101
|
Mazzei L, Cianci M, Gonzalez Vara A, Ciurli S. The structure of urease inactivated by Ag(i): a new paradigm for enzyme inhibition by heavy metals. Dalton Trans 2018; 47:8240-8247. [DOI: 10.1039/c8dt01190g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular details of the inactivation of urease, a nickel-dependent virulence factor for human pathogens and negatively affecting the efficiency of soil nitrogen fertilization, are elucidated through the crystal structure of the enzyme complex with Ag(i).
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40127 Bologna
- Italy
| | - Michele Cianci
- Department of Agricultural
- Food and Environmental Sciences
- Marche Polytechnic University
- Ancona
- Italy
| | | | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40127 Bologna
- Italy
| |
Collapse
|
102
|
Isolation and characterization of urease-producing bacteria from tropical peat. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
103
|
Lorch JM, Knowles S, Lankton JS, Michell K, Edwards JL, Kapfer JM, Staffen RA, Wild ER, Schmidt KZ, Ballmann AE, Blodgett D, Farrell TM, Glorioso BM, Last LA, Price SJ, Schuler KL, Smith CE, Wellehan JFX, Blehert DS. Snake fungal disease: an emerging threat to wild snakes. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0457. [PMID: 28080983 DOI: 10.1098/rstb.2015.0457] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused by Ophidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Jeffrey M Lorch
- US Geological Survey-National Wildlife Health Center, Madison, WI 53711, USA
| | - Susan Knowles
- US Geological Survey-National Wildlife Health Center, Madison, WI 53711, USA
| | - Julia S Lankton
- US Geological Survey-National Wildlife Health Center, Madison, WI 53711, USA
| | - Kathy Michell
- New York Center for Turtle Rehabilitation and Conservation, Inc., Narrowburg, NY 12764, USA
| | - Jaime L Edwards
- Minnesota Department of Natural Resources-Nongame Wildlife Program, Saint Paul, MN 55155, USA
| | - Joshua M Kapfer
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
| | - Richard A Staffen
- Wisconsin Department of Natural Resources, 101 South Webster Street, Madison, WI 53707, USA
| | - Erik R Wild
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
| | - Katie Z Schmidt
- US Geological Survey-National Wildlife Health Center, Madison, WI 53711, USA
| | - Anne E Ballmann
- US Geological Survey-National Wildlife Health Center, Madison, WI 53711, USA
| | - Doug Blodgett
- Vermont Fish and Wildlife Department, Rutland, VT 05701, USA
| | | | - Brad M Glorioso
- US Geological Survey-Wetland and Aquatic Research Center, Lafayette, LA 70506, USA
| | - Lisa A Last
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Steven J Price
- Department of Forestry, University of Kentucky, Lexington, KY 40546, USA
| | - Krysten L Schuler
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Christopher E Smith
- Minnesota Department of Natural Resources-Nongame Wildlife Program, Saint Paul, MN 55155, USA
| | - James F X Wellehan
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David S Blehert
- US Geological Survey-National Wildlife Health Center, Madison, WI 53711, USA
| |
Collapse
|
104
|
de S Araújo GR, Souza WD, Frases S. The hidden pathogenic potential of environmental fungi. Future Microbiol 2017; 12:1533-1540. [PMID: 29168657 DOI: 10.2217/fmb-2017-0124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal infections are a growing threat to immunocompromised patients, highlighting the importance of monitoring fungal pathogens. Global warming (including climatic oscillations) may select for environmental species that have acquired thermotolerance, a key step toward pathogenesis to humans. Also, important virulence factors have developed in environmental fungi, because they are essential for yeast survival in the environment. Thus, fungi traditionally regarded as nonpathogenic to humans have virulence factors similar to those of their pathogenic relatives. Here, we highlight the emergence of saprophytic environmental fungi - including species of Cryptococcus, Aspergillus, Penicillium, Candida and Scedosporium - as new human pathogens. Emerging pathogens are, in some cases, resistant to the available antifungals, potentiating the threat of novel fungal diseases.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
105
|
Mazzei L, Cianci M, Contaldo U, Musiani F, Ciurli S. Urease Inhibition in the Presence of N-(n-Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics. Biochemistry 2017; 56:5391-5404. [DOI: 10.1021/acs.biochem.7b00750] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Umberto Contaldo
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
106
|
Gerritsen J, Hornung B, Renckens B, van Hijum SA, Martins dos Santos VA, Rijkers GT, Schaap PJ, de Vos WM, Smidt H. Genomic and functional analysis of Romboutsia ilealis CRIB T reveals adaptation to the small intestine. PeerJ 2017; 5:e3698. [PMID: 28924494 PMCID: PMC5598433 DOI: 10.7717/peerj.3698] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/26/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The microbiota in the small intestine relies on their capacity to rapidly import and ferment available carbohydrates to survive in a complex and highly competitive ecosystem. Understanding how these communities function requires elucidating the role of its key players, the interactions among them and with their environment/host. METHODS The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced with multiple technologies (Illumina paired-end, mate-pair and PacBio). The transcriptome was sequenced (Illumina HiSeq) after growth on three different carbohydrate sources, and short chain fatty acids were measured via HPLC. RESULTS We present the complete genome of Romboutsia ilealis CRIBT, a natural inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and eight predicted protein coding sequences, respectively. Analysis of the genome revealed limited capacity to synthesize amino acids and vitamins, whereas multiple and partially redundant pathways for the utilization of different relatively simple carbohydrates are present. Transcriptome analysis allowed identification of the key components in the degradation of glucose, L-fucose and fructo-oligosaccharides. DISCUSSION This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment where carbohydrates, amino acids and vitamins are abundantly available.
Collapse
Affiliation(s)
- Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Bastian Hornung
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Bernadette Renckens
- Nijmegen Centre for Molecular Life Sciences, CMBI, Radboud UMC, Nijmegen, The Netherlands
| | - Sacha A.F.T. van Hijum
- Nijmegen Centre for Molecular Life Sciences, CMBI, Radboud UMC, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Vitor A.P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Ger T. Rijkers
- Laboratory for Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Science, University College Roosevelt, Middelburg, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Departments of Microbiology and Immunology and Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
107
|
Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, Wei J, Zhang Y, Xu G, Liu K. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils. Front Cell Infect Microbiol 2017; 7:349. [PMID: 28824883 PMCID: PMC5543039 DOI: 10.3389/fcimb.2017.00349] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai UniversityXining, China
| | - Runting Yin
- Medical School of Nantong University, Nantong UniversityNantong, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Jun Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| |
Collapse
|
108
|
Abstract
BACKGROUND Helicobacter pylori is well adapted to colonize the epithelial surface of the human gastric mucosa and can cause persistent infections. In order to infect the gastric mucosa, it has to survive in the gastric acidic pH. This organism has well developed mechanisms to neutralize the effects of acidic pH. OBJECTIVE This review article was designed to summarize the various functional and molecular aspects by which the bacterium can combat and survive the gastric acidic pH in order to establish the persistent infections. METHODS We used the keywords (acid acclimation, gastric acidic environment, H. pylori and survival) in combination or alone for pubmed search of recent scientific literatures. One hundred and forty one papers published between 1989 and 2016 were sorted out. The articles published with only abstracts, other than in English language, case reports and reviews were excluded. RESULTS Many literatures describing the role of several factors in acid survival were found. Recently, the role of several other factors has been claimed to participate in acid survival. CONCLUSION In conclusion, this organism has well characterized mechanisms for acid survival.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan,Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, Texas, USA,Corresponding author: Yoshio Yamaoka, MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan, Tel: +81-97-586-5740; Fax: +81-97-586-5749,
| |
Collapse
|
109
|
Nakashige TG, Zygiel EM, Drennan CL, Nolan EM. Nickel Sequestration by the Host-Defense Protein Human Calprotectin. J Am Chem Soc 2017; 139:8828-8836. [PMID: 28573847 PMCID: PMC5754018 DOI: 10.1021/jacs.7b01212] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human innate immune protein calprotectin (CP, S100A8/S100A9 oligomer, calgranulin A/calgranulin B oligomer, MRP-8/MRP-14 oligomer) chelates a number of first-row transition metals, including Mn(II), Fe(II), and Zn(II), and can withhold these essential nutrients from microbes. Here we elucidate the Ni(II) coordination chemistry of human CP. We present a 2.6-Å crystal structure of Ni(II)- and Ca(II)-bound CP, which reveals that CP binds Ni(II) ions at both its transition-metal-binding sites: the His3Asp motif (site 1) and the His6 motif (site 2). Further biochemical studies establish that coordination of Ni(II) at the hexahistidine site is thermodynamically preferred over Zn(II). We also demonstrate that CP can sequester Ni(II) from two human pathogens, Staphylococcus aureus and Klebsiella pneumoniae, that utilize this metal nutrient during infection, and inhibit the activity of the Ni(II)-dependent enzyme urease in bacterial cultures. In total, our findings expand the biological coordination chemistry of Ni(II)-chelating proteins in nature and provide a foundation for evaluating putative roles of CP in Ni(II) homeostasis at the host-microbe interface and beyond.
Collapse
Affiliation(s)
- Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
110
|
Liu JY, Chang MC, Meng JL, Feng CP, Zhao H, Zhang ML. Comparative Proteome Reveals Metabolic Changes during the Fruiting Process in Flammulina velutipes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5091-5100. [PMID: 28570075 DOI: 10.1021/acs.jafc.7b01120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the molecular mechanisms regulating the fruiting process in macro-fungi, especially industrially cultivated mushrooms, has long been a goal in mycological research. To gain insights into the events accompanying the transformation of mycelia into fruit-bodies in Flammulina velutipes, proteins expressed characteristically and abundantly at primordium and fruit-body stages were investigated by using the iTRAQ labeling technique. Among the 171 differentially expressed proteins, a total of 68 displayed up-regulated expression levels that were associated with 84 specific KEGG pathways. Some up-regulated proteins, such as pyruvate carboxylase, aldehyde dehydrogenase, fatty acid synthase, aspartate aminotransferase, 2-cysteine peroxiredoxin, FDS protein, translation elongation factor 1-alpha, mitogen-activated protein kinases (MAPKs), and heat-shock protein 70 that are involved in carbohydrate metabolism, carotenoid formation, the TCA cycle, MAPK signaling pathway, and the biosynthesis of fatty acids and branched-chain amino acids, could serve as potential stage-specific biomarkers to study the fruiting process in F. velutipes. Knowledge of the proteins might provide valuable evidence to better understand the molecular mechanisms of fruit-body initiation and development in basidiomycete fungi. Furthermore, this study also offers valuable evidence for yield improvement and quality control of super golden-needle mushroom in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Jun-Long Meng
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801, China
| | - Hui Zhao
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
| | - Ming-Liang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University , Taigu 030801, China
| |
Collapse
|
111
|
Gerstein AC, Nielsen K. It's not all about us: evolution and maintenance of Cryptococcus virulence requires selection outside the human host. Yeast 2017; 34:143-154. [PMID: 27862271 DOI: 10.1002/yea.3222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
112
|
Habala L, Varényi S, Bilková A, Herich P, Valentová J, Kožíšek J, Devínsky F. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes. Molecules 2016; 21:molecules21121742. [PMID: 27999327 PMCID: PMC6274214 DOI: 10.3390/molecules21121742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022] Open
Abstract
In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans. All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.
Collapse
Affiliation(s)
- Ladislav Habala
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
| | - Samuel Varényi
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
| | - Andrea Bilková
- Department of Cellular and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
| | - Peter Herich
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | - Jindra Valentová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
| | - Jozef Kožíšek
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | - Ferdinand Devínsky
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-832 32 Bratislava, Slovakia.
| |
Collapse
|
113
|
Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans. Molecules 2016; 21:molecules21121628. [PMID: 27898047 PMCID: PMC6274061 DOI: 10.3390/molecules21121628] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU), following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol) and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2'-dipyridyl disulphide, DPS), suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a "hinge" located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.
Collapse
|
114
|
Mazzei L, Cianci M, Musiani F, Lente G, Palombo M, Ciurli S. Inactivation of urease by catechol: Kinetics and structure. J Inorg Biochem 2016; 166:182-189. [PMID: 27888701 DOI: 10.1016/j.jinorgbio.2016.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Urease is a Ni(II)-containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbamate at a rate 1015 times higher than the uncatalyzed reaction. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Therefore, efficient urease inhibitors are actively sought. In this study, we describe a molecular characterization of the interaction between urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) with catechol, a model polyphenol. In particular, catechol irreversibly inactivates both SPU and JBU with a complex radical-based autocatalytic multistep mechanism. The crystal structure of the SPU-catechol complex, determined at 1.50Å resolution, reveals the structural details of the enzyme inhibition.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Michele Cianci
- European Molecular Biology Laboratory, DESY, Hamburg, Germany
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gábor Lente
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Hungary
| | - Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Italy.
| |
Collapse
|
115
|
Yong D, Tee KK, Yin WF, Chan KG. Characterization and Comparative Overview of Complete Sequences of the First Plasmids of Pandoraea across Clinical and Non-clinical Strains. Front Microbiol 2016; 7:1606. [PMID: 27790203 PMCID: PMC5064223 DOI: 10.3389/fmicb.2016.01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572T (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570T (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535T (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to the possibility of host interaction involvement. Some plasmids were also void of par genes and intriguingly, repA gene was also not discovered in these plasmids. This further leads to the hypothesis of host-plasmid interaction. Plasmid stabilization/stability protein-encoding genes were observed in some plasmids but were not established for participating in plasmid segregation. Toxin-antitoxin systems MazEF, VapBC, RelBE, YgiT-MqsR, HigBA, and ParDE were identified across the plasmids and their presence would improve plasmid maintenance. Conjugation genes were identified portraying the conjugation ability amongst Pandoraea plasmids. Additionally, we found a shared region amongst some of the plasmids that consists of conjugation genes. The identification of genes involved in replication, segregation, toxin-antitoxin systems and conjugation, would aid the design of drugs to prevent the survival or transmission of plasmids carrying pathogenic properties. Additionally, genes conferring virulence and antibiotic resistance were identified amongst the plasmids. The observed features in the plasmids shed light on the Pandoraea spp. as opportunistic pathogens.
Collapse
Affiliation(s)
- Delicia Yong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
116
|
Edson JA, Kwon YJ. Design, challenge, and promise of stimuli-responsive nanoantibiotics. NANO CONVERGENCE 2016; 3:26. [PMID: 28191436 PMCID: PMC5271158 DOI: 10.1186/s40580-016-0085-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 05/18/2023]
Abstract
Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.Graphical abstractA graphic detailing how the current paradigm of antibiotic discovery can be circumvented by the use of nanoantibiotics.
Collapse
Affiliation(s)
- Julius A. Edson
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
| | - Young Jik Kwon
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
- 132 Sprague Hall, Irvine, CA USA
| |
Collapse
|
117
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
118
|
Briskey D, Tucker PS, Johnson DW, Coombes JS. Microbiota and the nitrogen cycle: Implications in the development and progression of CVD and CKD. Nitric Oxide 2016; 57:64-70. [DOI: 10.1016/j.niox.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
|
119
|
Ricci A, Coppo E, Barbieri R, Debbia EA, Marchese A. The effect of sub-inhibitory concentrations of rifaximin on urease production and on other virulence factors expressed by Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Staphylococcus aureus. J Chemother 2016; 29:67-73. [DOI: 10.1080/1120009x.2016.1195069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annalisa Ricci
- Microbiology Section “C.A. Romanzi”, DISC, University of Genoa, Genoa, Italy
| | - Erika Coppo
- Microbiology Section “C.A. Romanzi”, DISC, University of Genoa, Genoa, Italy
| | - Ramona Barbieri
- Microbiology Section “C.A. Romanzi”, DISC, University of Genoa, Genoa, Italy
| | - Eugenio A. Debbia
- Microbiology Section “C.A. Romanzi”, DISC, University of Genoa, Genoa, Italy
| | - Anna Marchese
- Microbiology Section “C.A. Romanzi”, DISC, University of Genoa, Genoa, Italy
| |
Collapse
|
120
|
Raissy HH, Timmins G, Davies L, Heynekamp T, Harkins M, Sharp ZD, Kelly HW. A Proof of Concept Study to Detect Urease Producing Bacteria in Lungs Using Aerosolized 13C-Urea. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2016; 29:68-73. [PMID: 27458537 DOI: 10.1089/ped.2015.0619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is a "proof of concept" study to determine whether inhalation of 13C-urea can be safely used to detect the presence of urease producing bacteria in the airways of patients with cystic fibrosis (CF) by detecting 13CO2 in breath. This was a prospective, 2-part, open label, single-center, single-arm, single-administration, dose-escalation investigational device exemption trial. First, the safety of 20 and 50 mg inhaled 13C-urea was evaluated in 6 healthy adult participants. Then, 3 adult CF participants colonized with Pseudomonas aeruginosa were enrolled for each dose of inhaled 13C-urea. The safety of inhaled 13C-urea was assessed by spirometry and physical examination. 13C-urea was administered using a jet nebulizer, followed by serial spirometry (10 min and 30 min post inhalation) and collection of exhaled breath at 5, 10, and 15 min post inhalation. There was no clinical significant change in any of the spirometry values compared to baseline in healthy participants and CF patients. Mean of 13CO2/12CO2 delta over baseline (DOB) values in CF participants at 5, 10, and 15 min post inhalation was as follows: 20 mg dose 4‰ (2.2‰-4.9‰), 1‰ (1.0‰-1.4‰), and 1‰ (0.4‰-1.5‰); 50 mg dose: 10‰ (6.2‰-14.5‰), 3‰ (2.1‰-4.3‰), and 1.5‰ (0.6‰-2.3‰). Inhaled 13C-urea for detection of urease producing bacteria was safe, and preliminary data suggest that 13CO2/12CO2 DOB values may be higher in CF patients with P. aeruginosa at 5-10 min after inhalation of 13C-urea. A future direction is to investigate use of inhaled 13C-urea in young children who have difficulty producing sputum for culturing.
Collapse
Affiliation(s)
- Hengameh H Raissy
- Department of Pediatrics, School of Medicine, University of New Mexico , Albuquerque, New Mexico
| | - Graham Timmins
- Department of Pharmaceutical Sciences, Health Sciences Center, College of Pharmacy, University of New Mexico , Albuquerque, New Mexico
| | - Lea Davies
- Department of Pediatrics, School of Medicine, University of New Mexico , Albuquerque, New Mexico
| | - Theresa Heynekamp
- Department of Internal Medicine, Pulmonary and Critical Care, University of New Mexico , Albuquerque, New Mexico
| | - Michelle Harkins
- Department of Pulmonary, Critical Care and Sleep Medicine, University of New Mexico , Albuquerque, New Mexico
| | - Zachary D Sharp
- Department of Earth & Planetary Sciences, University of New Mexico , Albuquerque, New Mexico
| | - H William Kelly
- Department of Pediatrics, School of Medicine, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
121
|
A combined temperature-pH study of urease kinetics. Assigning pKa values to ionizable groups of the active site involved in the catalytic reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
122
|
Mazzei L, Cianci M, Musiani F, Ciurli S. Inactivation of urease by 1,4-benzoquinone: chemistry at the protein surface. Dalton Trans 2016; 45:5455-9. [DOI: 10.1039/c6dt00652c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high activity of urease, a Ni(ii) enzyme, has several adverse effects on human health and agriculture, and its modulation needs the use of inhibitors.
Collapse
Affiliation(s)
- L. Mazzei
- Laboratory of bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- Bologna
- Italy
| | - M. Cianci
- European Molecular Biology Laboratory
- 22607 Hamburg
- Germany
| | - F. Musiani
- Laboratory of bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- Bologna
- Italy
| | - S. Ciurli
- Laboratory of bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
123
|
Carlini CR, Ligabue-Braun R. Ureases as multifunctional toxic proteins: A review. Toxicon 2015; 110:90-109. [PMID: 26690979 DOI: 10.1016/j.toxicon.2015.11.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Ureases are metalloenzymes that hydrolyze urea into ammonia and carbon dioxide. They were the first enzymes to be crystallized and, with them, the notion that enzymes are proteins became accepted. Novel toxic properties of ureases that are independent of their enzyme activity have been discovered in the last three decades. Since our first description of the neurotoxic properties of canatoxin, an isoform of the jack bean urease, which appeared in Toxicon in 1981, about one hundred articles have been published on "new" properties of plant and microbial ureases. Here we review the present knowledge on the non-enzymatic properties of ureases. Plant ureases and microbial ureases are fungitoxic to filamentous fungi and yeasts by a mechanism involving fungal membrane permeabilization. Plant and at least some bacterial ureases have potent insecticidal effects. This entomotoxicity relies partly on an internal peptide released upon proteolysis of ingested urease by insect digestive enzymes. The intact protein and its derived peptide(s) are neurotoxic to insects and affect a number of other physiological functions, such as diuresis, muscle contraction and immunity. In mammal models some ureases are acutely neurotoxic upon injection, at least partially by enzyme-independent effects. For a long time bacterial ureases have been recognized as important virulence factors of diseases by urease-producing microorganisms. Ureases activate exocytosis in different mammalian cells recruiting eicosanoids and Ca(2+)-dependent pathways, even when their ureolytic activity is blocked by an irreversible inhibitor. Ureases are chemotactic factors recognized by neutrophils (and some bacteria), activating them and also platelets into a pro-inflammatory "status". Secretion-induction by ureases may play a role in fungal and bacterial diseases in humans and other animals. The now recognized "moonlighting" properties of these proteins have renewed interest in ureases for their biotechnological potential to improve plant defense against pests and as potential targets to ameliorate diseases due to pathogenic urease-producing microorganisms.
Collapse
Affiliation(s)
- Celia R Carlini
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil
| |
Collapse
|
124
|
Washington MA, Barnhill J, Griffin JM. A Case of Wound Infection with Providencia rettgeri and Coincident Gout in a Patient from Guam. HAWAI'I JOURNAL OF MEDICINE & PUBLIC HEALTH : A JOURNAL OF ASIA PACIFIC MEDICINE & PUBLIC HEALTH 2015; 74:375-377. [PMID: 26568901 PMCID: PMC4642498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Providencia rettgeri (P. rettgeri) is a ubiquitous organism that is infrequently associated with human disease. Here we report the isolation of this organism from a polymicrobial wound infection resulting from ruptured tophi on a 54-year-old male patient from Guam. We describe the identification and confirmation of this organism, and propose metabolic synergy as a possible mechanism of pathogenesis. To our knowledge, this is the first published report of a wound infection colonized by P. rettgeri from Guam, and the first report to speculate upon the role of bacterial synergy in P. rettgeri pathogenesis.
Collapse
|
125
|
Parsa Yeganeh L, Azarbaijani R, Mousavi H, Shahzadeh Fazeli SA, Amoozgar MA, Salekdeh GH. Genome-Wide Analysis of Oceanimonas sp. GK1 Isolated from Gavkhouni Wetland (Iran) Demonstrates Presence of Genes for Virulence and Pathogenicity. CELL JOURNAL 2015; 17:451-60. [PMID: 26464816 PMCID: PMC4601865 DOI: 10.22074/cellj.2015.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The bacterium Oceanimonas sp. (O. sp.) GK1 is a member of the Aeromonadaceae family and its genome represents several virulence genes involved in fish and human pathogenicity. In this original research study we aimed to identify and characterize the putative virulence factors and pathogenicity of this halotolerant marine bacterium using genome wide analysis. MATERIALS AND METHODS The genome data of O. sp. GK1 was obtained from NCBI. Comparative genomic study was done using MetaCyc database. RESULTS Whole genome data analysis of the O. sp. GK1 revealed that the bacterium possesses some important virulence genes (e.g. ZOT, RTX toxin, thermostable hemolysin, lateral flagella and type IV pili) which have been implicated in adhesion and biofilm formation and infection in some other pathogenic bacteria. CONCLUSION This is the first report of the putative pathogenicity of O. sp.GK1. The genome wide analysis of the bacterium demonstrates the presence of virulence genes causing infectious diseases in many warmand cold-blooded animals.
Collapse
Affiliation(s)
- Laleh Parsa Yeganeh
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Reza Azarbaijani
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Hossein Mousavi
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Seyed Abolhassan Shahzadeh Fazeli
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran ; Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Ghasem Hosseini Salekdeh
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran ; Agricultural Biotechnology Research Institute of Iran, Karaj, Iran ; Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
126
|
Genome Sequence of Avirulent Riemerella anatipestifer Strain RA-JLLY. GENOME ANNOUNCEMENTS 2015; 3:3/5/e00895-15. [PMID: 26404587 PMCID: PMC4582563 DOI: 10.1128/genomea.00895-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Riemerella anatipestifer is an important bacterial pathogen associated with epizootic infections in waterfowl and various other birds. Riemerella anatipestifer strain RA-JLLY is an avirulent strain, isolated from the brain of an old duck in Hubei province, China. Here, we report the genome sequence of this species.
Collapse
|
127
|
RNAseq Analysis Highlights Specific Transcriptome Signatures of Yeast and Mycelial Growth Phases in the Dutch Elm Disease Fungus Ophiostoma novo-ulmi. G3-GENES GENOMES GENETICS 2015; 5:2487-95. [PMID: 26384770 PMCID: PMC4632067 DOI: 10.1534/g3.115.021022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fungal dimorphism is a complex trait and our understanding of the ability of fungi to display different growth morphologies is limited to a small number of model species. Here we study a highly aggressive dimorphic fungus, the ascomycete Ophiostoma novo-ulmi, which is a model in plant pathology and the causal agent of Dutch elm disease. The two growth phases that this fungus displays, i.e., a yeast phase and mycelial phase, are thought to be involved in key steps of disease development. We used RNAseq to investigate the genome-wide gene expression profiles that are associated with yeast and mycelial growth phases in vitro. Our results show a clear molecular distinction between yeast and mycelial phase gene expression profiles. Almost 12% of the gene content is differentially expressed between the two phases, which reveals specific functions related to each growth phase. We compared O. novo-ulmi transcriptome profiles with those of two model dimorphic fungi, Candida albicans and Histoplasma capsulatum. Few orthologs showed similar expression regulation between the two growth phases, which suggests that, globally, the genes associated with these two life forms are poorly conserved. This poor conservation underscores the importance of developing specific tools for emerging model species that are distantly related to the classical ones. Taken together, our results provide insights into transcriptome regulation and molecular specificity in O. novo-ulmi and offer a new perspective for understanding fungal dimorphism.
Collapse
|
128
|
Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 2015; 72:2261-87. [PMID: 25700837 PMCID: PMC11113693 DOI: 10.1007/s00018-015-1860-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Xinliu Li
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Michelle D. Leach
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
129
|
Couchman EC, Browne HP, Dunn M, Lawley TD, Songer JG, Hall V, Petrovska L, Vidor C, Awad M, Lyras D, Fairweather NF. Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci. BMC Genomics 2015; 16:392. [PMID: 25981746 PMCID: PMC4434542 DOI: 10.1186/s12864-015-1613-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
Background Clostridium sordellii can cause severe infections in animals and humans, the latter associated with trauma, toxic shock and often-fatal gynaecological infections. Strains can produce two large clostridial cytotoxins (LCCs), TcsL and TcsH, related to those produced by Clostridium difficile, Clostridium novyi and Clostridium perfringens, but the genetic basis of toxin production remains uncharacterised. Results Phylogenetic analysis of the genome sequences of 44 strains isolated from human and animal infections in the UK, US and Australia placed the species into four clades. Although all strains originated from animal or clinical disease, only 5 strains contained LCC genes: 4 strains contain tcsL alone and one strain contains tcsL and tcsH. Four toxin-positive strains were found within one clade. Where present, tcsL and tcsH were localised in a pathogenicity locus, similar to but distinct from that present in C. difficile. In contrast to C. difficile, where the LCCs are chromosomally localised, the C. sordellii tcsL and tcsH genes are localised on plasmids. Our data suggest gain and loss of entire toxigenic plasmids in addition to horizontal transfer of the pathogenicity locus. A high quality, annotated sequence of ATCC9714 reveals many putative virulence factors including neuraminidase, phospholipase C and the cholesterol-dependent cytolysin sordellilysin that are highly conserved between all strains studied. Conclusions Genome analysis of C. sordellii reveals that the LCCs, the major virulence factors, are localised on plasmids. Many strains do not contain the LCC genes; it is probable that in several of these cases the plasmid has been lost upon laboratory subculture. Our data are consistent with LCCs being the primary virulence factors in the majority of infections, but LCC-negative strains may precipitate certain categories of infection. A high quality genome sequence reveals putative virulence factors whose role in virulence can be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1613-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward C Couchman
- Department of Life Sciences, Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
| | | | - Matt Dunn
- Wellcome Trust Sanger Institute, Hinxton, UK.
| | | | - J Glenn Songer
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, USA.
| | - Val Hall
- Anaerobe Reference Laboratory, University Hospital of Wales, Cardiff, UK.
| | | | - Callum Vidor
- Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Milena Awad
- Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Neil F Fairweather
- Department of Life Sciences, Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
130
|
Tristão GB, Assunção LDP, Dos Santos LPA, Borges CL, Silva-Bailão MG, Soares CMDA, Cavallaro G, Bailão AM. Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus. Front Microbiol 2015; 5:761. [PMID: 25620964 PMCID: PMC4288321 DOI: 10.3389/fmicb.2014.00761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/13/2014] [Indexed: 12/18/2022] Open
Abstract
Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.
Collapse
Affiliation(s)
- Gabriel B Tristão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Leandro do Prado Assunção
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Luiz Paulo A Dos Santos
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Clayton L Borges
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle Garcia Silva-Bailão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Célia M de Almeida Soares
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Gabriele Cavallaro
- Magnetic Resonance Center, University of Florence Sesto Fiorentino, Italy
| | - Alexandre M Bailão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| |
Collapse
|
131
|
Smith LM, Dixon EF, May RC. The fungal pathogenCryptococcus neoformansmanipulates macrophage phagosome maturation. Cell Microbiol 2014; 17:702-13. [DOI: 10.1111/cmi.12394] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/23/2014] [Accepted: 11/10/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Leanne M. Smith
- Institute of Microbiology and Infection and School of Biosciences; University of Birmingham; Birmingham UK
| | - Emily F. Dixon
- Institute of Microbiology and Infection and School of Biosciences; University of Birmingham; Birmingham UK
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences; University of Birmingham; Birmingham UK
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre; Queen Elizabeth Hospital Birmingham; Birmingham UK
| |
Collapse
|
132
|
Affiliation(s)
- Diego Mora
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|