101
|
Marathe SA, Balakrishnan A, Negi VD, Sakorey D, Chandra N, Chakravortty D. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding. J Bacteriol 2016; 198:1798-1811. [PMID: 27091154 PMCID: PMC4907121 DOI: 10.1128/jb.00092-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an "Achilles heel," revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important appendages of Salmonella Curcumin is an important component of turmeric, which is a major spice used in Asian cooking. The loss of flagella can, in turn, change the pathogenesis of bacteria, making them more robust and fit in the host.
Collapse
Affiliation(s)
- Sandhya Amol Marathe
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vidya Devi Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Deepika Sakorey
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
102
|
Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol 2016; 100:943-950. [PMID: 27365534 DOI: 10.1189/jlb.3mr0316-106r] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Inflammation can directly and indirectly modulate the bacterial composition of the microbiome. Although studies of inflammation primarily focus on its function to negatively select against potential pathogens, some bacterial species have the ability to exploit inflammatory byproducts for their benefit. Inflammatory cells release reactive nitrogen species as antimicrobial effectors against infection, but some facultative anaerobes can also utilize the increase in extracellular nitrate in their environment for anaerobic respiration and growth. This phenomenon has been studied in the gastrointestinal tract, where blooms of facultative anaerobic Gammaproteobacteria, primarily Escherichia coli, often occur during colonic inflammation. In cystic fibrosis, Pseudomonas aeruginosa, another Gammaproteobacteria facultative anaerobe, can reduce nitrogen for anaerobic respiration and it blooms in the airways of the chronically inflamed cystic fibrosis lung. This review focuses on the evidence that inflammation can provide terminal electron acceptors for anaerobic respiration and can support blooms of facultative anaerobes, such as E. coli and P. aeruginosa in distinct, but similar, environments of the inflamed gastrointestinal and respiratory tracts.
Collapse
Affiliation(s)
- Brittan S Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
103
|
Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infect Immun 2016; 84:2131-2140. [PMID: 27185789 DOI: 10.1128/iai.00250-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.
Collapse
|
104
|
Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature 2016; 534:697-9. [PMID: 27309805 PMCID: PMC4939260 DOI: 10.1038/nature18597] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/24/2016] [Indexed: 01/08/2023]
Abstract
Changes in the gut microbiota may underpin many human diseases, but the mechanisms that are responsible for altering microbial communities remain poorly understood. Antibiotic usage elevates the risk of contracting gastroenteritis caused by Salmonella enterica serovars, increases the duration for which patients shed the pathogen in their faeces, and may on occasion produce a bacteriologic and symptomatic relapse. These antibiotic-induced changes in the gut microbiota can be studied in mice, in which the disruption of a balanced microbial community by treatment with the antibiotic streptomycin leads to an expansion of S. enterica serovars in the large bowel. However, the mechanisms by which streptomycin treatment drives an expansion of S. enterica serovars are not fully resolved. Here we show that host-mediated oxidation of galactose and glucose promotes post-antibiotic expansion of S. enterica serovar Typhimurium (S. Typhimurium). By elevating expression of the gene encoding inducible nitric oxide synthase (iNOS) in the caecal mucosa, streptomycin treatment increased post-antibiotic availability of the oxidation products galactarate and glucarate in the murine caecum. S. Typhimurium used galactarate and glucarate within the gut lumen of streptomycin pre-treated mice, and genetic ablation of the respective catabolic pathways reduced S. Typhimurium competitiveness. Our results identify host-mediated oxidation of carbohydrates in the gut as a mechanism for post-antibiotic pathogen expansion.
Collapse
|
105
|
Silva-Valenzuela CA, Desai PT, Molina-Quiroz RC, Pezoa D, Zhang Y, Porwollik S, Zhao M, Hoffman RM, Contreras I, Santiviago CA, McClelland M. Solid tumors provide niche-specific conditions that lead to preferential growth of Salmonella. Oncotarget 2016; 7:35169-80. [PMID: 27145267 PMCID: PMC5085218 DOI: 10.18632/oncotarget.9071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/10/2016] [Indexed: 12/15/2022] Open
Abstract
Therapeutic attenuated strains of Salmonella Typhimurium target and eradicate tumors in mouse models. However, the mechanism of S. Typhimurium for tumor targeting is still poorly understood. We performed a high-throughput screening of single-gene deletion mutants of S. Typhimurium in an orthotopic, syngeneic murine mammary model of breast cancer. The mutants under selection in this system were classified into functional categories to identify bacterial processes involved in Salmonella accumulation within tumors. Niche-specific genes involved in preferential tumor colonization were identified and exemplars were confirmed by competitive infection assays. Our results show that the chemotaxis gene cheY and the motility genes motAB confer an advantage for colonization of Salmonella within orthotopic syngeneic breast tumors. In addition, eutC, a gene belonging to the ethanolamine metabolic pathway, also confers an advantage for Salmonella within tumors, perhaps by exploiting either ethanolamine or an alternative nutrient in the inflamed tumor environment.
Collapse
Affiliation(s)
- Cecilia A. Silva-Valenzuela
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Current address: Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Prerak T. Desai
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Roberto C. Molina-Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Current address: Center for Adaptation Genetics and Drug Resistance, Tufts University, Boston, MA, USA
| | - David Pezoa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Ming Zhao
- AntiCancer, Inc., San Diego, CA, USA
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| |
Collapse
|
106
|
Passalacqua KD, Charbonneau ME, O'Riordan MXD. Bacterial Metabolism Shapes the Host-Pathogen Interface. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0027-2015. [PMID: 27337445 PMCID: PMC4922512 DOI: 10.1128/microbiolspec.vmbf-0027-2015+10.1128/microbiolspec.vmbf-0027-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Bacterial pathogens have evolved to exploit humans as a rich source of nutrients to support survival and replication. The pathways of bacterial metabolism that permit successful colonization are surprisingly varied and highlight remarkable metabolic flexibility. The constraints and immune pressures of distinct niches within the human body set the stage for understanding the mechanisms by which bacteria acquire critical nutrients. In this article we discuss how different bacterial pathogens carry out carbon and energy metabolism in the host and how they obtain or use key nutrients for replication and immune evasion.
Collapse
Affiliation(s)
- Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marie-Eve Charbonneau
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
107
|
Passalacqua KD, Charbonneau ME, O'Riordan MXD. Bacterial Metabolism Shapes the Host-Pathogen Interface. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0027-2015. [PMID: 27337445 PMCID: PMC4922512 DOI: 10.1128/microbiolspec.vmbf-0027-2015 10.1128/microbiolspec.vmbf-0027-2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 01/23/2024] Open
Abstract
Bacterial pathogens have evolved to exploit humans as a rich source of nutrients to support survival and replication. The pathways of bacterial metabolism that permit successful colonization are surprisingly varied and highlight remarkable metabolic flexibility. The constraints and immune pressures of distinct niches within the human body set the stage for understanding the mechanisms by which bacteria acquire critical nutrients. In this article we discuss how different bacterial pathogens carry out carbon and energy metabolism in the host and how they obtain or use key nutrients for replication and immune evasion.
Collapse
Affiliation(s)
- Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marie-Eve Charbonneau
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
108
|
Abstract
Almost 20 years ago, urea was described as a chemotaxis attractant for Helicobacter pylori. In this issue of Cell Host & Microbe, Huang et al. (2015) report that H. pylori employs its urease enzyme to destroy urea to bring the concentration into a range that provokes an attractant response.
Collapse
Affiliation(s)
- Daniela Keilberg
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
109
|
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr 2016; 3. [PMID: 26185088 DOI: 10.1128/microbiolspec.mbp-0008-2014] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.
Collapse
|
110
|
Abstract
The field of bacterial pathogenesis has advanced dramatically in the last decade. High throughput molecular technologies have empowered scientists as never before. However, there remain some limitations, misconceptions and ambiguities in the field that may bedevil even the experienced investigator. Here, I consider some of the unanswered questions that are not readily tractable to even the most powerful technology.
Collapse
|
111
|
Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM, Lebrilla CB, Winter SE, Bäumler AJ. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 2016; 19:443-54. [PMID: 27078066 PMCID: PMC4832419 DOI: 10.1016/j.chom.2016.03.004] [Citation(s) in RCA: 603] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/17/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Abstract
The mammalian intestine is host to a microbial community that prevents pathogen expansion through unknown mechanisms, while antibiotic treatment can increase susceptibility to enteric pathogens. Here we show that streptomycin treatment depleted commensal, butyrate-producing Clostridia from the mouse intestinal lumen, leading to decreased butyrate levels, increased epithelial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium. Epithelial hypoxia and Salmonella restriction could be restored by tributyrin treatment. Clostridia depletion and aerobic Salmonella expansion were also observed in the absence of streptomycin treatment in genetically resistant mice but proceeded with slower kinetics and required the presence of functional Salmonella type III secretion systems. The Salmonella cytochrome bd-II oxidase synergized with nitrate reductases to drive luminal expansion, and both were required for fecal-oral transmission. We conclude that Salmonella virulence factors and antibiotic treatment promote pathogen expansion through the same mechanism: depletion of butyrate-producing Clostridia to elevate epithelial oxygenation, allowing aerobic Salmonella growth.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lillian F Zhang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Gege Xu
- Department of Chemistry, College of Letters and Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Eric M Velazquez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, College of Letters and Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
112
|
The role of motility and chemotaxis in the bacterial colonization of protected surfaces. Sci Rep 2016; 6:19616. [PMID: 26792493 PMCID: PMC4726332 DOI: 10.1038/srep19616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023] Open
Abstract
Internal epithelial surfaces in humans are both oxygenated and physically protected by a few hundred microns thick hydrogel mucosal layer, conditions that might support bacterial aerotaxis. However, the potential role of aerotaxis in crossing such a thin hydrogel layer is not clear. Here, we used a new setup to study the potential role of motility and chemotaxis in the bacterial colonization of surfaces covered by a thin hydrogel layer and subjected to a vertical oxygen gradient. Using the bacterium Escherichia coli, we show that both non-motile and motile-but-non-chemotactic bacteria could barely reach the surface. However, an acquired mutation in the non-chemotactic bacteria that altered their inherent swimming behavior led to a critical enhancement of surface colonization. Most chemotactic strains accumulated within the bulk of the hydrogel layer, except for the MG1655 strain, which showed a unique tendency to accumulate directly at the oxygenated surface and thus exhibited distinctly enhanced colonization. Even after a long period of bacterial growth, non-motile bacteria could not colonize the hydrogel. Thus, switching motility, which can be spontaneously acquired or altered in vivo, is critical for the colonization of such protected surfaces, whereas aerotaxis capacity clearly expedites surface colonization, and can lead to diverse colonization patterns.
Collapse
|
113
|
Schwarz-Linek J, Arlt J, Jepson A, Dawson A, Vissers T, Miroli D, Pilizota T, Martinez VA, Poon WC. Escherichia coli as a model active colloid: A practical introduction. Colloids Surf B Biointerfaces 2016; 137:2-16. [DOI: 10.1016/j.colsurfb.2015.07.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 10/23/2022]
|
114
|
Abstract
Microbial communities are spatially organized in both the environment and the human body. Although patterns exhibited by these communities are described by microbial biogeography, this discipline has previously only considered large-scale, global patterns. By contrast, the fine-scale positioning of a pathogen within an infection site can greatly alter its virulence potential. In this Review, we highlight the importance of considering spatial positioning in the study of polymicrobial infections and discuss targeting biogeography as a therapeutic strategy.
Collapse
|
115
|
Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection. Sci Rep 2015; 5:14603. [PMID: 26434367 PMCID: PMC4592952 DOI: 10.1038/srep14603] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/30/2015] [Indexed: 02/05/2023] Open
Abstract
Childhood malaria is a risk factor for disseminated infections with non-typhoidal Salmonella (NTS) in sub-Saharan Africa. While hemolytic anemia and an altered cytokine environment have been implicated in increased susceptibility to NTS, it is not known whether malaria affects resistance to intestinal colonization with NTS. To address this question, we utilized a murine model of co-infection. Infection of mice with Plasmodium yoelii elicited infiltration of inflammatory macrophages and T cells into the intestinal mucosa and increased expression of inflammatory cytokines. These mucosal responses were also observed in germ-free mice, showing that they are independent of the resident microbiota. Remarkably, P. yoelii infection reduced colonization resistance of mice against S. enterica serotype Typhimurium. Further, 16S rRNA sequence analysis of the intestinal microbiota revealed marked changes in the community structure. Shifts in the microbiota increased susceptibility to intestinal colonization by S. Typhimurium, as demonstrated by microbiota reconstitution of germ-free mice. These results show that P. yoelii infection, via alterations to the microbial community in the intestine, decreases resistance to intestinal colonization with NTS. Further they raise the possibility that decreased colonization resistance may synergize with effects of malaria on systemic immunity to increase susceptibility to disseminated NTS infections.
Collapse
|
116
|
Vázquez-Torres A, Bäumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol 2015; 29:1-8. [PMID: 26426528 DOI: 10.1016/j.mib.2015.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
Abstract
The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts.
Collapse
Affiliation(s)
- Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States.
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
117
|
Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 2015; 17:1561-9. [PMID: 26294173 DOI: 10.1111/cmi.12501] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022]
Abstract
A single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert. In addition, the intestinal mucosa is challenged by a variety of enteropathogenic microorganisms. In both circumstances, the epithelium actively contributes to maintaining host-microbial homeostasis and antimicrobial host defence. It deploys a variety of mechanisms to restrict the presence of commensal bacteria to the intestinal lumen and to prevent translocation of commensal and pathogenic microorganisms to the underlying tissue. Enteropathogenic microorganisms in turn have learnt to evade the host's immune system and circumvent the antimicrobial host response. In the present article, we review recent advances that illustrate the intense and intimate host-microbial interaction at the epithelial level and improve our understanding of the mechanisms that maintain the integrity of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias W Hornef
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Aline Dupont
- Institute for Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
118
|
Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 2015; 16:770-7. [PMID: 25498344 DOI: 10.1016/j.chom.2014.11.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/29/2022]
Abstract
Clostridium difficile is a leading cause of antibiotic-associated diarrhea. The mechanisms underlying C. difficile expansion after microbiota disturbance are just emerging. We assessed the gene expression profile of C. difficile within the intestine of gnotobiotic mice to identify genes regulated in response to either dietary or microbiota compositional changes. In the presence of the gut symbiont Bacteroides thetaiotaomicron, C. difficile induces a pathway that metabolizes the microbiota fermentation end-product succinate to butyrate. The low concentration of succinate present in the microbiota of conventional mice is transiently elevated upon antibiotic treatment or chemically induced intestinal motility disturbance, and C. difficile exploits this succinate spike to expand in the perturbed intestine. A C. difficile mutant compromised in succinate utilization is at a competitive disadvantage during these perturbations. Understanding the metabolic mechanisms involved in microbiota-C. difficile interactions may help to identify approaches for the treatment and prevention of C. difficile-associated diseases.
Collapse
Affiliation(s)
- Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine J Wu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, University of California, Davis, Davis, CA 95616, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
119
|
Elfenbein JR, Knodler LA, Nakayasu ES, Ansong C, Brewer HM, Bogomolnaya L, Adams LG, McClelland M, Adkins JN, Andrews-Polymenis HL. Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens. PLoS Genet 2015; 11:e1005472. [PMID: 26367458 PMCID: PMC4569332 DOI: 10.1371/journal.pgen.1005472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.
Collapse
Affiliation(s)
- Johanna R. Elfenbein
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Leigh A. Knodler
- Paul G. Allen School of Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Ernesto S. Nakayasu
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Charles Ansong
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Heather M. Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Irvine, Irvine, California, United States of America
| | - Joshua N. Adkins
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
120
|
Huang JY, Sweeney EG, Sigal M, Zhang HC, Remington SJ, Cantrell MA, Kuo CJ, Guillemin K, Amieva MR. Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium. Cell Host Microbe 2015; 18:147-56. [PMID: 26269952 PMCID: PMC4593702 DOI: 10.1016/j.chom.2015.07.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 01/10/2023]
Abstract
The gastric pathogen Helicobacter pylori interacts intimately with the gastric mucosa to avoid the microbicidal acid in the stomach lumen. The cues H. pylori senses to locate and colonize the gastric epithelium have not been well defined. We show that metabolites emanating from human gastric organoids rapidly attract H. pylori. This response is largely controlled by the bacterial chemoreceptor TlpB, and the main attractant emanating from epithelia is urea. Our previous structural analyses show that TlpB binds urea with high affinity. Here we demonstrate that this tight binding controls highly sensitive responses, allowing detection of urea concentrations as low as 50 nM. Attraction to urea requires that H. pylori urease simultaneously destroys the signal. We propose that H. pylori has evolved a sensitive urea chemodetection and destruction system that allows the bacterium to dynamically and locally modify the host environment to locate the epithelium.
Collapse
Affiliation(s)
- Julie Y Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Michael Sigal
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hai C Zhang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | - Michael A Cantrell
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
121
|
Ghosal A, Jellbauer S, Kapadia R, Raffatellu M, Said HM. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms. Am J Physiol Gastrointest Liver Physiol 2015; 309:G123-31. [PMID: 25999427 PMCID: PMC4504957 DOI: 10.1152/ajpgi.00112.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/31/2023]
Abstract
Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.
Collapse
Affiliation(s)
- Abhisek Ghosal
- 1Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Stefan Jellbauer
- 3Department of Microbiology and Molecular Genetics, University of California, Irvine, California; and ,4Institute for Immunology, University of California, Irvine, California
| | - Rubina Kapadia
- 1Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Manuela Raffatellu
- 3Department of Microbiology and Molecular Genetics, University of California, Irvine, California; and ,4Institute for Immunology, University of California, Irvine, California
| | - Hamid M. Said
- 1Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| |
Collapse
|
122
|
ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Infect Immun 2015; 83:3545-54. [PMID: 26099584 DOI: 10.1128/iai.00312-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC.
Collapse
|
123
|
The Periplasmic Nitrate Reductase NapABC Supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis. Infect Immun 2015; 83:3470-8. [PMID: 26099579 DOI: 10.1128/iai.00351-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/12/2015] [Indexed: 02/03/2023] Open
Abstract
The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from acute inflammation in part by using host-derived nitrate to respire anaerobically and compete successfully with the commensal microbes during growth in the intestinal lumen. The S. Typhimurium genome contains three nitrate reductases, encoded by the narGHI, narZYV, and napABC genes. Work on homologous genes present in Escherichia coli suggests that nitrate reductase A, encoded by the narGHI genes, is the main enzyme promoting growth on nitrate as an electron acceptor in anaerobic environments. Using a mouse colitis model, we found, surprisingly, that S. Typhimurium strains with defects in either nitrate reductase A (narG mutant) or the regulator inducing its transcription in the presence of high concentrations of nitrate (narL mutant) exhibited growth comparable to that of wild-type S. Typhimurium. In contrast, a strain lacking a functional periplasmic nitrate reductase (napA mutant) exhibited a marked growth defect in the lumen of the colon. In E. coli, the napABC genes are transcribed maximally under anaerobic growth conditions in the presence of low nitrate concentrations. Inactivation of narP, encoding a response regulator that activates napABC transcription in response to low nitrate concentrations, significantly reduced the growth of S. Typhimurium in the gut lumen. Cecal nitrate measurements suggested that the murine cecum is a nitrate-limited environment. Collectively, our results suggest that S. Typhimurium uses the periplasmic nitrate reductase to support its growth on the low nitrate concentrations encountered in the gut, a strategy that may be shared with other enteric pathogens.
Collapse
|
124
|
Rivera-Chávez F, Bäumler AJ. The Pyromaniac Inside You: Salmonella Metabolism in the Host Gut. Annu Rev Microbiol 2015; 69:31-48. [PMID: 26002180 DOI: 10.1146/annurev-micro-091014-104108] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A metabolically diverse microbial community occupies all available nutrient-niches in the lumen of the mammalian intestine, making it difficult for pathogens to establish themselves in this highly competitive environment. Salmonella serovars sidestep the competition by using their virulence factors to coerce the host into creating a novel nutrient-niche. Inflammation-derived nutrients available in this new niche support a bloom of Salmonella serovars, thereby ensuring transmission of the pathogen to the next susceptible host by the fecal-oral route. Here we review the anaerobic food chain that characterizes resident gut-associated microbial communities along with the winning metabolic strategy Salmonella serovars use to edge out competing microbes in the inflamed intestine.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616;
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616;
| |
Collapse
|
125
|
Abstract
A host's microbiota may increase, diminish, or have no effect at all on cancer susceptibility. Assigning causal roles in cancer to specific microbes and microbiotas, unraveling host-microbiota interactions with environmental factors in carcinogenesis, and exploiting such knowledge for cancer diagnosis and treatment are areas of intensive interest. This Review considers how microbes and the microbiota may amplify or mitigate carcinogenesis, responsiveness to cancer therapeutics, and cancer-associated complications.
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
126
|
Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M. Exploiting host immunity: the Salmonella paradigm. Trends Immunol 2015; 36:112-20. [PMID: 25582038 DOI: 10.1016/j.it.2014.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA.
| |
Collapse
|
127
|
Marchelletta RR, Gareau MG, Okamoto S, Guiney DG, Barrett KE, Fierer J. Salmonella-induced Diarrhea Occurs in the Absence of IL-8 Receptor (CXCR2)-Dependent Neutrophilic Inflammation. J Infect Dis 2014; 212:128-36. [PMID: 25538271 DOI: 10.1093/infdis/jiu829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/11/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastroenteritis is the most common manifestation of nontyphoidal Salmonella enterica infections, but little is known about the pathogenesis of diarrhea in this infection METHODS To determine whether polymorphonuclear neutrophils (PMNs) are required for diarrhea for Salmonella colitis, we infected kanamycin-pretreated interleukin 8R (IL-8R) mutant mice and controls, both with nonmutant Slc11a1 (Nramp1, ItyR). We compared the 2 mouse strains for increases in fecal water content (diarrhea) 3 days after infection, changes in expression of ion transporters in colonic epithelial cells, proliferation of epithelial cells, and severity of infection as measured by colony-forming units (CFUs). RESULTS The IL-8R knockout mice had fewer PMNs in the colon but the other variables we measured were unaffected except for an increase in CFUs in the colon. The pathologic changes in the cecum were similar in both groups except for the lack of PMNs in the IL-8R knockout mice. There was minimal damage to the colon more distally. CONCLUSIONS In the early stage of Salmonella colitis, PMNs are not required for diarrhea or for the decrease in expression of colonic epithelial cell apical ion transporters. They contribute to defense against infection in the cecum but not extracolonically at this stage of Salmonella colitis.
Collapse
Affiliation(s)
| | | | - Sharon Okamoto
- Division of Infectious Diseases, University of California, San Diego, School of Medicine, La Jolla
| | - Donald G Guiney
- Division of Infectious Diseases, University of California, San Diego, School of Medicine, La Jolla
| | | | - Joshua Fierer
- Division of Infectious Diseases, University of California, San Diego, School of Medicine, La Jolla Division of VA San Diego Healthcare System
| |
Collapse
|
128
|
Leslie JL, Young VB. The rest of the story: the microbiome and gastrointestinal infections. Curr Opin Microbiol 2014; 23:121-5. [PMID: 25461582 DOI: 10.1016/j.mib.2014.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Bacterial infectious diseases are studied primarily as a host-pathogen dyad. However it is increasingly apparent that the gut microbial community is an important participant in these interactions. The gut microbiota influences bacterial infections in a number of ways, including via bacterial metabolism, stimulation of host immunity and direct bacterial antagonism. This review focuses on recent findings highlighting the interplay between the gastrointestinal microbiota, its host and bacterial pathogens; and emphasizes how these interactions ultimately impact our understanding of infectious diseases.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
129
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
130
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
131
|
The Dynamic Interactions between Salmonella and the Microbiota, within the Challenging Niche of the Gastrointestinal Tract. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:846049. [PMID: 27437481 PMCID: PMC4897363 DOI: 10.1155/2014/846049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022]
Abstract
Understanding how Salmonella species establish successful infections remains a foremost research priority. This gastrointestinal pathogen not only faces the hostile defenses of the host's immune system, but also faces fierce competition from the large and diverse community of microbiota for space and nutrients. Salmonella have solved these challenges ingeniously. To jump-start growth, Salmonella steal hydrogen produced by the gastrointestinal microbiota. Type 3 effector proteins are subsequently secreted by Salmonella to trigger potent inflammatory responses, which generate the alternative terminal electron acceptors tetrathionate and nitrate. Salmonella exclusively utilize these electron acceptors for anaerobic respiration, permitting metabolic access to abundant substrates such as ethanolamine to power growth blooms. Chemotaxis and flagella-mediated motility enable the identification of nutritionally beneficial niches. The resulting growth blooms also promote horizontal gene transfer amongst the resident microbes. Within the gastrointestinal tract there are opportunities for chemical signaling between host cells, the microbiota, and Salmonella. Host produced catecholamines and bacterial autoinducers form components of this chemical dialogue leading to dynamic interactions. Thus, Salmonella have developed remarkable strategies to initially shield against host defenses and to transiently compete against the intestinal microbiota leading to successful infections. However, the immunocompetent host is subsequently able to reestablish control and clear the infection.
Collapse
|
132
|
Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, Deeks SG, Hunt PW, Lynch SV, McCune JM. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 2014; 5:193ra91. [PMID: 23843452 DOI: 10.1126/scitranslmed.3006438] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Progressive HIV infection is characterized by dysregulation of the intestinal immune barrier, translocation of immunostimulatory microbial products, and chronic systemic inflammation that is thought to drive progression of disease to AIDS. Elements of this pathologic process persist despite viral suppression during highly active antiretroviral therapy (HAART), and drivers of these phenomena remain poorly understood. Disrupted intestinal immunity can precipitate dysbiosis that induces chronic inflammation in the mucosa and periphery of mice. However, putative microbial drivers of HIV-associated immunopathology versus recovery have not been identified in humans. Using high-resolution bacterial community profiling, we identified a dysbiotic mucosal-adherent community enriched in Proteobacteria and depleted of Bacteroidia members that was associated with markers of mucosal immune disruption, T cell activation, and chronic inflammation in HIV-infected subjects. Furthermore, this dysbiosis was evident among HIV-infected subjects undergoing HAART, and the extent of dysbiosis correlated with activity of the kynurenine pathway of tryptophan catabolism and plasma concentrations of the inflammatory cytokine interleukin-6 (IL-6), two established markers of disease progression. Gut-resident bacteria with capacity to catabolize tryptophan through the kynurenine pathway were found to be enriched in HIV-infected subjects, strongly correlated with kynurenine levels in HIV-infected subjects, and capable of kynurenine production in vitro. These observations demonstrate a link between mucosal-adherent colonic bacteria and immunopathogenesis during progressive HIV infection that is apparent even in the setting of viral suppression during HAART. This link suggests that gut-resident microbial populations may influence intestinal homeostasis during HIV disease.
Collapse
Affiliation(s)
- Ivan Vujkovic-Cvijin
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco UCSF, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Faber F, Bäumler AJ. The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol Lett 2014; 162:48-53. [PMID: 24803011 DOI: 10.1016/j.imlet.2014.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/23/2014] [Indexed: 12/18/2022]
Abstract
The intestinal epithelium is a single cell barrier separating a sterile mucosal tissue from a large microbial community dominated by obligate anaerobic bacteria, which inhabit the gut lumen. To maintain mucosal integrity, any breach in the epithelial barrier needs to be met with an inflammatory host response designed to repel microbial intruders from the tissue, protect the mucosal surface and repair injuries to the epithelium. In addition, inflammation induces mechanisms of nutritional immunity, which limit the availability of metals in the intestinal lumen, thereby imposing new selective forces on microbial growth. However, the inflammatory host response also has important side effects. A by-product of producing reactive oxygen and nitrogen species aimed at eradicating microbial intruders is the luminal generation of exogenous electron acceptors. The presence of these electron acceptors creates a new metabolic niche that is filled by facultative anaerobic bacteria. Here we review the changes in microbial nutrient utilization that accompany intestinal inflammation and the consequent changes in the composition of gut-associated microbial communities.
Collapse
Affiliation(s)
- Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
134
|
Nuccio SP, Bäumler AJ. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 2014; 5:e00929-14. [PMID: 24643865 PMCID: PMC3967523 DOI: 10.1128/mbio.00929-14] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022] Open
Abstract
The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | | |
Collapse
|
135
|
Mouslim C, Hughes KT. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog 2014; 10:e1003987. [PMID: 24603858 PMCID: PMC3946378 DOI: 10.1371/journal.ppat.1003987] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022] Open
Abstract
The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.
Collapse
Affiliation(s)
- Chakib Mouslim
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
136
|
Yue M, Schifferli DM. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence. Front Microbiol 2014; 4:419. [PMID: 24454310 PMCID: PMC3882659 DOI: 10.3389/fmicb.2013.00419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories.
Collapse
Affiliation(s)
- Min Yue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
137
|
Inflammation fuels colicin Ib-dependent competition of Salmonella serovar Typhimurium and E. coli in enterobacterial blooms. PLoS Pathog 2014; 10:e1003844. [PMID: 24391500 PMCID: PMC3879352 DOI: 10.1371/journal.ppat.1003844] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/06/2013] [Indexed: 01/09/2023] Open
Abstract
The host's immune system plays a key role in modulating growth of pathogens and the intestinal microbiota in the gut. In particular, inflammatory bowel disorders and pathogen infections induce shifts of the resident commensal microbiota which can result in overgrowth of Enterobacteriaceae (“inflammation-inflicted blooms”). Here, we investigated competition of the human pathogenic Salmonella enterica serovar Typhimurium strain SL1344 (S. Tm) and commensal E. coli in inflammation-inflicted blooms. S. Tm produces colicin Ib (ColIb), which is a narrow-spectrum protein toxin active against related Enterobacteriaceae. Production of ColIb conferred a competitive advantage to S. Tm over sensitive E. coli strains in the inflamed gut. In contrast, an avirulent S. Tm mutant strain defective in triggering gut inflammation did not benefit from ColIb. Expression of ColIb (cib) is regulated by iron limitation and the SOS response. CirA, the cognate outer membrane receptor of ColIb on colicin-sensitive E. coli, is induced upon iron limitation. We demonstrate that growth in inflammation-induced blooms favours expression of both S. Tm ColIb and the receptor CirA, thereby fuelling ColIb dependent competition of S. Tm and commensal E. coli in the gut. In conclusion, this study uncovers a so-far unappreciated role of inflammation-inflicted blooms as an environment favouring ColIb-dependent competition of pathogenic and commensal representatives of the Enterobacteriaceae family. Colicins are bacterial protein toxins which show potent activity against sensitive strains in vitro. Ecological models suggest that colicins play a major role in modulating dynamics of bacterial populations in the gut. However, previous studies could not readily confirm these predictions by respective in vivo experiments. In animal models, colicin-producing strains only show a minor or even absent fitness benefit over sensitive competitors. Here, we propose that the gut environment plays a crucial role in generating conditions for bacterial competition by colicin Ib (ColIb). Gut inflammation favours overgrowth of Enterobacteriaceae (“inflammation-inflicted Enterobacterial blooms”). We show that a pathogenic Salmonella Typhimurium (S. Tm) strain benefits from ColIb production in competition against commensal E. coli upon growth in inflammation-inflicted blooms. In the absence of gut inflammation, ColIb production did not confer a competitive advantage to S. Tm. In the inflamed gut, the genes for ColIb production in S. Tm and its corresponding ColIb-surface receptor CirA in E. coli were markedly induced, as compared to the non-inflamed gut. Therefore, environmental conditions in inflammation-inflicted blooms favour colicin-dependent competition of Enterobacteriaceae by triggering ColIb production and susceptibility at the same time. Our findings reveal a role of colicins as important bacterial fitness factors in inflammation-induced blooms.
Collapse
|
138
|
Winter SE, Bäumler AJ. Why related bacterial species bloom simultaneously in the gut: principles underlying the 'Like will to like' concept. Cell Microbiol 2013; 16:179-84. [PMID: 24286560 DOI: 10.1111/cmi.12245] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
The large intestine is host to a complex ecological community composed predominantly of obligate anaerobic bacteria belonging to the classes Bacteroidia and Clostridia. This community confers benefits through its metabolic activities and host interactions. However, a microbial imbalance (dysbiosis) characterized by a decreased abundance of Clostridia and a bloom of facultative anaerobic Proteobacteria is commonly observed during inflammation in the large bowel. Here we review recent insights into the principles that favour simultaneous increases in the abundance of closely related species belonging to the Proteobacteria during inflammation, which provides important clues for the rational design of strategies to treat dysbiosis.
Collapse
Affiliation(s)
- Sebastian E Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | | |
Collapse
|
139
|
Kingsley RA, Kay S, Connor T, Barquist L, Sait L, Holt KE, Sivaraman K, Wileman T, Goulding D, Clare S, Hale C, Seshasayee A, Harris S, Thomson NR, Gardner P, Rabsch W, Wigley P, Humphrey T, Parkhill J, Dougan G. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar. mBio 2013; 4:e00565-13. [PMID: 23982073 PMCID: PMC3760250 DOI: 10.1128/mbio.00565-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.
Collapse
Affiliation(s)
- Robert A Kingsley
- The Wellcome Trust Sanger Institute, the Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Dempsey LA. Seeking advantages. Nat Immunol 2013. [DOI: 10.1038/ni.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|