101
|
Shibata T, Kimura Y, Mukai A, Mori H, Ito S, Asaka Y, Oe S, Tanaka H, Takahashi T, Uchida K. Transthiocarbamoylation of proteins by thiolated isothiocyanates. J Biol Chem 2011; 286:42150-42161. [PMID: 21998322 DOI: 10.1074/jbc.m111.308049] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isothiocyanates, membrane-permeable electrophiles that form adducts with thiols, have been suggested to have important medical benefits. Here we shed light on isothiocyanate-thiol conjugates and studied their electrophilic potential transferring an isothiocyanate moiety to cellular proteins. When we examined the effect of sulfhydryl molecules on cellular response induced by 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analog of sulforaphane isolated from broccoli, we observed significant induction of heme oxygenase-1 by 6-HITC even in the presence of N-acetyl-L-cysteine or glutathione (GSH). In addition, the authentic 6-HITC-β-mercaptoethanol (6-HITC-ME) conjugate markedly up-regulated the enzyme expression, suggesting the electrophilic potential of thiolated isothiocyanates. To gain a chemical insight into the cellular response induced by thiolated isothiocyanates, we studied the occurrence of transthiocarbamoylation of sulfhydryl molecules by 6-HITC-ME and observed that, upon incubation of 6-HITC-ME with GSH, a single product corresponding to the GSH conjugate of 6-HITC was generated. To test the functional ability of thiolated isothiocyanates to thiocarbamoylate proteins in living cells, we designed a novel probe, combining an isothiocyanate-reactive group and an alkyne functionality, and revealed that the transthiocarbamoylation of proteins occurred in the cells upon exposure to 6-HITC-ME. The target of thiocarbamoylation included heat shock protein 90 β (Hsp90β), a chaperone ATPase of the Hsp90 family implicated in protein maturation and targeting. To identify the sites of the Hsp90β modification, we utilized nano-LC/MALDI-TOF MS/MS and suggested that a thiol group on the peptide containing Cys-521 reacted with 6-HITC, resulting in a covalent adduct in a 6-HITC-treated recombinant Hsp90β in vitro. The site-selective binding to Cys-521 was supported by in silico modeling. Further study on the thiocarbamoylation of Hsp90β suggested that the formation of 6-HITC-Hsp90β conjugate might cause activation of heat shock factor-1, rapidly signaling a potential heat shock response. These data suggest that thiolated isothiocyanates are an active metabolite that could contribute to cellular responses through transthiocarbamoylation of cellular proteins.
Collapse
Affiliation(s)
- Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuuki Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Mukai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sohei Ito
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yukio Asaka
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Sho Oe
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Hiroshi Tanaka
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Takashi Takahashi
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
102
|
Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011; 80:1089-115. [PMID: 21417720 DOI: 10.1146/annurev-biochem-060809-095203] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland.
| | | |
Collapse
|
103
|
Pimienta G, Herbert KM, Regan L. A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 2011; 8:2252-61. [PMID: 21882818 DOI: 10.1021/mp200346y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chaperone Hsp90 is required for the correct folding and maturation of certain "client proteins" within all cells. Hsp90-mediated folding is particularly important in cancer cells, because upregulated or mutant oncogenic proteins are often Hsp90 clients. Hsp90 inhibitors thus represent a route to anticancer agents that have the potential to be active against several different types of cancer. Currently, various Hsp90 inhibitors that bind to Hsp90 at its ATP-binding site are in preclinical and clinical trials. Some of the most promising Hsp90 ATP-binding site inhibitors are the well characterized geldanamycin derivative 17-AAG and the recently described compounds PU-H71 and NVP-AUY922. An undesirable characteristic of these compounds is the transcriptional upregulation of Hsp70 that has prosurvival effects. Here we characterize the activity of a new type of chaperone inhibitor, 1,6-dimethyl-3-propylpyrimido[5,4-e][1,2,4]triazine-5,7-dione (named C9 for simplicity). Using purified protein components in vitro, C9 prevents Hsp90 from interacting with the cochaperone HOP and is thus expected to impair the Hsp90-dependent folding pathway in vivo. We show that this compound is effective in killing various breast cancer cell lines including the highly metastatic MDA-MB-231. An important property of this compound is that it does not induce the transcriptional upregulation of Hsp70. Moreover, when cells are treated with a combination of C9 and either 17-AAG or NVP-AUY922, the overexpression of Hsp70 is counteracted considerably and C9's lethal-IC50 decreases compared to its value when added alone.
Collapse
Affiliation(s)
- Genaro Pimienta
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
| | | | | |
Collapse
|
104
|
Gaiser AM, Kaiser CJO, Haslbeck V, Richter K. Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One 2011; 6:e25485. [PMID: 21980476 PMCID: PMC3182237 DOI: 10.1371/journal.pone.0025485] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor.
Collapse
Affiliation(s)
- Andreas M. Gaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Christoph J. O. Kaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Veronika Haslbeck
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Klaus Richter
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
- * E-mail:
| |
Collapse
|
105
|
HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc Natl Acad Sci U S A 2011; 108:16843-8. [PMID: 21949396 DOI: 10.1073/pnas.1110406108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The autoregulatory loops of the circadian clock consist of feedback regulation of transcription/translation circuits but also require finely coordinated cytoplasmic and nuclear proteostasis. Although protein degradation is important to establish steady-state levels, maturation into their active conformation also factors into protein homeostasis. HSP90 facilitates the maturation of a wide range of client proteins, and studies in metazoan clocks implicate HSP90 as an integrator of input or output. Here we show that the Arabidopsis circadian clock-associated F-box protein ZEITLUPE (ZTL) is a unique client for cytoplasmic HSP90. The HSP90-specific inhibitor geldanamycin and RNAi-mediated depletion of cytoplasmic HSP90 reduces levels of ZTL and lengthens circadian period, consistent with ztl loss-of-function alleles. Transient transfection of artificial microRNA targeting cytoplasmic HSP90 genes similarly lengthens period. Proteolytic targets of SCF(ZTL), TOC1 and PRR5, are stabilized in geldanamycin-treated seedlings, whereas the levels of closely related clock proteins, PRR3 and PRR7, are unchanged. An in vitro holdase assay, typically used to demonstrate chaperone activity, shows that ZTL can be effectively bound, and aggregation prevented, by HSP90. GIGANTEA, a unique stabilizer of ZTL, may act in the same pathway as HSP90, possibly linking these two proteins to a similar mechanism. Our findings establish maturation of ZTL by HSP90 as essential for proper function of the Arabidopsis circadian clock. Unlike metazoan systems, HSP90 functions here within the core oscillator. Additionally, F-box proteins as clients may place HSP90 in a unique and more central role in proteostasis.
Collapse
|
106
|
Rupik W, Jasik K, Bembenek J, Widłak W. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:349-66. [DOI: 10.1016/j.cbpa.2011.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023]
|
107
|
Evans TG, Somero GN. Protein-protein interactions enable rapid adaptive response to osmotic stress in fish gills. Commun Integr Biol 2011; 2:94-6. [PMID: 19704899 DOI: 10.4161/cib.7601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 11/19/2022] Open
Abstract
Cells respond to changes in osmolality with compensatory adaptations that re-establish ion homeostasis and repair disturbed aspects of cell structure and function. These physiologically complex processes can be separated into two functionally distinct cellular phases. The first phase operates to temporarily minimize cellular damage and stabilize critical cell functions necessary for survival. This phase is contingent upon the ability to generate a rapid adaptive response. For this reason, it occurs largely in the absence of de novo protein synthesis and instead relies upon modifying the activity of existing cellular proteins through protein-protein interactions and post-translational modifications. The second phase of the osmotic stress response is centered upon adjusting the expression of specific effector proteins required to re-establish cellular homeostasis. This phase is dependent on the completion of signal transduction events; as well the transcription and translation of target genes, and is therefore characterized by a significant temporal delay and not detected until several hours post exposure. Osmotic effector proteins central to the second phase, such as ion transporting proteins and organic osmolyte generating enzymes, have been studied in considerable detail. However, knowledge surrounding the first phase of the osmotic stress response is limited. This article focuses on recent insights into the players and interactions governing the first phase of the osmotic stress response with specific emphasis on protein-protein interactions.
Collapse
Affiliation(s)
- Tyler G Evans
- Hopkins Marine Station; Stanford University; Pacific Grove, CA USA
| | | |
Collapse
|
108
|
Paes HC, Mello-de-Sousa TM, Fernandes L, Teixeira MDM, Melo RDO, Derengowski LDS, Torres FAG, Felipe MSS. Characterisation of the heat shock factor of the human thermodimorphic pathogen Paracoccidioides lutzii. Fungal Genet Biol 2011; 48:947-55. [PMID: 21708278 DOI: 10.1016/j.fgb.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
Thermodimorphic fungi include most causative agents of systemic mycoses, but the molecular mechanisms that underlie their defining trait, i.e. the ability to shift between mould and yeast on temperature change alone, remain poorly understood. We hypothesised that the heat shock factor (Hsf), a protein that evolved to sense thermal stimuli quickly, might play a role in this process in addition to the known regulator Drk1 and the Ryp proteins. To test this hypothesis, we characterised the Hsf from the thermodimorph Paracoccidioides lutzii (formerly Paracoccidioides brasiliensis isolate 01). We show in the present work that PlHsf possesses regulatory domains that are exclusive of the Eurotiomycetidae family, suggesting evolutionary specialisation; that it can successfully rescue the otherwise lethal loss of the native protein of Saccharomyces cerevisiae; and that its DNA-binding domain is able to recognise regulatory elements from the promoters of both Drk1 and Ryp1. An in silico screening of all 1 kb sequences upstream of P. lutzii ORFs revealed that 7% of them possess a heat shock element. This is the first description of a heat shock factor in a thermodimorphic fungus.
Collapse
Affiliation(s)
- Hugo Costa Paes
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Since their discovery in Drosophila, the heat shock proteins (Hsps) have been shown to regulate both stress resistance and life-span. Aging is characterized by increased oxidative stress and the accumulation of abnormal (malfolded) proteins, and these stresses induce Hsp gene expression through the transcription factor HSF. In addition, a subset of Hsps is induced by oxidative stress through the JNK signaling pathway and the transcription factor Foxo. The Hsps counteract the toxicity of abnormal proteins by facilitating protein refolding and turnover, and through other mechanisms including inhibition of apoptosis. The Hsps are up-regulated in tissue-specific patterns during aging, and their expression correlates with, and sometimes predicts, life span, making them ideal biomarkers of aging. The tools available for experimentally manipulating gene function and assaying healthspan in Drosophila provides an unparalleled opportunity to further study the role of Hsps in aging.
Collapse
Affiliation(s)
- John Tower
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
110
|
Khan S, Heikkila JJ. Curcumin-induced inhibition of proteasomal activity, enhanced HSP accumulation and the acquisition of thermotolerance in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:566-76. [DOI: 10.1016/j.cbpa.2011.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 12/23/2022]
|
111
|
Li G, Jiang H, Chang M, Xie H, Hu L. HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci 2011; 304:1-8. [PMID: 21377170 DOI: 10.1016/j.jns.2011.02.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs), or lysine deacetylases (KDAC), are epigenetic regulators that catalyze the removal of acetyl moieties from the tails of lysine residues of histones and other proteins. To date, eighteen HDAC family members (HDAC1-11 and SIRT1-7) have been identified and grouped into four classes according to their homology to yeast histone deacetylases. HDACs play an important role in regulating gene transcription as well as a variety of cellular functions. Recent studies have found that HDAC6 (α-tubulin deacetylase) has the novel ability to capture α-tubulin as a substrate and regulate the physiological level of its acetylated form. In addition, a growing body of evidence suggests that α-tubulin deacetylase plays a critical role in the cellular response to the accumulation of misfolded and aggregated proteins, which are a prominent pathological feature common to many age-related neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases. Therefore, the role of α-tubulin deacetylase and its potential as a therapeutic target for neurodegenerative diseases are areas of rapidly expanding investigation. Here we review the research of the role played by HDAC6 in the regulation of tubulin modification and aggresome formation. We also summarize the specific inhibitors of HDAC6 and address reports that implicate HDAC6 in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Guoyi Li
- Proteomics Laboratory, Department of Neurology, the First Hospital, Jilin University, Changchun 130021, China
| | | | | | | | | |
Collapse
|
112
|
Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011; 2011:618127. [PMID: 21403864 PMCID: PMC3049350 DOI: 10.1155/2011/618127] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/19/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are induced in response to many injuries including stroke, neurodegenerative disease, epilepsy, and trauma. The overexpression of one HSP in particular, Hsp70, serves a protective role in several different models of nervous system injury, but has also been linked to a deleterious role in some diseases. Hsp70 functions as a chaperone and protects neurons from protein aggregation and toxicity (Parkinson disease, Alzheimer disease, polyglutamine diseases, and amyotrophic lateral sclerosis), protects cells from apoptosis (Parkinson disease), is a stress marker (temporal lobe epilepsy), protects cells from inflammation (cerebral ischemic injury), has an adjuvant role in antigen presentation and is involved in the immune response in autoimmune disease (multiple sclerosis). The worldwide incidence of neurodegenerative diseases is high. As neurodegenerative diseases disproportionately affect older individuals, disease-related morbidity has increased along with the general increase in longevity. An understanding of the underlying mechanisms that lead to neurodegeneration is key to identifying methods of prevention and treatment. Investigators have observed protective effects of HSPs induced by preconditioning, overexpression, or drugs in a variety of models of brain disease. Experimental data suggest that manipulation of the cellular stress response may offer strategies to protect the brain during progression of neurodegenerative disease.
Collapse
|
113
|
Ibarz A, Costa R, Harrison AP, Power DM. Dietary keto-acid feed-back on pituitary activity in gilthead sea bream: effects of oral doses of AKG. A proteomic approach. Gen Comp Endocrinol 2010; 169:284-92. [PMID: 20851121 DOI: 10.1016/j.ygcen.2010.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/25/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
The influence of a daily oral dose of alpha-ketoglutarate (AKG, 0.1 g/kg body weight), an intermediate metabolite in the Krebs cycle and a dietary additive, on the pituitary proteome of gilthead sea bream was determined by two-dimensional electrophoresis (2-DE). A high-resolution map of the sea bream pituitary proteome was generated. Proteins with a modified expression between Controls and AKG treated fish were further analysed by MALDI-TOF/TOF-MS and liquid chromatography combined with a nanoelectrospray (LC-MS/MS). The main changes in the proteome induced by AKG treatment were grouped. Metabolic proteins up-regulated with AKG supplementation included fructose-bis-phosphate aldolase, glyceraldehyde-phosphate dehydrogenase and malate dehydrogenase, all related to glucose metabolism (p<0.000). Protein folding related up-regulation with AKG supplementation included two isoforms of heat shock proteins as well as cyclophylin and chaperonin (p<0.000). An unexpected form of apolipoprotein-A-1 with lower molecular weight (15-16 kDa) was evidenced as being highly abundant in the pituitary proteome of Controls, yet it was down-regulated by AKG treatment. Finally, proteins found to be associated with regeneration of neural function namely cofilin and Vat-protein were up-regulated after AKG supplementation. The only hormone to be modified by AKG treatment was somatolactin, which was significantly down-regulated cf. Controls. In summary, these results provide evidence of a potential endocrine/metabolic regulatory loop activated by AKG supplementation.
Collapse
Affiliation(s)
- Antoni Ibarz
- Xarxa de Referència i Recerca en Aqüicultura de la Generalitat de Catalunya, Dept. Fisiologia (Biologia), Univ Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
114
|
Heldens L, Dirks RP, Hensen SMM, Onnekink C, van Genesen ST, Rustenburg F, Lubsen NH. Co-chaperones are limiting in a depleted chaperone network. Cell Mol Life Sci 2010; 67:4035-48. [PMID: 20556630 PMCID: PMC2981734 DOI: 10.1007/s00018-010-0430-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 04/29/2010] [Accepted: 05/26/2010] [Indexed: 11/26/2022]
Abstract
To probe the limiting nodes in the chaperoning network which maintains cellular proteostasis, we expressed a dominant negative mutant of heat shock factor 1 (dnHSF1), the regulator of the cytoplasmic proteotoxic stress response. Microarray analysis of non-stressed dnHSF1 cells showed a two- or more fold decrease in the transcript level of 10 genes, amongst which are the (co-)chaperone genes HSP90AA1, HSPA6, DNAJB1 and HSPB1. Glucocorticoid signaling, which requires the Hsp70 and the Hsp90 folding machines, was severely impaired by dnHSF1, but fully rescued by expression of DNAJA1 or DNAJB1, and partially by ST13. Expression of DNAJB6, DNAJB8, HSPA1A, HSPB1, HSPB8, or STIP1 had no effect while HSP90AA1 even inhibited. PTGES3 (p23) inhibited only in control cells. Our results suggest that the DNAJ co-chaperones in particular become limiting in a depleted chaperoning network. Our results also suggest a difference between the transcriptomes of cells lacking HSF1 and cells expressing dnHSF1.
Collapse
Affiliation(s)
- Lonneke Heldens
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ron P. Dirks
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sanne M. M. Hensen
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Carla Onnekink
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - François Rustenburg
- Section Micro Array Facility, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicolette H. Lubsen
- Department of Biomolecular Chemistry 271, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
115
|
Ohtsuka H, Azuma K, Murakami H, Aiba H. hsf1 (+) extends chronological lifespan through Ecl1 family genes in fission yeast. Mol Genet Genomics 2010; 285:67-77. [PMID: 21072667 DOI: 10.1007/s00438-010-0588-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
The heat shock factor (HSF), a protein evolutionarily conserved from yeasts to human, regulates the expression of a set of proteins called heat shock proteins (HSPs), many of which function as molecular chaperones. In Saccharomyces cerevisiae, the HSF binds to the 5' upstream region of YGR146C and activates its transcription. YGR146C encodes a functional homolog of ecl1 (+), ecl2 (+), and ecl3 (+) of Schizosaccharomyces pombe. At present, these Ecl1 family genes, which are extenders of chronological lifespan, have been identified only in fungi groups. Based on ChIP analysis, we identified that Hsf1 binds to the upstream DNA region of ecl2 (+) after heat shock in S. pombe. In Caenorhabditis elegans, heat shock factor HSF-1 is known to regulate aging and required for the elongation of longevity by dietary restriction. We found that heat shock factor Hsf1 extends chronological lifespan of S. pombe when overexpressed. Moreover, we show that the extension of chronological lifespan by the overproduction of Hsf1 mainly depends on ecl2 (+) among Ecl1 family genes. From these results, we suggest that HSF is a conserved regulator of lifespan, at least in yeast and nematode, and Ecl1 family genes such as YGR146C and ecl2 (+) are the direct targets of Hsf1 and mediate lifespan extension by Hsf1.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
116
|
Björk JK, Sistonen L. Regulation of the members of the mammalian heat shock factor family. FEBS J 2010; 277:4126-39. [PMID: 20945529 DOI: 10.1111/j.1742-4658.2010.07828.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulation of gene expression is fundamental in all living organisms and is facilitated by transcription factors, the single largest group of proteins in humans. For cell- and stimulus-specific gene regulation, strict control of the transcription factors themselves is crucial. Heat shock factors are a family of transcription factors best known as master regulators of induced gene expression during the heat shock response. This evolutionary conserved cellular stress response is characterized by massive production of heat shock proteins, which function as cytoprotective molecular chaperones against various proteotoxic stresses. In addition to promoting cell survival under stressful conditions, heat shock factors are involved in the regulation of life span and progression of cancer and they are also important for developmental processes such as gametogenesis, neurogenesis and maintenance of sensory organs. Here, we review the regulatory mechanisms steering the activities of the mammalian heat shock factors 1–4.
Collapse
Affiliation(s)
- Johanna K Björk
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
117
|
Moon A, Bacchini P, Bertoni F, Olvi LG, Santini-Araujo E, Kim YW, Park YK. Expression of heat shock proteins in osteosarcomas. Pathology 2010; 42:421-5. [PMID: 20632817 DOI: 10.3109/00313025.2010.493866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Heat shock proteins (HSPs) protect cells against stress-associated injuries and are overexpressed in several malignant tumours. We investigated the potential roles of HSP27, HSP60, and HSP70 in conventional and low grade central osteosarcoma. METHODS Expressions of HSP27, HSP60, and HSP70 were analysed using immunohistochemistry on tissue sections from 52 cases of conventional osteosarcoma and 21 cases of low grade central osteosarcoma. We evaluated the expression of each protein and examined its relationship with clinicopathological parameters. RESULTS We found significantly different expressions of HSP27 and HSP70 between conventional and low grade central osteosarcoma [34.6% versus 4.8% (p = 0.008), 88.5% versus 14.3% (p < 0.001)]. However, HSP60 was highly expressed in both kinds of osteosarcoma (92.3% versus 85.7%). In conventional osteosarcoma, a higher expression of HSP27 was significantly related to distant metastasis (p = 0.034) and histological subtype [osteoblastic versus non-osteoblastic (p = 0.041)]. The expressions of HSP60 and HSP70 were not significantly related to any tested clinicopathological parameter. CONCLUSIONS HSP27 and HSP70 may be used as differential markers to distinguish conventional and low grade central osteosarcoma. HSP27 may be used as a possible prognostic marker in conventional osteosarcoma cases.
Collapse
Affiliation(s)
- Ahrim Moon
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Kazemi Z, Chang H, Haserodt S, McKen C, Zachara NE. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J Biol Chem 2010; 285:39096-107. [PMID: 20926391 DOI: 10.1074/jbc.m110.131102] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser(303) (Ser(P)(303) HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)(303) HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)(303) HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser(9) was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
120
|
Methylglyoxal alters the function and stability of critical components of the protein quality control. PLoS One 2010; 5:e13007. [PMID: 20885985 PMCID: PMC2945773 DOI: 10.1371/journal.pone.0013007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/06/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Increased production and accumulation of methylglyoxal (MGO), as well as increased modification of proteins by glycoxidation, are hallmarks of aging and diabetes. MGO was shown to modify proteins and to contribute to the accumulation of damaged proteins that can be toxic to cells. However, the effect of MGO on the cell systems responsible for repairing or degrading damaged proteins is still unclear. In this study, the effect of MGO on the function of the ubiquitin-proteasome system (UPS) and on molecular chaperones, two cooperative mechanisms associated with protein quality control, was investigated. PRINCIPAL FINDINGS In this work it is shown that treatment of cells with MGO leads to accumulation of ubiquitin conjugates and depletion of free ubiquitin. Moreover, MGO significantly decreases the proteolytic activity of the 20S proteasome. Data further shows that MGO decreases the levels of the molecular chaperones Hsc70 and Hsp90 and leads to accumulation of CHIP-, Hsp40- and ubiquitin-containing aggregates. The formation of large aggregates containing CHIP is a consequence of its binding to misfolded proteins and to molecular chaperones. Moreover, dysfunction of the chaperones/CHIP/UPS axis is associated with accumulation of oxidized and argpyrimidine-modified proteins, which is likely to be associated with decreased cell viability. Interestingly, data further shows that MGO-induced stress induces the activation of heat shock factor-1 (Hsf-1), the main transcription factor involved in the regulation of the expression of heat shock proteins (HSPs) and cell response to stress. CONCLUSIONS The data obtained in this work suggests that MGO impairs both the UPS and the protein quality control dependent on CHIP and molecular chaperones, leading to accumulation of toxic aggregates and increased cell death. However, these MGO-induced changes appear to elicit a response from the Hsf-1 system, which is crucial to help cells to cope with cellular stress and to re-establish homeostasis.
Collapse
|
121
|
Shah NG, Tulapurkar ME, Singh IS, Shelhamer JH, Cowan MJ, Hasday JD. Prostaglandin E2 potentiates heat shock-induced heat shock protein 72 expression in A549 cells. Prostaglandins Other Lipid Mediat 2010; 93:1-7. [PMID: 20382255 PMCID: PMC2919605 DOI: 10.1016/j.prostaglandins.2010.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 03/23/2010] [Accepted: 03/31/2010] [Indexed: 12/11/2022]
Abstract
The heat shock (HS) response is an important cytoprotective response comprising the expression of heat shock proteins (HSPs) and orchestrated by the heat/stress-induced transcription factor, heat shock factor-1 (HSF-1). Previous studies suggest that the activation threshold and magnitude of the HS response may be modified by treatment with arachidonic acid (AA). We analyzed the effect of exogenous AA and its metabolites, PGE(2), LTD(4), and 15-HETE on HSF-1-dependent gene expression in A549 human respiratory epithelial-like cells. When added at 1microM, PGE(2) much more than LTD(4), but not 15-HETE increased activity of a synthetic HSF-1-dependent reporter after HS exposure (42 degrees C for 2h), but had no effect in the absence of HS. Exposing A549 cells to HS stimulated the release of PGE(2) and treatment with the cyclooxygenase inhibitor, ibuprofen, reduced HS-induced HSF-1-dependent transcription. PGE(2) increased HS-induced HSP72 mRNA and protein expression but EMSA and Western blot analysis failed to show an effect on HSF-1 DNA binding activity or post-translational modification. In summary, we showed that HS stimulates the generation of PGE(2), which augments the generation of HSPs. The clinical consequences of this pathway have yet to be determined.
Collapse
Affiliation(s)
- Nirav G. Shah
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| | - James H. Shelhamer
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Mark J. Cowan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research Services of the Baltimore VA Medical Center, Baltimore, Maryland, USA 21201
| |
Collapse
|
122
|
Nagaraj NS, Singh OV, Merchant NB. Proteomics: a strategy to understand the novel targets in protein misfolding and cancer therapy. Expert Rev Proteomics 2010; 7:613-23. [PMID: 20653514 PMCID: PMC4339030 DOI: 10.1586/epr.10.70] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins carry out important functions as they fold themselves. Protein misfolding occurs during different biochemical processes and may lead to the development of diseases such as cancer, which is characterized by genetic instability. The cancer microenvironment exposes malignant cells to a variety of stressful conditions that may further promote protein misfolding. Tumor development and progression often arises from mutations that interfere with the appropriate function of tumor-suppressor proteins and oncogenes. These may be due to alteration of catalytic activity of the protein, loss of binding sites for effector proteins or alterations of the native folded protein conformation. Src family kinases, p53, mTOR and C-terminus of HSC70 interacting protein (CHIPs) are some examples associated with protein misfolding and tumorigenesis. Molecular chaperones, such as heat-shock protein (HSP)70 and HSP90, assist protein folding and recognize target misfolded proteins for degradation. It is likely that this misfolding in cancer is linked by common principles, and may, therefore, present an exciting possibility to identify common targets for therapeutic intervention. Here we aim to review a number of examples that show how alterations in the folding of tumor-suppressor proteins or oncogenes lead to tumorigenesis. The possibility of targeting the targets to repair or degrade protein misfolding in cancer therapy is discussed.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN-37232, USA.
| | | | | |
Collapse
|
123
|
Zaidi SK, Young DW, Montecino M, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 2010; 11:583-9. [PMID: 20628351 PMCID: PMC3033599 DOI: 10.1038/nrg2827] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory machinery is focally organized in the interphase nucleus. The information contained in these focal nuclear microenvironments must be inherited during cell division to sustain physiologically responsive gene expression in progeny cells. Recent results suggest that focal mitotic retention of phenotypic transcription factors at promoters together with histone modifications and DNA methylation--a mechanism collectively known as gene bookmarking--is a novel parameter of inherited epigenetic control that sustains cellular identity after mitosis. The epigenetic signatures imposed by bookmarking poise genes for activation or suppression following mitosis. We discuss the implications of phenotypic transcription factor retention on mitotic chromosomes in biological control and disease.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Daniel W. Young
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Martin Montecino
- Centro de Investigaciones Biomedicas, Facultad de Ciencias Biologicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, 55 Lake Avenue North, Worcester, MA 01655 USA
| |
Collapse
|
124
|
Jacobs AT, Marnett LJ. Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc Chem Res 2010; 43:673-83. [PMID: 20218676 PMCID: PMC2873822 DOI: 10.1021/ar900286y] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Biological electrophiles result from oxidative metabolism of exogenous compounds or endogenous cellular constituents, and they contribute to pathophysiologies such as toxicity and carcinogenicity. The chemical toxicology of electrophiles is dominated by covalent addition to intracellular nucleophiles. Reaction with DNA leads to the production of adducts that block replication or induce mutations. The chemistry and biology of electrophile−DNA reactions have been extensively studied, providing in many cases a detailed understanding of the relation between adduct structure and mutational consequences. By contrast, the linkage between protein modification and cellular response is poorly understood. In this Account, we describe our efforts to define the chemistry of protein modification and its biological consequences using lipid-derived α,β-unsaturated aldehydes as model electrophiles. In our global approach, two large data sets are analyzed: one represents the identity of proteins modified over a wide range of electrophile concentrations, and the second comprises changes in gene expression observed under similar conditions. Informatics tools show theoretical connections based primarily on transcription factors hypothetically shared between the two data sets, downstream of adducted proteins and upstream of affected genes. This method highlights potential electrophile-sensitive signaling pathways and transcriptional processes for further evaluation. Peroxidation of cellular phospholipids generates a complex mixture of both membrane-bound and diffusible electrophiles. The latter include reactive species such as malondialdehyde, 4-oxononenal, and 4-hydroxynonenal (HNE). Enriching HNE-adducted proteins for proteomic analysis was a technical challenge, solved with click chemistry that generated biotin-tagged protein adducts. For this purpose, HNE analogues bearing terminal azide or alkyne functionalities were synthesized. Cellular lysates were first exposed to a single type of HNE analogue (azido- or alkynyl-HNE), and then click reactions were performed against the cognate alkynyl- and azido-biotin derivative. The resulting biotin-labeled proteins were captured and enriched over a streptavidin matrix for subsequent mass spectrometric analysis. We thereby identified a multitude of HNE targets. Simultaneous microarray analysis of changes in gene expression triggered by HNE also produced an abundance of data. Functional analysis of both data sets generated the hypothesis that an important pathway of cellular response derives from electrophile modification of protein chaperones, resulting in the release of transcription factors that are their clients. Informatic analysis of the protein modification and microarray data sets identified several transcription factors as potential mediators of the cellular response to HNE-adducted proteins. Among these, heat shock factor 1 (HSF1) was confirmed as a sensitive and robust effector of HNE-induced changes in gene expression. Activation of HSF1 appears, in part, to be mediated by the electrophilic adduction of Hsp70 and Hsp90, which normally maintain HSF1 in an inactive cytosolic complex. The identification of HSF1 as a mediator of biological effects downstream of HSF1 has provided new opportunities for research, illustrating the potential of our systems-based approach. Accordingly, we characterized HSF1-mediated gene expression in protecting against electrophile-induced toxicity. Among the genes induced by HSF1, Bcl-2- associated athanogene 3 (BAG3) is notable for its actions in promoting cell survival through stabilization of antiapoptotic Bcl-2 proteins, appearing to have a critical role in mediating cellular protection against electrophile-induced death.
Collapse
Affiliation(s)
- Aaron T. Jacobs
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232-0146
| | - Lawrence J. Marnett
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232-0146
| |
Collapse
|
125
|
Evans TG. Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. JOURNAL OF FISH BIOLOGY 2010; 76:1903-1925. [PMID: 20557646 DOI: 10.1111/j.1095-8649.2010.02590.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review centres upon the molecular regulation of osmotic stress responses in fishes, focusing on how osmosensing and signal transduction events co-ordinate changes in the activity and abundance of effector proteins during osmotic stress and how these events integrate into osmotic stress responses of varying magnitude. The concluding sections discuss the relevance of osmosensory signal transduction to the evolution of euryhalinity and present experimental approaches that may best stimulate future research. Iterating the importance of osmosensing and signal transduction during fish osmoregulation may be pertinent amidst the increased use of genomic technologies that typically focus solely on changes in the abundances of gene products, and may limit insight into critical upstream events that occur mainly through post-translational mechanisms.
Collapse
Affiliation(s)
- T G Evans
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| |
Collapse
|
126
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
127
|
Young JTF, Heikkila JJ. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells. Cell Stress Chaperones 2010; 15:323-34. [PMID: 19838833 PMCID: PMC2866991 DOI: 10.1007/s12192-009-0147-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/24/2009] [Accepted: 09/29/2009] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.
Collapse
Affiliation(s)
- Jordan T. F. Young
- Department of Biology, University of Waterloo, Waterloo, ON Canada N2L 3G1
| | - John J. Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON Canada N2L 3G1
| |
Collapse
|
128
|
ZHANG HY, LIU XQ, SUN YN, HAO N, LI XM, LOU ZY. Expression, Purification and Crystallization of Heat Shock Factor Binding Protein 1*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2008.00861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
129
|
Dirks RP, van Geel R, Hensen SMM, van Genesen ST, Lubsen NH. Manipulating heat shock factor-1 in Xenopus tadpoles: neuronal tissues are refractory to exogenous expression. PLoS One 2010; 5:e10158. [PMID: 20405018 PMCID: PMC2854154 DOI: 10.1371/journal.pone.0010158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/03/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The aging related decline of heat shock factor-1 (HSF1) signaling may be causally related to protein aggregation diseases. To model such disease, we tried to cripple HSF1 signaling in the Xenopus tadpole. RESULTS Over-expression of heat shock factor binding protein-1 did not inhibit the heat shock response in Xenopus. RNAi against HSF1 mRNA inhibited the heat shock response by 70% in Xenopus A6 cells, but failed in transgenic tadpoles. Expression of XHSF380, a dominant-negative HSF1 mutant, was embryonic lethal, which could be circumvented by delaying expression via a tetracycline inducible promoter. HSF1 signaling is thus essential for embryonic Xenopus development. Surprisingly, transgenic expression of the XHSF380 or of full length HSF1, whether driven by a ubiquitous or a neural specific promoter, was not detectable in the larval brain. CONCLUSIONS Our finding that the majority of neurons, which have little endogenous HSF1, refused to accept transgene-driven expression of HSF1 or its mutant suggests that HSF1 levels are strictly controlled in neuronal tissue.
Collapse
Affiliation(s)
- Ron P. Dirks
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Remon van Geel
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sanne M. M. Hensen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nicolette H. Lubsen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
130
|
Healy TM, Tymchuk WE, Osborne EJ, Schulte PM. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol Genomics 2010; 41:171-84. [PMID: 20103695 DOI: 10.1152/physiolgenomics.00209.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Northern and southern subspecies of the Atlantic killifish, Fundulus heteroclitus, differ in maximal thermal tolerance. To determine whether these subspecies also differ in their heat shock response (HSR), we exposed 20°C acclimated killifish to a 2 h heat shock at 34°C and examined gene expression in fish from both subspecies during heat shock and recovery using real-time quantitative PCR and a heterologous cDNA microarray designed for salmonid fishes. The heat shock proteins Hsp70-1, hsp27, and hsp30 were upregulated to a greater extent in the high temperature-tolerant southern subspecies than in the less tolerant northern subspecies, whereas hsp70-2 (which showed the largest upregulation of all the heat shock proteins) in both gill and muscle and hsp90α in muscle was upregulated to a greater extent in northern than in southern fish. These data demonstrate that differences in the HSR between subspecies cannot be due to changes in a single global regulator but must occur via gene-specific mechanisms. They also suggest that the role, if any, of hsps in establishing thermal tolerance is complex and varies from gene to gene. Heterologous microarray hybridization provided interpretable gene expression signatures, detecting differential regulation of genes known to be involved in the heat shock response in other species. Under control conditions, a variety of genes were differentially expressed in muscle between subspecies that suggest differences in muscle fiber type and could relate to previously observed differences between subspecies in the thermal sensitivity of swimming performance and metabolism.
Collapse
Affiliation(s)
- Timothy M. Healy
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wendy E. Tymchuk
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward J. Osborne
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M. Schulte
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
131
|
Conde R, Belak ZR, Nair M, O'Carroll RF, Ovsenek N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 2010; 87:845-51. [PMID: 19935870 DOI: 10.1139/o09-049] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.
Collapse
Affiliation(s)
- Renaud Conde
- Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Rd., University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
132
|
Fujikawa T, Munakata T, Kondo SI, Satoh N, Wada S. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 2010; 15:193-204. [PMID: 19629754 PMCID: PMC2866982 DOI: 10.1007/s12192-009-0133-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022] Open
Abstract
The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28 degrees C (10 degrees C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.
Collapse
Affiliation(s)
- Tetsuya Fujikawa
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Takeo Munakata
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Shin-ichi Kondo
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Uruma, Okinawa 904-2234 Japan
| | - Shuichi Wada
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| |
Collapse
|
133
|
Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010; 2010:214074. [PMID: 20182529 PMCID: PMC2825543 DOI: 10.1155/2010/214074] [Citation(s) in RCA: 891] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/20/2009] [Indexed: 12/13/2022] Open
Abstract
Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer.
Collapse
|
134
|
Eymery A, Souchier C, Vourc'h C, Jolly C. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells. Exp Cell Res 2010; 316:1845-55. [PMID: 20152833 DOI: 10.1016/j.yexcr.2010.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 11/15/2022]
Abstract
Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.
Collapse
Affiliation(s)
- Angéline Eymery
- Université Joseph Fourier-Grenoble I, INSERM Institut Albert Bonniot U823, La Tronche, F-38700, France.
| | | | | | | |
Collapse
|
135
|
Neznanov N, Gorbachev AV, Neznanova L, Komarov AP, Gurova KV, Gasparian AV, Banerjee AK, Almasan A, Fairchild RL, Gudkov AV. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle 2009; 8:3960-70. [PMID: 19901558 DOI: 10.4161/cc.8.23.10179] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activation of proteotoxic stress. Low efficacy of these therapies is likely due to the protective effects of HSR induced in treated cells, making this pathway an attractive target for pharmacological suppression. We found that the anti-malaria drugs quinacrine (QC) and emetine prevented HSR in cancer cells, as judged by induction of hsp70 expression. As opposed to emetine, which inhibited general translation, QC did not affect protein synthesis, but rather suppressed inducible HSF1-dependent transcription of the hsp70 gene in a relatively selective manner. The treatment of tumor cells in vitro with a combination of non-toxic concentrations of QC and proteotoxic stress inducers resulted in rapid induction of apoptosis. The effect was similar if QC was substituted by siRNA against hsp70, suggesting that the HSR inhibitory activity of QC was responsible for cell sensitization to proteotoxic stress inducers. QC was also found to enhance the antitumor efficacy of proteotoxic stress inducers in vivo: combinatorial treatment with 17-DMAG + QC resulted in suppression of tumor growth in two mouse syngeneic models. These results reveal that QC is an inhibitor of HSF1-mediated HSR. As such, this compound has significant clinical potential as an adjuvant in therapeutic strategies aimed at exploiting the cytotoxic potential of proteotoxic stress.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity. Biochem J 2009; 424:253-61. [PMID: 19758120 DOI: 10.1042/bj20090922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HSF (heat-shock transcription factor) trimers bind to the HSE (heat-shock element) regulatory sequence of target genes and regulate gene expression. A typical HSE consists of at least three contiguous inverted repeats of the 5-bp sequence nGAAn. Yeast HSF is able to recognize discontinuous HSEs that contain gaps in the array of the nGAAn sequence; however, hHSF1 (human HSF1) fails to recognize such sites in vitro, in yeast and in HeLa cells. In the present study, we isolated suppressors of the temperature-sensitive growth defect of hHSF1-expressing yeast cells. Intragenic suppressors contained amino acid substitutions in the DNA-binding domain of hHSF1 that enabled hHSF1 to regulate the transcription of genes containing discontinuous HSEs. The substitutions facilitated hHSF1 oligomerization, suggesting that the DNA-binding domain is important for this conformational change. Furthermore, other oligomerization-prone derivatives of hHSF1 were capable of recognizing discontinuous HSEs. These results suggest that modulation of oligomerization is important for the HSE specificity of hHSF1 and imply that hHSF1 possesses the ability to bind to and regulate gene expression via various types of HSEs in diverse cellular processes.
Collapse
|
137
|
Krivoruchko A, Storey KB. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans. J Comp Physiol B 2009; 180:403-14. [PMID: 19834715 DOI: 10.1007/s00360-009-0414-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.
Collapse
Affiliation(s)
- Anastasia Krivoruchko
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
138
|
Nicholls S, Leach MD, Priest CL, Brown AJP. Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol 2009; 74:844-61. [PMID: 19818013 PMCID: PMC3675641 DOI: 10.1111/j.1365-2958.2009.06883.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
All organisms have evolved mechanisms that protect them against environmental stress. The major fungal pathogen of humans, Candida albicans, has evolved robust stress responses that protect it against human immune defences and promote its pathogenicity. However, C. albicans is unlikely to be exposed to heat shock as it is obligatorily associated with warm-blooded animals. Therefore, we examined the role of the heat shock transcription factor (Hsf1) in this pathogen. We show that C. albicans expresses an evolutionarily conserved Hsf1 (orf19.4775) that is phosphorylated in response to heat shock, induces transcription via the heat shock element (HSE), contributes to the global transcriptional response to heat shock, and is essential for viability. Why has Hsf1 been conserved in this obligate animal saprophyte? We reasoned that Hsf1 might contribute to medically relevant stress responses. However, this is not the case, as an Hsf1-specific HSE-lacZ reporter is not activated by oxidative, osmotic, weak acid or pH stress. Rather, Hsf1 is required for the expression of essential chaperones in the absence of heat shock (e.g. Hsp104, Hsp90, Hsp70). Furthermore, Hsf1 regulates the expression of HSE-containing genes in response to growth temperature in C. albicans. Therefore, the main role of Hsf1 in this pathogen might be the homeostatic modulation of chaperone levels in response to growth temperature, rather than the activation of acute responses to sudden thermal transitions.
Collapse
Affiliation(s)
- Susan Nicholls
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
139
|
Meiri D, Breiman A. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:387-99. [PMID: 19366428 DOI: 10.1111/j.1365-313x.2009.03878.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Arabidopsis ROF1 (AtFKBP62) is a peptidyl prolyl cis/trans isomerase and a member of the FKBP (FK506 binding protein) family. ROF1 expression is induced by heat stress and developmentally regulated. In this study, we show that ROF1 binds heat shock proteins HSP90.1 via its tetratricopeptide repeat domain, and localizes in the cytoplasm under normal conditions. Exposure to heat stress induces nuclear localization of the ROF1-HSP90.1 complex, which is dependent upon the presence of the transcription factor HsfA2, which interacts with HSP90.1 but not with ROF1. Nuclear localization of ROF1 was not detected in Arabidopsis HSP90.1 and HsfA2 knockout mutants. The rof1 knockout plants exhibited collapse when 24-48 h passed between acclimation at 37 degrees C and exposure to 45 degrees C. Transgenic ROF1 over-expressors showed better survival in response to exposure to 45 degrees C than wild-type plants did. In rof1 knockout mutants, the level of expression of small HSPs regulated by HsfA2 was dramatically reduced after exposure to 37 degrees C and recovery for 24-48 h, and correlates well with the mutant phenotype. We suggest a role for ROF1 in prolongation of thermotolerance by sustaining the levels of small HSPs that are essential for survival at high temperatures.
Collapse
Affiliation(s)
- David Meiri
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
140
|
Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:417-24. [DOI: 10.1016/j.cbpa.2009.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/26/2009] [Accepted: 03/31/2009] [Indexed: 01/09/2023]
|
141
|
Abstract
Heat-shock proteins (Hsps) are increasingly being implicated in aging phenotypes and control of life span across species. They are targets of the conserved heat-shock factor and insulin/IGF1-like signaling pathways that affect life span and aging phenotypes. Hsps are expressed in tissue-specific and disease-specific patterns during aging, and their level of expression and induction by stress correlates with and, in some instances, predicts life span. In model organisms, Hsps have been shown to increase life span and ameliorate aging-associated proteotoxicity. Finally, Hsps have emerged as key components in regulating aging-related cellular phenotypes, including cell senescence, apoptosis and cancer. The Hsps, therefore, provide a metric of individual stress and aging and are potential targets for interventions in aging and aging-related diseases.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| |
Collapse
|
142
|
Abstract
Heat shock proteins (HSPs) are a highly conserved family of proteins which inhabit almost all subcellular locations and cellular membranes. Depending on their location, these proteins perform a variety of chaperoning functions including folding of newly synthesised polypeptides. HSPs also play a major role in the protection of cells against stressful and injury-inciting stimuli. By virtue of this protective function, HSPs have been shown to prevent acinar cell injury in acute pancreatitis. Also, the levels of HSPs have been shown to be markedly elevated in various forms of cancers when compared with non-transformed cells. Further, inhibition of HSPs has been shown to induce apoptotic cell death in cancer cells suggesting that inhibition of HSPs has a potential to emerge as novel anti-cancer therapy, either as monotherapy or in combination with other chemotherapeutic agents. Several studies have suggested that HSPs can interact with and inhibit both intrinsic and extrinsic pathways of apoptosis at multiple sites. Besides the anti-apoptotic role of HSPs, recent studies suggest that they play a role in the generation of anti-cancer immunity, and attempts have been made to utilise this property of HSPs in the generation of anti-cancer vaccines. The anti-apoptotic function and mechanism of various subtypes of HSPs as well as the current status of anti-HSP therapy are discussed in this review.
Collapse
Affiliation(s)
- V Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
143
|
Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009; 13:469-78. [PMID: 19335068 DOI: 10.1517/14728220902832697] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In mammals, the cytoprotective heat-shock response is regulated primarily by heat shock factor 1 (HSF1). Unfortunately, the effects of HSF1 also support the ability of cancer cells to accommodate imbalances in signaling and alterations in DNA, protein and energy metabolism associated with oncogenesis. The malignant lifestyle confers dependence on this 'non-oncogene', suggesting a therapeutic role for HSF1 inhibitors. OBJECTIVE/METHODS We begin with an overview of how HSF1 affects cancer biology and how its activity is regulated. We then summarize progress in discovery and development of HSF1 inhibitors, their current limitations and potential as anticancer agents with a fundamentally different scope of action from other clinically validated modulators of protein homeostasis. RESULTS/CONCLUSIONS It is likely that within the next 5 years usable inhibitors of HSF1 will be identified and in early pre-clinical evaluation.
Collapse
Affiliation(s)
- Luke Whitesell
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
144
|
Sharp CA, Roberts S, Evans H, Brown SJ. Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 18:1587-94. [PMID: 19517141 DOI: 10.1007/s00586-009-1053-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 05/07/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
Abstract
Intervertebral disc (IVD) cells within the annulus fibrosus (AF) and nucleus pulposus (NP) maintain distinct functional extracellular matrices and operate within a potentially noxious and stressful environment. How disc cells respond to stress and whether stress is responsible for triggering degeneration is unknown. Disc cell proliferation and cluster formation are most marked in degenerate IVDs, possibly indicating attempts at matrix repair. In other tissues, stress proteins increase rapidly after stress protecting cell function and, although implicated in degeneration of articular cartilage, have received little attention in degenerative IVD pathologies. We have compared the distribution of stress protein immunolocalization in pathological and control IVDs. Disc tissues were obtained at surgery from 43 patients with degenerative disc disease (DDD) and herniation, and 12 controls at postmortem. Tissues were immunostained with a polyclonal antibody for heat shock factor 1 (HSF-1) and monoclonal antibodies for the heat shock proteins, Hsp27 and Hsp72, using an indirect immunoperoxidase method. Positively stained cells were expressed as a percentage of the total. Cell cluster formation was also assessed. The proportion of cells in clusters was similar in the AF (both 2%) and NP (8 and 9%) of control and DDD samples, whereas in herniated tissues this was increased (AF 12%, NP 14%). Stress antigen staining tended to be more frequent in clustered rather than in single/doublet cells, and this was significant (P < 0.005) in both the AF and NP of herniated discs. Clustered cells, which are most common in herniated discs, may be mounting a protective response to abnormal environmental factors associated with disc degeneration. A better understanding of the stress response in IVD cells may allow its utilization in disc cell therapies.
Collapse
Affiliation(s)
- Christopher A Sharp
- Charles Salt Centre for Human Metabolism, Robert Jones and Agnes Hunt Orthopaedic and District Hospital NHS Trust, Oswestry, Shropshire SY10 7AG, UK.
| | | | | | | |
Collapse
|
145
|
Zhou Y, Vu K, Chen Y, Pham J, Brady T, Liu G, Chen J, Nam J, Murali Mohan Reddy P, Au Q, Yoon IS, Tremblay MH, Yip G, Cher C, Zhang B, Barber JR, Ng SC. Chloro-oxime derivatives as novel small molecule chaperone amplifiers. Bioorg Med Chem Lett 2009; 19:3128-35. [DOI: 10.1016/j.bmcl.2009.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 11/26/2022]
|
146
|
Lu M, Sohn KJ, Kim SW, Li CR, Kim S, Kim DK, Park JS. Alpha-helix 1 in the DNA-binding domain of heat shock factor 1 regulates its heat-induced trimerization and DNA-binding. Biochem Biophys Res Commun 2009; 385:612-7. [PMID: 19486883 DOI: 10.1016/j.bbrc.2009.05.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022]
Abstract
Heat shock factor 1 (HSF1) primarily regulates various cellular stress responses. The role of alpha-helix1 (H1) in its DNA-binding domain (DBD) during HSF1 activation remains unknown. Here, HSF1 lacking H1 loses its heat-induced activity, suggesting the importance of the latter. Furthermore, the CD spectra and AMBER prediction show that this H1 deficiency does not change the structure of HSF1 monomer, but does impact its heat-induced trimerization. Point mutation showed that Phe18 in H1 interacts with Tyr60, and that Trp23 interacts with Phe104 by an aromatic-aromatic interaction. Thus, the presence of H1 stabilizes the DBD structure, which facilitates the heat-induced trimerization and DNA-binding of HSF1.
Collapse
Affiliation(s)
- Ming Lu
- Department of Chemistry, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
147
|
Liu X, Xu L, Liu Y, Tong X, Zhu G, Zhang XC, Li X, Rao Z. Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 2009; 75:1-11. [PMID: 18767159 DOI: 10.1002/prot.22216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heat shock response (HSR) is a ubiquitous cellular mechanism that copes with a variety of stresses. This response is mediated by a family of transcriptional activators, heat shock factors (HSFs), which are under tight regulation. HSF binding protein 1 (HSBP1) is a negative regulator of HSR and is reported to bind specifically with the active trimeric form of HSF1, thus inhibiting its activity. HSBP1 contains heptad-repeats in the primary sequence and was believed to stay in a trimer form in solution. We report the crystal structure of the trimerization domain of the M30I/L55P mutant of human HSBP1 at 1.8 A resolution. In this crystal form, the HSBP1 fragment of residues 6-53 forms a continuous, 11-turn long helix. The helix self-associates to form a parallel, symmetrical, triple coiled-coil helix bundle, which further assembles into a dimer of trimers in a head-to-head fashion. Solution study confirmed that the wild-type HSBP1 shares similar biophysical properties with the crystallized variant. Furthermore, we identified Ser31, which buried its polar side chain in the hydrophobic interior of the helix bundle, as a stability weak-spot. Substitution of this residue with Ile increases the melting temperature by 24 degrees C, implicating that this conserved serine residue is maintained at position 31 for functional purposes.
Collapse
Affiliation(s)
- Xueqi Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Wang RE, Kao JLF, Hilliard CA, Pandita RK, Roti JLR, Hunt CR, Taylor JS. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem 2009; 52:1912-21. [PMID: 19296652 PMCID: PMC2763579 DOI: 10.1021/jm801445c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitors of heat-induced heat shock protein 70 (HSP70) expression have the potential to enhance the therapeutic effectiveness of heat-induced radiosensitization of tumors. Among known small molecule inhibitors, quercetin has the advantage of being easily modified for structure-activity studies. Herein, we report the ability of five monomethyl and five carbomethoxymethyl derivatives of quercetin to inhibit heat-induced HSP70 expression and enhance HSP27 phosphorylation in human cells. While quercetin and several derivatives inhibit HSP70 induction and enhance HSP27 phosphorylation at Ser78, other analogues selectively inhibit HSP70 induction without enhancing HSP27 phosphorylation that would otherwise aid in cell survival. We also show that good inhibitors of HSP70 induction are also good inhibitors of both CK2 and CamKII, kinases that are known to activate HSP70 expression by phosphorylation of heat shock transcription factor 1. Derivatives that show poor inhibition of either or both kinases are not good inhibitors of HSP70 induction, suggesting that quercetin's effectiveness is due to its ability to inhibit both kinases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John-Stephen Taylor
- To whom correspondence should be addressed: Phone: (314) 935-6721. FAX: (314) 935-4481.
| |
Collapse
|
149
|
Sørensen JG, Loeschcke V, Kristensen TN. Lessons from the use of genetically modifiedDrosophila melanogasterin ecological studies: Hsf mutant lines show highly trait-specific performance in field and laboratory thermal assays. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01491.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
150
|
Lu M, Lee YJ, Park SM, Kang HS, Kang SW, Kim S, Park JS. Aromatic-Participant Interactions Are Essential for Disulfide-Bond-Based Trimerization in Human Heat Shock Transcription Factor 1. Biochemistry 2009; 48:3795-7. [DOI: 10.1021/bi802255c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|