101
|
Yoo JK, Kim TS, Hufford MM, Braciale TJ. Viral infection of the lung: host response and sequelae. J Allergy Clin Immunol 2013; 132:1263-76; quiz 1277. [PMID: 23915713 PMCID: PMC3844062 DOI: 10.1016/j.jaci.2013.06.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023]
Abstract
Because of its essential role in gas exchange and oxygen delivery, the lung has evolved a variety of strategies to control inflammation and maintain homeostasis. Invasion of the lung by pathogens (and in some instances exposure to certain noninfectious particulates) disrupts this equilibrium and triggers a cascade of events aimed at preventing or limiting colonization (and more importantly infection) by pathogenic microorganisms. In this review we focus on viral infection of the lung and summarize recent advances in our understanding of the triggering of innate and adaptive immune responses to viral respiratory tract infection, mechanisms of viral clearance, and the well-recognized consequences of acute viral infection complicating underlying lung diseases, such as asthma.
Collapse
Affiliation(s)
- Jae-Kwang Yoo
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Pathology and Molecular Medicine, University of Virginia, Charlottesville, Va
| | - Matthew M. Hufford
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Va
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Va
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Va
- Department of Pathology and Molecular Medicine, University of Virginia, Charlottesville, Va
- Corresponding author: Thomas J. Braciale, MD, PhD, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|
102
|
Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine Growth Factor Rev 2013; 24:355-72. [PMID: 23849989 DOI: 10.1016/j.cytogfr.2013.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
TGFβ is secreted in a latent state and must be "activated" by molecules that facilitate its release from a latent complex and allow binding to high affinity cell surface receptors. Numerous molecules have been implicated as potential mediators of this activation process, but only a limited number of these activators have been demonstrated to play a role in TGFβ mobilisation in vivo. Here we review the process of TGFβ secretion and activation using evolutionary data, sequence conservation and structural information to examine the molecular mechanisms by which TGFβ is secreted, sequestered and released. This allows the separation of more ancient TGFβ activators from those factors that emerged more recently, and helps to define a potential hierarchy of activation mechanisms.
Collapse
Affiliation(s)
- Ian B Robertson
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, Cell Biology Floor 6 Room 650, Medical Science Building, New York, NY 10016, United States.
| | | |
Collapse
|
103
|
Namachivayam K, Blanco CL, Frost BL, Reeves AA, Jagadeeswaran R, MohanKumar K, Safarulla A, Mandal P, Garzon SA, Raj JU, Maheshwari A. Preterm human milk contains a large pool of latent TGF-β, which can be activated by exogenous neuraminidase. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1055-65. [PMID: 23558011 PMCID: PMC3680715 DOI: 10.1152/ajpgi.00039.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human milk contains substantial amounts of transforming growth factor (TGF)-β, particularly the isoform TGF-β2. We previously showed in preclinical models that enterally administered TGF-β2 can protect against necrotizing enterocolitis (NEC), an inflammatory bowel necrosis of premature infants. In this study we hypothesized that premature infants remain at higher risk of NEC than full-term infants, even when they receive their own mother's milk, because preterm human milk contains less bioactive TGF-β than full-term milk. Our objective was to compare TGF-β bioactivity in preterm vs. full-term milk and identify factors that activate milk-borne TGF-β. Mothers who delivered between 23 0/7 and 31 6/7 wk or at ≥37 wk of gestation provided milk samples at serial time points. TGF-β bioactivity and NF-κB signaling were measured using specific reporter cells and in murine intestinal tissue explants. TGF-β1, TGF-β2, TGF-β3, and various TGF-β activators were measured by real-time PCR, enzyme immunoassays, or established enzymatic activity assays. Preterm human milk showed minimal TGF-β bioactivity in the native state but contained a large pool of latent TGF-β. TGF-β2 was the predominant isoform of TGF-β in preterm milk. Using a combination of several in vitro and ex vivo models, we show that neuraminidase is a key regulator of TGF-β bioactivity in human milk. Finally, we show that addition of bacterial neuraminidase to preterm human milk increased TGF-β bioactivity. Preterm milk contains large quantities of TGF-β, but most of it is in an inactive state. Addition of neuraminidase can increase TGF-β bioactivity in preterm milk and enhance its anti-inflammatory effects.
Collapse
Affiliation(s)
- Kopperuncholan Namachivayam
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Cynthia L. Blanco
- 3Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Brandy L. Frost
- 4Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; ,5Department of Pediatrics, NorthShore University Health System, Evanston, Illinois;
| | - Aaron A. Reeves
- 3Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Ramasamy Jagadeeswaran
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan MohanKumar
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Azif Safarulla
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Partha Mandal
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Steven A. Garzon
- 2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,6University of Chicago Pritzker School of Medicine, Chicago, Illinois; and
| | - J. Usha Raj
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Akhil Maheshwari
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,7Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
104
|
Zhang H, Hale BG, Xu K, Sun B. Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells. Viruses 2013; 5:1431-46. [PMID: 23752648 PMCID: PMC3717715 DOI: 10.3390/v5061431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/07/2013] [Accepted: 05/23/2013] [Indexed: 12/18/2022] Open
Abstract
Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions.
Collapse
Affiliation(s)
- Hong Zhang
- Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China; E-Mail:
| | - Benjamin G. Hale
- Medical Research Council (MRC), University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, Scotland, UK; E-Mail:
| | - Ke Xu
- Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (K.X.); (B.S.); Tel.: +86-21-6385-1929 (K.X.); +86-21-6385-1927 (B.S.); Fax: +86-21-6384-3571 (K.X. and B.S.)
| | - Bing Sun
- Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China; E-Mail:
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Authors to whom correspondence should be addressed; E-Mails: (K.X.); (B.S.); Tel.: +86-21-6385-1929 (K.X.); +86-21-6385-1927 (B.S.); Fax: +86-21-6384-3571 (K.X. and B.S.)
| |
Collapse
|
105
|
Influenza A virus nucleoprotein induces apoptosis in human airway epithelial cells: implications of a novel interaction between nucleoprotein and host protein Clusterin. Cell Death Dis 2013; 4:e562. [PMID: 23538443 PMCID: PMC3615740 DOI: 10.1038/cddis.2013.89] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apoptosis induction is an antiviral host response, however, influenza A virus (IAV) infection promotes host cell death. The nucleoprotein (NP) of IAV is known to contribute to viral pathogenesis, but its role in virus-induced host cell death was hitherto unknown. We observed that NP contributes to IAV infection induced cell death and heterologous expression of NP alone can induce apoptosis in human airway epithelial cells. The apoptotic effect of IAV NP was significant when compared with other known proapoptotic proteins of IAV. The cell death induced by IAV NP was executed through the intrinsic apoptosis pathway. We screened host cellular factors for those that may be targeted by NP for inducing apoptosis and identified human antiapoptotic protein Clusterin (CLU) as a novel interacting partner. The interaction between IAV NP and CLU was highly conserved and mediated through β-chain of the CLU protein. Also CLU was found to interact specifically with IAV NP and not with any other known apoptosis modulatory protein of IAV. CLU prevents induction of the intrinsic apoptosis pathway by binding to Bax and inhibiting its movement into the mitochondria. We found that the expression of IAV NP reduced the association between CLU and Bax in mammalian cells. Further, we observed that CLU overexpression attenuated NP-induced cell death and had a negative effect on IAV replication. Collectively, these findings indicate a new function for IAV NP in inducing host cell death and suggest a role for the host antiapoptotic protein CLU in this process.
Collapse
|
106
|
Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol 2013; 87:3885-902. [PMID: 23365422 DOI: 10.1128/jvi.02520-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo.
Collapse
|
107
|
Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 2013; 6:14-23. [PMID: 23131785 PMCID: PMC4034055 DOI: 10.1038/mi.2012.96] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal tissues are continually bombarded with infectious agents seeking to gain entry into the body. The absence of a tough physical exterior layer surrounding these tissues creates a unique challenge for the immune system, which manages to provide broad protection against a plethora of different organisms with the aid of special adaptations that augment immunity at these vulnerable sites. For example, specialized populations of memory T lymphocytes reside at initial sites of pathogen entry into the body, where they provide an important protective barrier. Similar anatomically-confined populations of pathogen-specific CD8 T cells can be found near the outer margins of the body following recovery from a variety of local infections, where they share very similar phenotypic characteristics. How these tissue-resident T cells are retained in a single anatomic location where they can promote immunity is beginning to be defined. Here, we will review current knowledge of the mechanisms that help establish and maintain these regional lymphocytes in the mucosal tissues and discuss relevant data that enhance our understanding of the contribution of these lymphocyte populations to protective immunity against infectious diseases.
Collapse
|
108
|
Hasenberg M, Stegemann-Koniszewski S, Gunzer M. Cellular immune reactions in the lung. Immunol Rev 2012; 251:189-214. [DOI: 10.1111/imr.12020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mike Hasenberg
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| |
Collapse
|
109
|
The hemagglutinin protein of highly pathogenic H5N1 influenza viruses overcomes an early block in the replication cycle to promote productive replication in macrophages. J Virol 2012; 87:1411-9. [PMID: 23152519 DOI: 10.1128/jvi.02682-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophages are known to be one of the first lines of defense against influenza virus infection. However, they may also contribute to severe disease caused by the highly pathogenic avian (HPAI) H5N1 influenza viruses. One reason for this may be the ability of certain influenza virus strains to productively replicate in macrophages. However, studies investigating the productive replication of influenza viruses in macrophages have been contradictory, and the results may depend on both the type of macrophages used and the specific viral strain. In this work, we investigated the ability of H1 to H16 viruses to productively replicate in primary murine alveolar macrophages and RAW264.7 macrophages. We show that only a subset of HPAI H5N1 viruses, those that cause high morbidity and mortality in mammals, can productively replicate in macrophages, as measured by the release of newly synthesized virus particles into the cell supernatant. Mechanistically, we found that these H5 strains can overcome a block early in the viral life cycle leading to efficient nuclear entry, viral transcription, translation, and ultimately replication. Studies with reassortant viruses demonstrated that expression of the hemagglutinin gene from an H5N1 virus rescued replication of H1N1 influenza virus in macrophages. This study is the first to characterize H5N1 influenza viruses as the only subtype of influenza virus capable of productive replication in macrophages and establishes the viral gene that is required for this characteristic. The ability to productively replicate in macrophages is unique to H5N1 influenza viruses and may contribute to their increased pathogenesis.
Collapse
|
110
|
Srivastava V, Khanna M, Sharma S, Kumar B. Resolution of immune response by recombinant transforming growth factor-beta (rTGF-β) during influenza A virus infection. Indian J Med Res 2012; 136:641-8. [PMID: 23168705 PMCID: PMC3516032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND & OBJECTIVES Replication of influenza A virus in the respiratory tract leads to cell damage and liberation of cytokines and chemokines. The in vivo cytokine induction and modulation by recombinant transforming growth factor- β1 (rTGF-β1) has not been studied. Therefore, in the present study the effect of rTGF-β1, a potent immunomodulatory cytokine which has anti-inflammatory properties and downregulates the release of inflammatory molecules, against influenza-virus infection in the airway of mice was investigated. METHODS rTGF-β1 was administered intravenously to mice with concomitant intranasal infection of influenza A/Udorn/317/72 (H3N2) virus, and the survival rate, virus titre, histopathological changes and levels of factors regulating inflammation in the airway fluid were analysed. RESULT The immune response to influenza A virus was characterized by an influx of both macrophages and lymphocytes into the lungs of the infected host. rTGF-β1 significantly suppressed virus multiplication and improved the survival rate of mice. rTGF-β1 downregulated infiltration of neutrophils and the release of inflammatory molecules, such as interferon-gamma (IFN-γ), interleukin-1 β (IL-1β) and stimulated release of IL-10 that potentiates anti-inflammatory response into airway. INTERPRETATION & CONCLUSIONS A generalized pulmonary inflammation does not contribute to viral clearance but represents an immunological background within which antiviral immunity operates. Treatment with rTGF-β1 reduced macrophage count and neutrophils influx in lungs of infected mice.
Collapse
Affiliation(s)
- Vikram Srivastava
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India,Reprint requests: Dr Madhu Khanna, Associate Professor, Department of Respiratory Virology, V.P. Chest Institute, University of Delhi, Delhi 110 007, India e-mail:
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
111
|
Amino acid determinants conferring stable sialidase activity at low pH for H5N1 influenza A virus neuraminidase. FEBS Open Bio 2012; 2:261-6. [PMID: 23650608 PMCID: PMC3642167 DOI: 10.1016/j.fob.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 12/01/2022] Open
Abstract
Avian influenza A viruses (IAVs) and human 1918, 1957, and 1968 pandemic IAVs all have neuraminidases (NAs) that are stable at low pH sialidase activity, yet most human epidemic IAVs do not. We examined the pH stability of H5N1 highly pathogenic avian IAV (HPAI) NAs and identified amino acids responsible for conferring stability at low pH. We found that, unlike other avian viruses, most H5N1 IAVs isolated since 2003 had NAs that were unstable at low pH, similar to human epidemic IAVs. These H5N1 viruses are thus already human virus-like and, therefore, have the frequent infections of humans.
Collapse
|
112
|
Jin RP, Hu YH, Sun BG, Zhang XH, Sun L. Edwardsiella tarda sialidase: pathogenicity involvement and vaccine potential. FISH & SHELLFISH IMMUNOLOGY 2012; 33:514-521. [PMID: 22705341 DOI: 10.1016/j.fsi.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 06/01/2023]
Abstract
Bacterial sialidases are a group of glycohydrolases that are known to play an important role in invasion of host cells and tissues. In this study, we examined in a model of Japanese flounder (Paralichthys olivaceus) the potential function of NanA, a sialidase from the fish pathogen Edwardsiella tarda. NanA is composed of 670 residues and shares low sequence identities with known bacterial sialidases. In silico analysis indicated that NanA possesses a sialidase domain and an autotransporter domain, the former containing five Asp-boxes, a RIP motif, and the conserved catalytic site of bacterial sialidases. Purified recombinant NanA (rNanA) corresponding to the sialidase domain exhibited glycohydrolase activity against sialic acid substrate in a manner that is pH and temperature dependent. Immunofluorescence microscopy showed binding of anti-rNanA antibodies to E. tarda, suggesting that NanA was localized on cell surface. Mutation of nanA caused drastic attenuation in the ability of E. tarda to disseminate into and colonize fish tissues and to induce mortality in infected fish. Likewise, cellular study showed that the nanA mutant was significantly impaired in the infectivity against cultured flounder cells. Immunoprotective analysis showed that rNanA in the form of a subunit vaccine conferred effective protection upon flounder against lethal E. tarda challenge. rNanA vaccination induced the production of specific serum antibodies, which enhanced complement-mediated bactericidal activity and reduced infection of E. tarda into flounder cells. Together these results indicate that NanA plays an important role in the pathogenesis of E. tarda and may be exploited for the control of E. tarda infection in aquaculture.
Collapse
Affiliation(s)
- Ren-ping Jin
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|
113
|
Gorski SA, Hufford MM, Braciale TJ. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract. Curr Opin Virol 2012; 2:233-41. [PMID: 22608464 PMCID: PMC3378727 DOI: 10.1016/j.coviro.2012.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A hallmark of infection by respiratory viruses is productive infection of and the subsequent destruction of the airway epithelium. These viruses can also target other stromal cell types as well as in certain instances, CD45(+) hematopoietic cells either resident in the lungs or part of the inflammatory response to infection. The mechanisms by which the virus produces injury to these cell types include direct infection with cytopathic effects as a consequence of replication. Host mediated damage is also a culprit in pulmonary injury as both innate and adaptive immune cells produce soluble and cell-associated pro-inflammatory mediators. Recently, it has become increasingly clear that in addition to control of excess inflammation and virus elimination, the resolution of infection requires an active repair process, which is necessary to regain normal respiratory function and restore the lungs to homeostasis. The repair response must re-establish the epithelial barrier and regenerate the microarchitecture of the lung. Emerging areas of research have highlighted the importance of innate immune cells, particularly the newly described innate lymphoid cells, as well as alternatively activated macrophages and pulmonary stem cells in the repair process. The mechanisms by which respiratory viruses may impede or alter the repair response will be important areas of research for identifying therapeutic targets aimed at limiting virus and host mediated injury and expediting recovery.
Collapse
Affiliation(s)
- Stacey A Gorski
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
114
|
Kuiken T, Riteau B, Fouchier RAM, Rimmelzwaan GF. Pathogenesis of influenza virus infections: the good, the bad and the ugly. Curr Opin Virol 2012; 2:276-86. [PMID: 22709515 DOI: 10.1016/j.coviro.2012.02.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 12/15/2022]
Abstract
The clinical outcome of different influenza virus infections ranges from subclinical upper respiratory tract disease to fatal lower respiratory tract disease. An important determinant in the pathogenesis of these diseases is the tissue tropism of the influenza virus. Furthermore, virulence is often correlated with virus replication and is regulated by multiple virus genes. Host defense against virus infection consists of both innate and adaptive immune responses. However, excessive or dysbalanced immune response may result in lung tissue damage, reduced respiratory capacity, and severe disease or even death. By interdisciplinary efforts to better understand the intricate interaction between virus, tissue, and immune response, we may be able to find new ways to improve the outcome of influenza virus infections.
Collapse
Affiliation(s)
- T Kuiken
- Erasmus Medical Center, Department of Virology, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
115
|
Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 2012; 12:295-305. [PMID: 22402670 PMCID: PMC3364025 DOI: 10.1038/nri3166] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The respiratory tract is a major portal of entry for viruses into the body. Infection of the respiratory tract can, if severe, induce life-threatening damage to the lungs. Various strategies to control virus replication and to limit immune-mediated inflammation and tissue injury have evolved in the respiratory tract. Multiple innate immune cell types, particularly dendritic cells (DCs), within the pulmonary interstitium and between airway epithelial cells are strategically poised to recognize and sample airway particulates, such as viruses. In response to respiratory virus infection, several distinct DC subsets are stimulated to migrate from the site of infection in the lungs to the draining lymph nodes. Here, these migrant DCs have a crucial role in initiating the antivirus adaptive immune response to the invading viruses. After entering the infected lungs, effector T cells that were generated in the lymph nodes undergo further modifications that are shaped by the inflammatory milieu. Co-stimulatory receptor–ligand interactions between effector T cells and various cell types presenting viral antigens in the infected lungs modulate the host adaptive immune response in situ. Effector T cells that produce pro-inflammatory mediators are also the major producers of regulatory (anti-inflammatory) cytokines, providing a fine-tuning mechanism of self-control by effector T cells responding to viruses in the inflamed tissue. The immune mechanisms that control virus replication and/or excessive inflammation in the virus-infected lungs can also predispose the individual recovering from a virus infection to bacterial superinfection. Therapeutic strategies should consider balancing the need to inhibit virus replication and excessive inflammation with the need to optimize the antibacterial functions of innate immune phagocytes, which are crucial for clearing the bacteria from the lungs.
This article reviews the interplay between innate and adaptive immune cells in the response to viral infection of the lower respiratory tract and describes the fine-tuning mechanisms that control antiviral T cells in the lungs but that can also predispose an individual to subsequent pulmonary bacterial infections. Recent years have seen several advances in our understanding of immunity to virus infection of the lower respiratory tract, including to influenza virus infection. Here, we review the cellular targets of viruses and the features of the host immune response that are unique to the lungs. We describe the interplay between innate and adaptive immune cells in the induction, expression and control of antiviral immunity, and discuss the impact of the infected lung milieu on moulding the response of antiviral effector T cells. Recent findings on the mechanisms that underlie the increased frequency of severe pulmonary bacterial infections following respiratory virus infection are also discussed.
Collapse
Affiliation(s)
- Thomas J Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
116
|
O’Brien KB, Vogel P, Duan S, Govorkova EA, Webby RJ, McCullers JA, Schultz-Cherry S. Impaired wound healing predisposes obese mice to severe influenza virus infection. J Infect Dis 2012; 205:252-61. [PMID: 22147799 PMCID: PMC3244366 DOI: 10.1093/infdis/jir729] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/09/2011] [Indexed: 01/16/2023] Open
Abstract
For the first time, obesity appeared as a risk factor for developing severe 2009 pandemic influenza infection. Given the increase in obesity, there is a need to understand the mechanisms underlying poor outcomes in this population. In these studies, we examined the severity of pandemic influenza virus in obese mice and evaluated antiviral effectiveness. We found that genetically and diet-induced obese mice challenged with either 2009 influenza A virus subtype H1N1 or 1968 subtype H3N2 strains were more likely to have increased mortality and lung pathology associated with impaired wound repair and subsequent pulmonary edema. Antiviral treatment with oseltamivir enhanced survival of obese mice. Overall, these studies demonstrate that impaired wound lung repair in the lungs of obese animals may result in severe influenza virus infection. Alternative approaches to prevention and control of influenza may be needed in the setting of obesity.
Collapse
Affiliation(s)
- Kevin B. O’Brien
- Microbiology Doctoral Training Program, University of Wisconsin, Madison
- Department of Infectious Diseases
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|
117
|
Yatim N, Albert M. Dying to Replicate: The Orchestration of the Viral Life Cycle, Cell Death Pathways, and Immunity. Immunity 2011; 35:478-90. [DOI: 10.1016/j.immuni.2011.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022]
|
118
|
Increased pathogenicity of a reassortant 2009 pandemic H1N1 influenza virus containing an H5N1 hemagglutinin. J Virol 2011; 85:12262-70. [PMID: 21917948 DOI: 10.1128/jvi.05582-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.
Collapse
|
119
|
O'Brien KB, Schultz-Cherry S, Knoll LJ. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection. J Virol 2011; 85:8680-8. [PMID: 21734055 PMCID: PMC3165849 DOI: 10.1128/jvi.05142-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/23/2011] [Indexed: 02/01/2023] Open
Abstract
Outbreaks of influenza A viruses are associated with significant human morbidity worldwide. Given the increasing resistance to the available influenza drugs, new therapies for the treatment of influenza virus infection are needed. An alternative approach is to identify products that enhance a protective immune response. In these studies, we demonstrate that infecting mice with the Th1-inducing parasite Toxoplasma gondii prior to highly pathogenic avian H5N1 influenza virus infection led to decreased lung viral titers and enhanced survival. A noninfectious fraction of T. gondii soluble antigens (STAg) elicited an immune response similar to that elicited by live parasites, and administration of STAg 2 days after H5N1 influenza virus infection enhanced survival, lowered viral titers, and reduced clinical disease. STAg administration protected H5N1 virus-infected mice lacking lymphocytes, suggesting that while the adaptive immune response was not required for enhanced survival, it was necessary for STAg-mediated viral clearance. Mechanistically, we found that administration of STAg led to increased production of gamma interferon (IFN-γ) from natural killer (NK) cells, which were both necessary and sufficient for survival. Further, administration of exogenous IFN-γ alone enhanced survival from H5N1 influenza virus infection, although not to the same level as STAg treatment. These studies demonstrate that a noninfectious T. gondii extract enhances the protective immune response against severe H5N1 influenza virus infections even when a single dose is administered 2 days postinfection.
Collapse
Affiliation(s)
- Kevin B. O'Brien
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
120
|
Roberson EC, Tully JE, Guala AS, Reiss JN, Godburn KE, Pociask DA, Alcorn JF, Riches DWH, Dienz O, Janssen-Heininger YMW, Anathy V. Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol 2011; 46:573-81. [PMID: 21799120 DOI: 10.1165/rcmb.2010-0460oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Glycosylation changes as important factors for the susceptibility to urinary tract infection. Biochem Soc Trans 2011; 39:349-54. [PMID: 21265802 DOI: 10.1042/bst0390349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
FimH is the type 1 fimbrial tip adhesin and invasin of Escherichia coli. Its ligands are the glycans on specific proteins enriched in membrane microdomains. FimH binding shows high-affinity recognition of paucimannosidic glycans, which are shortened high-mannose glycans such as oligomannose-3 and -5. FimH can recognize equally the (single) high-mannose glycan on uroplakin Ia, on the urinary defence protein uromodulin or Tamm-Horsfall glycoprotein and on the intestinal GP2 glycoprotein present in Peyer's patches. E. coli bacteria may attach to epithelial cells via hundreds of fimbriae in a multivalent fashion. This binding is considered to provoke conformational changes in the glycoprotein receptor that translate into signalling in the cytoplasm of the infected epithelial cell. Bladder cell invasion by the uropathogenic bacterium is the prelude to recurrent and persistent urinary tract infections in humans. Patients suffering from diabetes mellitus are more prone to contract urinary tract infections. In a study of women, despite longer treatments with a more potent antibiotic, these patients also have more often recurrences of urinary tract infections compared with women without diabetes. Type 1 fimbriae are the most important virulence factors used not only for adhesion of E. coli in the urinary tract, but also for the colonization by E. coli in patients with Crohn's disease or ulcerative colitis. It appears that the increased prevalence of urinary tract infections in diabetic women is not the result of a difference in the bacteria, but is due to changes in the uroepithelial cells leading to an increased adherence of E. coli expressing type 1 fimbriae. Hypothetically, these changes are in the glycosylation of the infected cells. The present article focuses on possible underlying mechanisms for glycosylation changes in the uroepithelial cell receptors for FimH. Like diabetes, bacterial adhesion induces apoptosis that may bring the endoplasmic reticulum membrane with immature mannosylated glycoproteins to the surface. Indicatively, clathrin-mediated vesicle trafficking of glucose transporters is disturbed in diabetics, which would interfere further with the biosynthesis and localization of complex N-linked glycans.
Collapse
|
122
|
Kim TS, Sun J, Braciale TJ. T cell responses during influenza infection: getting and keeping control. Trends Immunol 2011; 32:225-31. [PMID: 21435950 DOI: 10.1016/j.it.2011.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Abstract
The 2009 influenza pandemic highlighted the threat that type A influenza poses to human health. Thus, there is an urgency to understand the pathobiology of influenza infection and the contribution of the host immune response to virus elimination and the development of lung injury. This review focuses on the T cell arm of the adaptive host immune response to influenza. We assess recent developments in the understanding of how primary influenza virus-specific T cell responses are induced by antigen-presenting cells, the interaction of activated effector T cells with antigen-bearing cells in the infected lungs. Also examined is the contribution of influenza-specific effector T cells to the development and control of lung injury and inflammation during infection.
Collapse
Affiliation(s)
- Taeg S Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|