kint G, Sonck KA, Schoofs G, De Coster D, Vanderleyden J, De Keersmaecker SC. 2D proteome analysis initiates new insights on the Salmonella Typhimurium LuxS protein. BMC Microbiol 2009; 9:198. [PMID: 19754952 PMCID: PMC2761396 DOI: 10.1186/1471-2180-9-198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/15/2009] [Indexed: 12/31/2022] Open
Abstract
Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As the S. Typhimurium LuxS protein does not contain obvious signal motifs, it is speculated that LuxS is a new member of so called moonlighting proteins. These observations might have consequences in future studies on AI-2 quorum signaling in S. Typhimurium.
Collapse
Affiliation(s)
- Gwendoline Kint
- Centre of Microbial and Plant Genetics, K, U, Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
103
|
Köberle M, Klein-Günther A, Schütz M, Fritz M, Berchtold S, Tolosa E, Autenrieth IB, Bohn E. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog 2009; 5:e1000551. [PMID: 19680448 PMCID: PMC2718809 DOI: 10.1371/journal.ppat.1000551] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 07/22/2009] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops. An important strategy of Yersinia enterocolitica (Ye) to suppress the immune defense is to inject bacterial proteins (Yersinia outer proteins, Yops) after cell contact directly into host cells, which affects their functions. However, tracking of cells in which Yop injection occurred has only been described for Yersinia pestis thus far. We adapted the described reporter system specifically for the use of infections with Ye and report the usefulness and limitations of this system. Using cell culture experiments, we demonstrated that β1-integrins and the RhoGTPases RhoA and Rac1 are involved in Yop injection. Since cell culture experiments also revealed that Yop injection is detectable in a similar manner into all subpopulations of the spleen, the system can be used to detect interaction of bacteria with host cells in vivo. In a mouse infection model we found that follicular B cells, granulocytes, macrophages, and dendritic cells are the main targets of Yop injection. Interestingly, Yop-injected B cells displayed an increased activation as indicated by increased CD69 expression. In contrast, interaction of bacteria with T cells seems to be rather a rare event. In immunocompromised gene-targeted mice we found increased frequencies of Yop-injected host cells for yet unknown reasons. Taken together, this novel reporter system represents a powerful tool to further study interaction of host cells with Ye.
Collapse
Affiliation(s)
- Martin Köberle
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annegret Klein-Günther
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michaela Fritz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Eva Tolosa
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen, Germany
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Ingo B. Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
104
|
Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J, van Ham SM. B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production. THE JOURNAL OF IMMUNOLOGY 2009; 182:7473-81. [PMID: 19494270 DOI: 10.4049/jimmunol.0802831] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present paradigm is that primary B cells are nonphagocytosing cells. In this study, we demonstrate that human primary B cells are able to internalize bacteria when the bacteria are recognized by the BCR. BCR-mediated internalization of Salmonella typhimurium results in B cell differentiation and secretion of anti-Salmonella Ab by the Salmonella-specific B cells. In addition, BCR-mediated internalization leads to efficient Ag delivery to the MHC class II Ag-loading compartments, even though Salmonella remains vital intracellularly in primary B cells. Consequently, BCR-mediated bacterial uptake induces efficient CD4(+) T cell help, which boosts Salmonella-specific Ab production. BCR-mediated internalization of Salmonella by B cells is superior over extracellular Ag extraction to induce rapid and specific humoral immune responses and efficiently combat infection.
Collapse
Affiliation(s)
- Yuri Souwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
105
|
Srinivasan A, Nanton M, Griffin A, McSorley SJ. Culling of activated CD4 T cells during typhoid is driven by Salmonella virulence genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7838-45. [PMID: 19494308 PMCID: PMC2731968 DOI: 10.4049/jimmunol.0900382] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathogen-specific CD4 T cells are activated within a few hours of oral Salmonella infection and are essential for protective immunity. However, CD4 T cells do not participate in bacterial clearance until several weeks after infection, suggesting that Salmonella can inhibit or evade CD4 T cells that are activated at early time points. Here, we describe the progressive culling of initially activated CD4 T cells in Salmonella-infected mice. Loss of activated CD4 T cells was independent of early instructional programming, T cell precursor frequency, and Ag availability. In contrast, apoptosis of Ag-specific CD4 T cells was actively induced by live bacteria in a process that required Salmonella pathogenicity island-2 and correlated with increased expression of PD-L1. These data demonstrate efficient culling of initially activated Ag-specific CD4 cells by a microbial pathogen and document a novel strategy for bacterial immune evasion.
Collapse
Affiliation(s)
- Aparna Srinivasan
- Department of Medicine, Division of Gastroenterology, Center for Infectious Diseases and Microbiology Translational Research, McGuire Translational Research Facility, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
106
|
Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect Immun 2009; 77:3170-80. [PMID: 19506012 DOI: 10.1128/iai.00272-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In humans with typhoid fever or in mouse strains susceptible to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, bacteria gain access to extraintestinal tissues, causing severe systemic disease. Here we show that in the gut-draining mesenteric lymph nodes (MLN), the majority of S. Typhimurium-carrying cells show dendritic-cell (DC) morphology and express the DC marker CD11c, indicating that S. Typhimurium bacteria are transported to the MLN by migratory DCs. In vivo FLT-3L-induced expansion of DCs, as well as stimulation of DC migration by Toll-like receptor agonists, results in increased numbers of S. Typhimurium bacteria reaching the MLN. Conversely, genetically impaired DC migration in chemokine receptor CCR7-deficient mice reduces the number of S. Typhimurium bacteria reaching the MLN. This indicates that transport of S. Typhimurium from the intestine into the MLN is limited by the number of migratory DCs carrying S. Typhimurium bacteria. In contrast, modulation of DC migration does not affect the number of S. Typhimurium bacteria reaching systemic tissues, indicating that DC-bound transport of S. Typhimurium does not substantially contribute to systemic S. Typhimurium infection. Surgical removal of the MLN results in increased numbers of S. Typhimurium bacteria reaching systemic sites early after infection, thereby rendering otherwise resistant mice susceptible to fatal systemic disease development. This suggests that the MLN provide a vital barrier shielding systemic compartments from DC-mediated dissemination of S. Typhimurium. Thus, confinement of S. Typhimurium in gut-associated lymphoid tissue and MLN delays massive extraintestinal dissemination and at the same time allows for the establishment of protective adaptive immune responses.
Collapse
|
107
|
Yoon H, McDermott JE, Porwollik S, McClelland M, Heffron F. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 2009; 5:e1000306. [PMID: 19229334 PMCID: PMC2639726 DOI: 10.1371/journal.ppat.1000306] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/22/2009] [Indexed: 11/18/2022] Open
Abstract
To cause a systemic infection, Salmonella must respond to many environmental cues during mouse infection and express specific subsets of genes in a temporal and spatial manner, but the regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 83 regulators inferred to play a role in Salmonella enteriditis Typhimurium (STM) virulence and tested them in three virulence assays (intraperitoneal [i.p.], and intragastric [i.g.] infection in BALB/c mice, and persistence in 129X1/SvJ mice). Overall, 35 regulators were identified whose absence attenuated virulence in at least one assay, and of those, 14 regulators were required for systemic mouse infection, the most stringent virulence assay. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint, we focused on these 14 genes. Transcriptional profiles were obtained for deletions of each of these 14 regulators grown under four different environmental conditions. These results, as well as publicly available transcriptional profiles, were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 14 regulators control the same set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that the response regulator SsrB and the MarR type regulator, SlyA, are the terminal regulators in a cascade that integrates multiple signals. Furthermore, experiments to demonstrate epistatic relationships showed that SsrB can replace SlyA and, in some cases, SlyA can replace SsrB for expression of SPI-2 encoded virulence factors.
Collapse
Affiliation(s)
- Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jason E. McDermott
- Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Steffen Porwollik
- The Sydney Kimmel Cancer Center, San Diego, California, United States of America
| | - Michael McClelland
- The Sydney Kimmel Cancer Center, San Diego, California, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
108
|
Turning on the spotlight--using light to monitor and characterize bacterial effector secretion and translocation. Curr Opin Microbiol 2009; 12:24-30. [PMID: 19135407 DOI: 10.1016/j.mib.2008.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 02/07/2023]
Abstract
Secretion and translocation of bacterial pathogen effectors into host cells via dedicated secretion machineries like type III secretion systems (T3SSs) or type IV secretion systems (T4SSs) is a key feature employed by pathogens to attack host cells. Innovative fluorescence and imaging approaches have blossomed during recent years, and became instrumental in revealing the dynamics of effector secretion and function in interfering with host cellular processes, particularly signaling events, gene expression regulation, membrane trafficking, and autophagy. Furthermore, imaging-based screening approaches have demonstrated the mode of action of several bacterial effectors upon host cellular translocation. The rapid technological advancement of imaging technologies indicates that these techniques will continue to be at the center of numerous future breakthroughs delineating the dynamic processes of bacterial effector actions.
Collapse
|
109
|
Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella. Future Microbiol 2008; 3:625-34. [PMID: 19072180 PMCID: PMC2734448 DOI: 10.2217/17460913.3.6.625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host-pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Richland, WA 99354, USA, Tel.:+1 509 376 7608
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Nathan P Manes
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Hyunjin Yoon
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Fred Heffron
- Oregon Health & Science University, Portland, OR 97239, USA Tel.:+1 503 494 6738
| |
Collapse
|
110
|
Abstract
Haemophagocytosis (hemophagocytosis) is the phenomenon of activated macrophage consumption of red and white blood cells, including professional phagocytes and lymphocytes. It can occur in patients with severe cases of intracellular microbial infection, including avian influenza, leishmaniasis, tuberculosis and typhoid fever. While well-known to physicians since at least the mid-1800s, haemophagocytosis has been little studied due to a paucity of tractable animal and cell culture models. Recently, haemophagocytosis has been described in a mouse model of typhoid fever, and it was noted that the infectious agent, Salmonella enterica, resides within haemophagocytic macrophages in mice. In addition, a cell culture model for haemophagocytosis revealed that S. enterica preferentially replicate in haemophagocytic macrophages. This review describes how, at the molecular and cellular levels, S. enterica may promote and take advantage of haemophagocytosis to establish long-term systemic infections in mammals. The role, relevance and possible molecular mechanisms of haemophagocytosis are discussed within the context of other microbial infections and of genetic deficiencies in which haemophagocytosis occurs and is associated with morbidity.
Collapse
Affiliation(s)
- Eugenia Silva-Herzog
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
111
|
Abstract
PURPOSE OF REVIEW Incidences of antimicrobial-resistant infections have increased dramatically over the past several decades and are associated with adverse patient outcomes. Alternative approaches to combat infection are critical and have led to the development of more specific drugs targeted at particular bacterial virulence systems or essential regulatory pathways. The purpose of this review is to highlight the recent developments in antibacterial therapy and the novel approaches toward increasing our therapeutic armory against bacterial infection. RECENT FINDINGS Although classic antibiotic development is not occurring rapidly, alternative therapeutics that target specific bacterial virulence systems are progressing from the discovery stage through the Food and Drug Administration approval process. Here we review novel antibodies that target specific virulence systems as well as a variety of newly discovered small molecules that block bacterial attachment, communication systems (quorum sensing) or important regulatory processes associated with virulence gene expression. SUMMARY The success of novel therapeutics could significantly change clinical practice. Furthermore, the complications of collateral damage due to antibiotic administration, for example, suprainfections or decreased host immunity due to loss of synergistic bacterial communities, may be minimized using therapeutics that specifically target pathogenic behavior.
Collapse
Affiliation(s)
- Susan V Lynch
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
112
|
Gunn JS. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 2008; 16:284-90. [PMID: 18467098 DOI: 10.1016/j.tim.2008.03.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/19/2008] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
Microbes are able to sense and respond to their environment primarily through the use of two-component regulatory systems. Many of these systems activate virulence-factor expression and are regulated by host-derived signals, having evolved to control gene expression at the key time and place for optimal establishment and maintenance of infection. Salmonella spp. are enteric pathogens that are able to survive both within host macrophages during systemic spread and killing by innate immune factors at intestinal mucosal surfaces. This review focuses on a key mechanism of pathogenesis that involves the PmrA-PmrB two-component system, which is activated in vivo by direct or indirect means and regulates genes that modify lipopolysaccharide, aiding survival in host (and non-host) environments.
Collapse
Affiliation(s)
- John S Gunn
- Center for Microbial Interface Biology, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210-1214, USA.
| |
Collapse
|